Material Safety Data Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 2.Iii.1. Fissionable Isotopes1
FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector. -
Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life
Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life Understanding Radioactivity and Radiation in our Everyday Lives Radioactivity is part of our earth – it has existed all along. Naturally occurring radio- active materials are present in the earth’s crust, the floors and walls of our homes, schools, and offices and in the food we eat and drink. Our own bodies- muscles, bones and tissues, contain naturally occurring radioactive elements. Man has always been exposed to natural radiation arising from earth as well as from outside. Most people, upon hearing the word radioactivity, think only about some- thing harmful or even deadly; especially events such as the atomic bombs that were dropped on Hiroshima and Nagasaki in 1945, or the Chernobyl Disaster of 1986. However, upon understanding radiation, people will learn to appreciate that radia- tion has peaceful and beneficial applications to our everyday lives. What are atoms? Knowledge of atoms is essential to understanding the origins of radiation, and the impact it could have on the human body and the environment around us. All materi- als in the universe are composed of combination of basic substances called chemical elements. There are 92 different chemical elements in nature. The smallest particles, into which an element can be divided without losing its properties, are called atoms, which are unique to a particular element. An atom consists of two main parts namely a nu- cleus with a circling electron cloud. The nucleus consists of subatomic particles called protons and neutrons. Atoms vary in size from the simple hydro- gen atom, which has one proton and one electron, to large atoms such as uranium, which has 92 pro- tons, 92 electrons. -
Security of Supply of Medical Radioisotopes - a Clinical View Dr Beverley Ellis Consultant Radiopharmacist
Security of Supply of Medical Radioisotopes - a clinical view Dr Beverley Ellis Consultant Radiopharmacist Nuclear Medicine Centre Manchester University NHS Foundation Trust Nuclear Medicine § Approx 35 million clinical radionuclide imaging procedures worldwide § Globally 2nd most common imaging technique after CT (higher than MR) 20 million in USA 9 million in Europe 3 million in Japan 3 million in rest of the world Approx 700, 000 nuclear medicine procedures per year in UK Myocardial Perfusion - Ischaemia Stress Stress SA Rest Stress VLA Rest Stress HLA Rest Rest Tc-99m Bone Scans Normal Metastases Mo-99/Tc-99m Generator Supply Tc-99m Radiopharmaceutical Production Mo-99 Shortages Design of Clinical Services to Reduce Tc-99m Use § Optimisation of generator management – Efficiency savings – Delivery and extraction schedules – Patient scheduling § Improved communication – Customers – Suppliers § Improved software – gamma cameras – Produce comparable quality images using less radioactivity Global Situation § OECD/Nuclear Energy Agency (NEA) – Set up High Level Group (HLG-MR) in 2009 – Security of supply of Mo-99 and Tc-99m – Established 6 principles e.g. full cost recovery and outage reserve capacity – Issued a series of publications Global Situation § AIPES (Association of Imaging Producers & Equipment supplies) (Now called Nuclear Medicine Europe) – Support coordination of research reactor schedules Global Situation § Increased Mo-99 Production Capacity – Mo-99 suppliers – acquire additional capacity to cover shortfalls (Outage -
The Supply of Medical Isotopes
The Supply of Medical Isotopes AN ECONOMIC DIAGNOSIS AND POSSIBLE SOLUTIONS The Supply of Medical Isotopes AN ECONOMIC DIAGNOSIS AND POSSIBLE SOLUTIONS The Supply of Medical Isotopes AN ECONOMIC DIAGNOSIS AND POSSIBLE SOLUTIONS This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries. This document, as well as any data and any map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Please cite this publication as: OECD/NEA (2019), The Supply of Medical Isotopes: An Economic Diagnosis and Possible Solutions, OECD Publishing, Paris, https://doi.org/10.1787/9b326195-en. ISBN 978-92-64-94550-0 (print) ISBN 978-92-64-62509-9 (pdf) The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Photo credits: Cover © Yok_onepiece/Shutterstock.com. Corrigenda to OECD publications may be found on line at: www.oecd.org/about/publishing/corrigenda.htm. © OECD 2019 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgement of OECD as source and copyright owner is given. -
Sources, Effects and Risks of Ionizing Radiation
SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. -
Radioisotope Power: a Key Technology for Deep Space Exploration
20 Radioisotope Power: A Key Technology for Deep Space Exploration George R. Schmidt1, Thomas J. Sutliff1 and Leonard A. Dudzinski2 1NASA Glenn Research Center, 2NASA Headquarters USA 1. Introduction Radioisotope Power Systems (RPS) generate electrical power by converting heat released from the nuclear decay of radioactive isotopes into electricity. Because all the units that have flown in space have employed thermoelectrics, a static process for heat-to-electrical energy conversion that employs no moving parts, the term, Radioisotope Thermoelectric Generator (RTG), has been more popularly associated with these devices. However, the advent of new generators based on dynamic energy conversion and alternative static conversion processes favors use of “RPS” as a more accurate term for this power technology. RPS were first used in space by the U.S. in 1961. Since that time, the U.S. has flown 41 RTGs, as a power source for 26 space systems on 25 missions. These applications have included Earth- orbital weather and communication satellites, scientific stations on the Moon, robotic explorer spacecraft on Mars, and highly sophisticated deep space interplanetary missions to Jupiter, Saturn and beyond. The New Horizons mission to Pluto, which was launched in January 2006, represents the most recent use of an RTG. The former U.S.S.R. also employed RTGs on several of its early space missions. In addition to electrical power generation, the U.S. and former U.S.S.R. have used radioisotopes extensively for heating components and instrumentation. RPS have consistently demonstrated unique capabilities over other types of space power systems. A comparison between RPS and other forms of space power is shown in Fig. -
Space Isotopic Power Systems
Space isotopiC power systems With the technology sound and growing, and units already built for missions ranging from 120 days to 5 years, the designer can and should plan appropriate space application of isotopic systems BY CAPT. R. T. CARPENTER, USAF U.S. Atomic Energy Commission A new space power system technology technology, and aerospace nuclear Concurrently, the terrestrial appli -isotopic power-has developed to safety technology contributed by the cations-the Snap-7 programs-sus the point where it can and should be program and used as a foundation for tained the isotopic power development considered by the space-vehicle de follow-on space isotopic power-system program and promoted the fission signer for use in many types of mis developments. product separations and processing sions. Because of this sound technical capability that exists within the Com The' Atomic Energy Commission's basis, the Commission's space-oriented mission today! The interest among isotopic space power program dates isotopic power development program terrestrial power users-the Navy, back to several years before Sputnik has made a steady, although some Weather Bureau, and Coast Guard I, but the program suffered a severe times slow, comeback through a series was sufficiently strong to sup:port this setback in 1959 when the Snap-1A of events since 1959, so that today a . fuels production program, whe:r:eas the generator development program was program technically comparable to interest in Snap-1A had been inade cancelled.' This pioneer program was Snap-1A could once more be under quate. At the same time, significant not completed because it may have taken with a high probability of suc quantities of the long-lived alpha been tt;lO ambitious for its day. -
CURIUM Element Symbol: Cm Atomic Number: 96
CURIUM Element Symbol: Cm Atomic Number: 96 An initiative of IYC 2011 brought to you by the RACI ROBYN SILK www.raci.org.au CURIUM Element symbol: Cm Atomic number: 96 Curium is a radioactive metallic element of the actinide series, and named after Marie Skłodowska-Curie and her husband Pierre, who are noted for the discovery of Radium. Curium was the first element to be named after a historical person. Curium is a synthetic chemical element, first synthesized in 1944 by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso at the University of California, Berkeley, and then formally identified by the same research tea at the wartime Metallurgical Laboratory (now Argonne National Laboratory) at the University of Chicago. The discovery of Curium was closely related to the Manhattan Project, and thus results were kept confidential until after the end of World War II. Seaborg finally announced the discovery of Curium (and Americium) in November 1945 on ‘The Quiz Kids!’, a children’s radio show, five days before an official presentation at an American Chemical Society meeting. The first radioactive isotope of Curium discovered was Curium-242, which was made by bombarding alpha particles onto a Plutonium-239 target in a 60-inch cyclotron (University of California, Berkeley). Nineteen radioactive isotopes of Curium have now been characterized, ranging in atomic mass from 233 to 252. The most stable radioactive isotopes are Curium- 247 with a half-life of 15.6 million years, Curium-248 (half-life 340,000 years), Curium-250 (half-life of 9000 years), and Curium-245 (half-life of 8500 years). -
Curium Is the First North American Manufacturer Offering Exclusively 100% LEU Generators
FOR IMMEDIATE RELEASE January 16, 2018 Curium Is the First North American Manufacturer Offering Exclusively 100% LEU Generators (St. Louis - January 16, 2018) — Curium, a leading nuclear medicine solutions provider, announced today that the company is the first North American manufacturer to meet the deadline established by the American Medical Isotopes Production Act of 2012. This legislation effectively mandates the full conversion away from highly enriched uranium (HEU) as soon as possible and no later than January 2020. Curium’s multi-year project to transition its molybdenum-99 (Mo-99) processing facility from HEU to low enriched uranium (LEU) was completed in late-2017. This project makes Curium the only North American Technetium Tc 99m Generator manufacturer able to supply its customers exclusively with 100 percent LEU Tc 99m generators. Mo-99 is the parent isotope of Tc 99m, which is used in 30 to 40 million nuclear medicine procedures worldwide every year1. Curium is the world’s largest supplier of Tc 99m generators and the largest user of Mo- 99 in the world. “This milestone helps satisfy the goals set forth by the Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and confirms our support for the NNSA project to eliminate the use of weapons-grade uranium in the production of medical isotopes. We are eager to see others follow our lead and comply with the government’s call for full conversion as soon possible” says Curium North American CEO, Dan Brague. This project is the culmination of more than seven years of work, requiring close collaboration with Curium’s irradiation partners: the Dutch High Flux Reactor, the Polish MARIA reactor, and BR2 in Belgium, as well as, the DOE and NNSA. -
Positron Emission Tomography
Positron emission tomography A.M.J. Paans Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, The Netherlands Abstract Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology. 1 Introduction The idea of in vivo measurement of biological and/or biochemical processes was already envisaged in the 1930s when the first artificially produced radionuclides of the biological important elements carbon, nitrogen and oxygen, which decay under emission of externally detectable radiation, were discovered with help of the then recently developed cyclotron. These radionuclides decay by pure positron emission and the annihilation of positron and electron results in two 511 keV γ-quanta under a relative angle of 180o which are measured in coincidence. This idea of Positron Emission Tomography (PET) could only be realized when the inorganic scintillation detectors for the detection of γ-radiation, the electronics for coincidence measurements, and the computer capacity for data acquisition and image reconstruction became available. For this reason the technical development of PET as a functional in vivo imaging discipline started approximately 30 years ago. -
Radiation and Your Patient: a Guide for Medical Practitioners
RADIATION AND YOUR PATIENT: A GUIDE FOR MEDICAL PRACTITIONERS A web module produced by Committee 3 of the International Commission on Radiological Protection (ICRP) What is the purpose of this document ? In the past 100 years, diagnostic radiology, nuclear medicine and radiation therapy have evolved from the original crude practices to advanced techniques that form an essential tool for all branches and specialties of medicine. The inherent properties of ionising radiation provide many benefits but also may cause potential harm. In the practice of medicine, there must be a judgement made concerning the benefit/risk ratio. This requires not only knowledge of medicine but also of the radiation risks. This document is designed to provide basic information on radiation mechanisms, the dose from various medical radiation sources, the magnitude and type of risk, as well as answers to commonly asked questions (e.g radiation and pregnancy). As a matter of ease in reading, the text is in a question and answer format. Interventional cardiologists, radiologists, orthopaedic and vascular surgeons and others, who actually operate medical x-ray equipment or use radiation sources, should possess more information on proper technique and dose management than is contained here. However, this text may provide a useful starting point. The most common ionising radiations used in medicine are X, gamma, beta rays and electrons. Ionising radiation is only one part of the electromagnetic spectrum. There are numerous other radiations (e.g. visible light, infrared waves, high frequency and radiofrequency electromagnetic waves) that do not posses the ability to ionize atoms of the absorbing matter. -
Background, Status and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities
NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Advisory Committee on Nuclear Waste and Materials NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Manuscript Completed: May 2008 Date Published: June 2008 Prepared by A.G. Croff, R.G. Wymer, L.L. Tavlarides, J.H. Flack, H.G. Larson Advisory Committee on Nuclear Waste and Materials THIS PAGE WAS LEFT BLANK INTENTIONALLY ii ABSTRACT In February 2006, the Commission directed the Advisory Committee on Nuclear Waste and Materials (ACNW&M) to remain abreast of developments in the area of spent nuclear fuel reprocessing, and to be ready to provide advice should the need arise. A white paper was prepared in response to that direction and focuses on three major areas: (1) historical approaches to development, design, and operation of spent nuclear fuel recycle facilities, (2) recent advances in spent nuclear fuel recycle technologies, and (3) technical and regulatory issues that will need to be addressed if advanced spent nuclear fuel recycle is to be implemented. This white paper was sent to the Commission by the ACNW&M as an attachment to a letter dated October 11, 2007 (ML072840119). In addition to being useful to the ACNW&M in advising the Commission, the authors believe that the white paper could be useful to a broad audience, including the NRC staff, the U.S. Department of Energy and its contractors, and other organizations interested in understanding the nuclear fuel cycle.