(DPP) Family Genes in Clinical Breast Cancer Patients Via an Integrated Bioinformatics Approach

Total Page:16

File Type:pdf, Size:1020Kb

(DPP) Family Genes in Clinical Breast Cancer Patients Via an Integrated Bioinformatics Approach diagnostics Article Identification of Dipeptidyl Peptidase (DPP) Family Genes in Clinical Breast Cancer Patients via an Integrated Bioinformatics Approach Tak-Kee Choy 1, Chih-Yang Wang 2,3, Nam Nhut Phan 4, Hoang Dang Khoa Ta 2,3, Gangga Anuraga 2,5 , Yen-Hsi Liu 6, Yung-Fu Wu 7, Kuen-Haur Lee 2,3,8 , Jian-Ying Chuang 9,10,11 and Tzu-Jen Kao 9,10,11,* 1 Department of Surgery, Division of Gastroenterologic Surgery, Yuan’s General Hospital, Kaohsiung 80249, Taiwan; [email protected] 2 PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-Y.W.); [email protected] (H.D.K.T.); [email protected] (G.A.); [email protected] (K.-H.L.) 3 Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan 4 NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; [email protected] 5 Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, East Java, Surabaya 60234, Indonesia 6 School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; [email protected] 7 National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan; [email protected] Citation: Choy, T.-K.; Wang, C.-Y.; 8 Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan Phan, N.N.; Khoa Ta, H.D.; Anuraga, 9 Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, G.; Liu, Y.-H.; Wu, Y.-F.; Lee, K.-H.; Taipei Medical University, Taipei 11031, Taiwan; [email protected] Chuang, J.-Y.; Kao, T.-J. Identification 10 Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan of Dipeptidyl Peptidase (DPP) Family 11 TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan Genes in Clinical Breast Cancer * Correspondence: [email protected] Patients via an Integrated Bioinformatics Approach. Diagnostics Abstract: Breast cancer is a heterogeneous disease involving complex interactions of biological 2021, 11, 1204. https://doi.org/ processes; thus, it is important to develop therapeutic biomarkers for treatment. Members of the 10.3390/diagnostics11071204 dipeptidyl peptidase (DPP) family are metalloproteases that specifically cleave dipeptides. This family comprises seven members, including DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10; Academic Editor: Antonio Maccio however, information on the involvement of DPPs in breast cancer is lacking in the literature. As such, we aimed to study their roles in this cancerous disease using publicly available databases Received: 27 May 2021 such as cBioportal, Oncomine, and Kaplan–Meier Plotter. These databases comprise comprehensive Accepted: 29 June 2021 high-throughput transcriptomic profiles of breast cancer across multiple datasets. Furthermore, Published: 2 July 2021 together with investigating the messenger RNA expression levels of these genes, we also aimed to correlate these expression levels with breast cancer patient survival. The results showed that DPP3 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in and DPP9 had significantly high expression profiles in breast cancer tissues relative to normal breast published maps and institutional affil- tissues. High expression levels of DPP3 and DPP4 were associated with poor survival of breast cancer iations. patients, whereas high expression levels of DPP6, DPP7, DPP8, and DPP9 were associated with good prognoses. Additionally, positive correlations were also revealed of DPP family genes with the cell cycle, transforming growth factor (TGF)-beta, kappa-type opioid receptor, and immune response signaling, such as interleukin (IL)-4, IL6, IL-17, tumor necrosis factor (TNF), and interferon (IFN)- Copyright: © 2021 by the authors. alpha/beta. Collectively, DPP family members, especially DPP3, may serve as essential prognostic Licensee MDPI, Basel, Switzerland. biomarkers in breast cancer. This article is an open access article distributed under the terms and Keywords: DPP family genes; breast cancer; bioinformatics conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Diagnostics 2021, 11, 1204. https://doi.org/10.3390/diagnostics11071204 https://www.mdpi.com/journal/diagnostics Diagnostics 2021, 11, 1204 2 of 15 1. Introduction Approximately 30% of all cancers that occurred in women in the United States in 2020 were breast cancer [1]. Breast cancer is subtyped by the expression levels of the estrogen receptor (ER, the gene of which is named ESR1), progesterone receptor (PR), and human epidermal growth factor receptor (HER)-2. Many genetic therapies are applied to breast cancer patients, such as fulvestrant [2,3], cyclin-dependent kinase inhibitors [4], aromatase-related inhibitors [5], and histone deacetylase (HDAC) inhibitors [6]. It has been reported that 70% of metastatic breast cancer cases have high expression of B-cell lymphoma 2 (BCL2). Using BCL2 inhibitors for these metastatic cases improved cancer cell apoptosis in a preclinical model of breast cancer [7,8]. Genes that are involved in this biological process are dipeptidyl peptidase (DPP) family genes, extracellular-signal- regulated kinase (ERK), GATA-binding protein 3 (GATA3), signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K), and NOTCH [9–12]. Members of the DPP family are metalloproteases that specifically cleave dipeptides, and this family is comprised of seven members, including DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10, which are zinc-dependent hydrolases involved in degrading oligopep- tides. Many biological processes involve these proteins, including cancer cell defense against oxidative stress. A previous study demonstrated that DPP3 and DPP7 are highly expressed in multiple myelomas [13]. DPP3 overexpression was positively associated with KEAP1 mutant tumors, and it further promoted lung cancer development [14]. DPP4 attenuates C-X-C motif ligand 10 (CXCL10) and atypical chemokine receptor 2 (ACKR2) activity by regulating N-terminal processing [15], while DPP4 inhibitors may serve as second-line treatment for epithelial ovarian cancer [16]. High expression levels of DPP4 in some types of cancer patients can increase susceptibility to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection and further cause cytokine storms [17]. DPP6 promoter activity was significantly higher in pancreatic ductal adenocarcinoma tissues compared to normal tissues [18]. Knockdown of DPP7 increased apoptosis by upregulating Bax–Bcl2 signaling in the HepG2 liver cancer cell line [19]. NLR family pyrin domain-containing 1 (NLRP1) can interact with DPP8 and DPP9, which can serve as a checkpoint for activating the NLRP1 inflammasome [20]. A DPP8 and DPP9 inhibitor can promote apoptosis by activating poly(ADP ribose) polymerase (PARP) and caspase-3 in multiple myelomas [21]. DPP10 inhibits colon cancer stem cell proliferation by regulating microRNAs such as miR-127-3p [22]. Although correlations between breast cancer and DPP family members0 messenger (m)RNA expression levels still remain unclear, it is important to investigate this corre- lation with a comprehensive, holistic approach. It is well known that high-throughput technologies provide thousands to millions of data points from a single run, making them highly suitable tools for rapidly and efficiently screening potential biomarkers [23–25]. Significant alterations in transcriptomic levels of genes imply their roles in a certain disease, such as oncogenic or tumor suppressors in cancerous diseases [26]. Utilizing this concept, we queried publicly available transcriptomic databases for DPP mRNA expression levels in many breast cancer datasets, including multiple breast cancer subtypes. Furthermore, protein and gene interaction networks were evaluated to screen for downstream molecules associated with DPP family member genes. 2. Materials and Methods 2.1. Oncomine and GEPIA Analyses To search for mRNA expression levels of DPP genes in 20 types of common cancers relative to normal matched tissue, we used Oncomine (www.oncomine.org, accessed on 01 May 2021) and GEPIA (http://gepia.cancer-pku.cn/, accessed on 01 May 2021) [27–32]. Search thresholds included the multiple of change (>2.0), p value (<10−4), and gene ranking percentile (top 10%). Search results displayed the number of datasets qualified for the above thresholds with up- and downregulated expression levels in different types and Diagnostics 2021, 11, 1204 3 of 15 subtypes of cancers. Red- and blue-colored gradients were used to show these genes0 up- and downregulated expression levels based on the top-ranking percentiles. 2.2. Cancer Cell Line Encyclopedia (CCLE) Analysis Additionally, we used the CCLE database (https://portals.broadinstitute.org/ccle, accessed on 1 May 2021) to search for expression levels of DPP genes in cancer cell lines [33]. The CCLE is comprised of many human cancer cell lines (n = 1457) with large numbers of unique datasets (n = 136,488). Gene expression levels were retrieved using an RNA sequencing method in 60 breast cancer cell lines and the data were plotted with default settings as we previously described [34–37]. 2.3. Kaplan–Meier (KM) Plot
Recommended publications
  • Genetic Analysis of Retinopathy in Type 1 Diabetes
    Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194).
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Refinement and Discovery of New Hotspots of Copy-Number Variation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder Santhosh Girirajan,1,5 Megan Y. Dennis,1,5 Carl Baker,1 Maika Malig,1 Bradley P. Coe,1 Catarina D. Campbell,1 Kenneth Mark,1 Tiffany H. Vu,1 Can Alkan,1 Ze Cheng,1 Leslie G. Biesecker,2 Raphael Bernier,3 and Evan E. Eichler1,4,* Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n ¼ 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n ¼ 1,247, median size 79 kbp, range 3–96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p ¼ 0.01; OR ¼ 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Genomic Screen for Activators of the Antioxidant Response Element
    A genomic screen for activators of the antioxidant response element Yanxia Liu†, Jonathan T. Kern‡, John R. Walker§, Jeffrey A. Johnson‡, Peter G. Schultz§¶ʈ, and Hendrik Luesch†ʈ †Department of Medicinal Chemistry, University of Florida, 1600 Southwest Archer Road, Gainesville, FL 32610; ‡Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705; §Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121; and ¶Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Peter G. Schultz, January 31, 2007 (sent for review December 13, 2006) The antioxidant response element (ARE) is a cis-acting regulatory activation, translocates into the nucleus and transcriptionally acti- enhancer element found in the 5؅ flanking region of many phase II vates ARE-dependent genes after recruiting Maf proteins (2). The detoxification enzymes. Up-regulation of ARE-dependent target upstream regulatory mechanisms by which ARE-activating signals genes is known to have neuroprotective effects; yet, the mechanism are linked to Nrf2 remain to be fully elucidated. It has been of activation is largely unknown. By screening an arrayed collection demonstrated that reactive sulfhydryl groups of Keap1 are sensors of Ϸ15,000 full-length expression cDNAs in the human neuroblas- for induction of phase II genes (13), leading to the proposal that the toma cell line IMR-32 with an ARE-luciferase reporter, we have Nrf2/Keap1 interaction represents a cytoplasmic sensor for oxida- identified several cDNAs not previously associated with ARE activa- tive stress. However, 1-phosphatidylinositol 3-kinase (PI3K), tion.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Integrated Bioinformatics Analysis of Aberrantly-Methylated
    Shen et al. BMC Ophthalmology (2020) 20:119 https://doi.org/10.1186/s12886-020-01392-2 RESEARCH ARTICLE Open Access Integrated bioinformatics analysis of aberrantly-methylated differentially- expressed genes and pathways in age- related macular degeneration Yinchen Shen1,2†,MoLi3†, Kun Liu1,2, Xiaoyin Xu1,2, Shaopin Zhu1,2, Ning Wang1,2, Wenke Guo4, Qianqian Zhao4, Ping Lu4, Fudong Yu4 and Xun Xu1,2* Abstract Background: Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis. Methods: Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results: In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism.
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
    BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N.
    [Show full text]