Critical Mach Number

Total Page:16

File Type:pdf, Size:1020Kb

Critical Mach Number 111 Additional Aerodynamic Considerations Compressibility With the exception of Gas Dynamics, almost all of the fluid mechanics taken by a UC undergraduate has been for incompressible flows. In addition, Gas Dynamics is devoted mostly to supersonic flow theory, i.e., shock and expansion waves. While these types of phenomena are important and will be discussed in more detail later, there exists a real gap in knowledge between the incompressible and supersonic flows. A great deal can be done in this regime by utilizing thin airfoil theory, in which the governing equations can be written: ∂ 2φ ∂ 2φ β 2 + = 0 (11.1) ∂x 2 ∂y2 2 where β ≡ 1− M ∞ . Equation (11.1) reduces directly to the Laplace equation for incompressible flows. However, a simple transformation exists that allows us to take the flow governed by Eq. (11.1) and transform it into a flow about an “equivalent” incompressible body. The major details of this approach can be found in the Anderson text. However, a compressibility correction can be established from this approach such that if we know the pressure coefficient on an airfoil in an incompressible flow, C , we can obtain the pressure coefficient p o on the same airfoil in a compressible flow via: 112 C C = PO (11.2) P 2 1− M ∞ This is known as the Prandtl-Glauret Rule. As fortune would have it, since lift and drag are related to the pressure coefficient, the same sort of correction holds for Cl and Cm . C C = lO (11.3) l 2 1− M ∞ C C = mO (11.4) m 2 1− M ∞ Two higher order corrections to the Prandtl-Glauret rule exist: The Karman-Tsien Rule C C = PO P M 2 C 1− M 2 + ∞ PO ∞ 2 1+ 1− M ∞ 2 and Laitone’s Rule C PO CP = 2 γ −1 2 M ∞ 1+ M ∞ 2 2 CP 1− M + O ∞ 2 1− M ∞ 2 113 Critical Mach Number These corrections are appropriate until the start of transonic flow, around Mach 0.85. The critical Mach number, M cr , is the freestream Mach number at which the local Mach number at some point on the airfoil becomes sonic. 114 The corresponding pressure coefficient is known as the critical pressure coefficient, C P cr . An estimate for C P cr can be found in a round about manner. We start with the general equation for the pressure coefficient: 2 p C = A −1 (11.5) P , A 2 γM ∞ p∞ p and use isentropic relations to replace A with an expression in p∞ terms of M A and M ∞ . We can then set M A to sonic and get the relationship between the critical Mach number and pressure coefficient. γ γ −1 γ −1 1+ M 2 2 cr C = 2 −1 (11.6) P cr γM 2 γ −1 cr 1+ 2 However, this relation only matches possible critical Mach numbers and pressure coefficients, since it is only an isentropic relationship for the pressure coefficient. The way it can be used is to introduce a given airfoil and find its most negative pressure coefficient. If this is done at incompressible conditions, the Prandtl-Glauret rule can be used to map the variation of that CP with Mach number. The two curves meet at M cr . 115 Consider the following figure Which demonstrates the goodness of thin airfoils, i.e., smaller magnitude negative CP and hence a higher M cr . 116 Drag Divergence Mach Number The M cr is an important demarcation line after which the drag begins to rise, however, a second point of more rapid drag rise is the drag divergence Mach number, M drag−divergence , as illustrated in the figure below: Thin Airfoils Clearly the M cr and M drag−divergence imply that thin airfoils are useful. The trend for recent high performance aircraft is shown in the figure below: 117 This argument also explains why wing sweep is useful, that is, as sweep angle, Ω, increases from zero, the effective chord seen by a streamline increases, but the airfoil thickness does not, thereby reducing the effective thickness to chord ratio and creating a thinner wing. 118 Area Ruling In the early 1950s Küchemann recognized that wing sweep results in 3D flow about a wing that is very different from that of an infinite wing, since the flow tends toward the wing root. However, the fuselage requires that the flow return to parallel, hence, compression waves form which leads to a serious increase in drag. Whitcomb recognized this problem and related it to ballistic experience that showed smooth cross sectional area is important for reduced drag. His basic idea, Whitcomb’s area rule, was to pinch an aircraft fuselage so that its cross sectional area would vary smoothly as the wing was encountered. The resultant “coke bottle” fuselage shape can have as much 2x reduction in drag over a non-area ruled shape. 119 Supercritical Airfoils The basic approach of sweep and thickness reduction is to increase M cr . However, another approach can be taken: increase M drag−divergence directly. Although this happens with an increase in M cr it can also happen independently if the airfoil is designed such that the velocity does not increase substantially in the supersonic region, resulting in a weaker recompression shock and less loss and overall drag. Airfoils of this type are called supercritical and are characteristically very flat on top as shown in the figure below: 120 Dihedral Clearly many factors enter into the choice of the wing and airfoil section. Some based on the desired flow regime, others because of structural considerations. Yet another complication comes about because of stability and control issues. Examples of this are dihedral and anhedral. A wing with dihedral has a positive angle with respect to the horizon: Dihedral angle In a roll, the aircraft looks like this As it rolls clockwise, the higher vertical force of the right wing tends to induce a counter-clockwise rotation to return the aircraft to straight and level. This enhances the stability of the aircraft but makes it “harder” to turn. The opposite is true for an aircraft with anhedral. Perhaps the most famous example of this type is the gull winged F4U Corsair used by the Marines in World War II. In a clockwise roll the left wing produces the vertical force and this tends to enhance the roll characteristics of the aircraft making it more maneuverable but less stable. 121 NACA Series Nomenclature 4 digit series NACA XXXX Max camber in hundredths of chord Max thickness in Location of max camber hundredths of chord in tenths of chord NACA 4412 Max camber 0.04c 4% camber Max camber location 0.4c 40% chord Max thickness 0.12c 12% thick 5 digit series NACA X XX XX x3/2= design lift coefficient in tenths Max thickness in /2=Location of max camber hundredths of chord from LE in hundreths of NACA 23012 Design Cl in tenths 0.3 Max camber location 0.15c 15% chord Max thickness 0.12c 12% thick 122 6 digit series NACA 6X-X XX Location of minimum pressure in tenths of chord from LE Max thickness in Design lift hundredths of chord NACAcoefficient 65-218 in Design Cl in tenths 0.2 Min pressure location 0.5c 50% chord Max thickness 0.18c 18% thick 123 Estimate of 3D Wing Drag You now have all the tools to estimate the drag on a three- dimensional wing. Induced Drag – Use the finite wing theory to calculate the drag due to lift as well as the induced angle of attack. Skin Friction Drag – Use XFOIL to calculate the given wing section at the effective angle of attack as determined above. This provides a distribution of C f that can then be integrated over the surface. Wave Drag – Use compressible flow theory to compute shocks and expansion waves about your airfoil. Then compute surface pressures and the associate drag force. C 2 C = C + L DA/C D,e πeAR Total Aircraft Drag Induced Drag Parasite Drag Profile + Wave Drag Wave Drag Profile Drag C + C d f d P Friction + Pressure.
Recommended publications
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • Brazilian 14-Xs Hypersonic Unpowered Scramjet Aerospace Vehicle
    ISSN 2176-5480 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright © 2013 by ABCM BRAZILIAN 14-X S HYPERSONIC UNPOWERED SCRAMJET AEROSPACE VEHICLE STRUCTURAL ANALYSIS AT MACH NUMBER 7 Álvaro Francisco Santos Pivetta Universidade do Vale do Paraíba/UNIVAP, Campus Urbanova Av. Shishima Hifumi, no 2911 Urbanova CEP. 12244-000 São José dos Campos, SP - Brasil [email protected] David Romanelli Pinto ETEP Faculdades, Av. Barão do Rio Branco, no 882 Jardim Esplanada CEP. 12.242-800 São José dos Campos, SP, Brasil [email protected] Giannino Ponchio Camillo Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Felipe Jean da Costa Instituto Tecnológico de Aeronáutica/ITA - Praça Marechal Eduardo Gomes, nº 50 Vila das Acácias CEP. 12.228-900 São José dos Campos, SP - Brasil [email protected] Paulo Gilberto de Paula Toro Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Abstract. The Brazilian VHA 14-X S is a technological demonstrator of a hypersonic airbreathing propulsion system based on supersonic combustion (scramjet) to fly at Earth’s atmosphere at 30km altitude at Mach number 7, designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies. Basically, scramjet is a fully integrated airbreathing aeronautical engine that uses the oblique/conical shock waves generated during the hypersonic flight, to promote compression and deceleration of freestream atmospheric air at the inlet of the scramjet.
    [Show full text]
  • No Acoustical Change” for Propeller-Driven Small Airplanes and Commuter Category Airplanes
    4/15/03 AC 36-4C Appendix 4 Appendix 4 EQUIVALENT PROCEDURES AND DEMONSTRATING "NO ACOUSTICAL CHANGE” FOR PROPELLER-DRIVEN SMALL AIRPLANES AND COMMUTER CATEGORY AIRPLANES 1. Equivalent Procedures Equivalent Procedures, as referred to in this AC, are aircraft measurement, flight test, analytical or evaluation methods that differ from the methods specified in the text of part 36 Appendices A and B, but yield essentially the same noise levels. Equivalent procedures must be approved by the FAA. Equivalent procedures provide some flexibility for the applicant in conducting noise certification, and may be approved for the convenience of an applicant in conducting measurements that are not strictly in accordance with the 14 CFR part 36 procedures, or when a departure from the specifics of part 36 is necessitated by field conditions. The FAA’s Office of Environment and Energy (AEE) must approve all new equivalent procedures. Subsequent use of previously approved equivalent procedures such as flight intercept typically do not need FAA approval. 2. Acoustical Changes An acoustical change in the type design of an airplane is defined in 14 CFR section 21.93(b) as any voluntary change in the type design of an airplane which may increase its noise level; note that a change in design that decreases its noise level is not an acoustical change in terms of the rule. This definition in section 21.93(b) differs from an earlier definition that applied to propeller-driven small airplanes certificated under 14 CFR part 36 Appendix F. In the earlier definition, acoustical changes were restricted to (i) any change or removal of a muffler or other component of an exhaust system designed for noise control, or (ii) any change to an engine or propeller installation which would increase maximum continuous power or propeller tip speed.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Drag Bookkeeping
    Drag Drag Bookkeeping Drag may be divided into components in several ways: To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag To emphasize the physical origins of the drag components: Drag = Skin Friction Drag + Viscous Pressure Drag + Inviscid (Vortex) Drag + Wave Drag The latter decomposition is stressed in these notes. There is sometimes some confusion in the terminology since several effects contribute to each of these terms. The definitions used here are as follows: Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.) Zero-lift drag is the drag at M=0.5 and CL = 0. It consists of several components, discussed on the following pages. These include viscous skin friction, vortex drag due to twist, added drag due to fuselage upsweep, control surface gaps, nacelle base drag, and miscellaneous items. The Lift-Dependent drag, sometimes called induced drag, includes the usual lift- dependent vortex drag together with lift-dependent components of skin friction and pressure drag. For the second method: Skin Friction drag arises from the shearing stresses at the surface of a body due to viscosity. It accounts for most of the drag of a transport aircraft in cruise.
    [Show full text]
  • Cavitation Experimental Investigation of Cavitation Regimes in a Converging-Diverging Nozzle Willian Hogendoorn
    Cavitation Experimental investigation of cavitation regimes in a converging-diverging nozzle Willian Hogendoorn Technische Universiteit Delft Draft Cavitation Experimental investigation of cavitation regimes in a converging-diverging nozzle by Willian Hogendoorn to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday May 3, 2017 at 14:00. Student number: 4223616 P&E report number: 2817 Project duration: September 6, 2016 – May 3, 2017 Thesis committee: Prof. dr. ir. C. Poelma, TU Delft, supervisor Prof. dr. ir. T. van Terwisga, MARIN Dr. R. Delfos, TU Delft MSc. S. Jahangir, TU Delft, daily supervisor An electronic version of this thesis is available at http://repository.tudelft.nl/. Contents Preface v Abstract vii Nomenclature ix 1 Introduction and outline 1 1.1 Introduction of main research themes . 1 1.2 Outline of report . 1 2 Literature study and theoretical background 3 2.1 Introduction to cavitation . 3 2.2 Relevant fluid parameters . 5 2.3 Current state of the art . 8 3 Experimental setup 13 3.1 Experimental apparatus . 13 3.2 Venturi. 15 3.3 Highspeed imaging . 16 3.4 Centrifugal pump . 17 4 Experimental procedure 19 4.1 Venturi calibration . 19 4.2 Camera settings . 21 4.3 Systematic data recording . 21 5 Data and data processing 23 5.1 Videodata . 23 5.2 LabView data . 28 6 Results and Discussion 29 6.1 Analysis of starting cloud cavitation shedding. 29 6.2 Flow blockage through cavity formation . 30 6.3 Cavity shedding frequency . 32 6.4 Cavitation dynamics . 34 6.5 Re-entrant jet dynamics .
    [Show full text]
  • Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
    NASA/TM-2000-210646 Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics Dennis M. Bushnell Langley Research Center, Hampton, Virginia December 2000 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co-sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA's scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. TECHNICAL TRANSLATION. English- The Program Office is also NASA's institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following Specialized services that complement the STI report types: Program Office's diverse offerings include creating custom thesauri, building customized TECHNICAL PUBLICATION. Reports of databases, organizing and publishing research completed research or a major significant results ... even providing videos. phase of research that present the results of NASA programs and include extensive For more information about the NASA STI data or theoretical analysis.
    [Show full text]
  • A Novel Full-Euler Low Mach Number IMEX Splitting 1 Introduction
    Commun. Comput. Phys. Vol. 27, No. 1, pp. 292-320 doi: 10.4208/cicp.OA-2018-0270 January 2020 A Novel Full-Euler Low Mach Number IMEX Splitting 1, 2 2,3 1 Jonas Zeifang ∗, Jochen Sch ¨utz , Klaus Kaiser , Andrea Beck , Maria Luk´aˇcov´a-Medvid’ov´a4 and Sebastian Noelle3 1 IAG, Universit¨at Stuttgart, Pfaffenwaldring 21, DE-70569 Stuttgart, Germany. 2 Faculty of Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590 Diepenbeek, Belgium. 3 IGPM, RWTH Aachen University, Templergraben 55, DE-52062 Aachen, Germany. 4 Institut f¨ur Mathematik, Johannes Gutenberg-Universit¨at Mainz, Staudingerweg 9, DE-55128 Mainz, Germany. Received 15 October 2018; Accepted (in revised version) 23 January 2019 Abstract. In this paper, we introduce an extension of a splitting method for singularly perturbed equations, the so-called RS-IMEX splitting [Kaiser et al., Journal of Scientific Computing, 70(3), 1390–1407], to deal with the fully compressible Euler equations. The straightforward application of the splitting yields sub-equations that are, due to the occurrence of complex eigenvalues, not hyperbolic. A modification, slightly changing the convective flux, is introduced that overcomes this issue. It is shown that the split- ting gives rise to a discretization that respects the low-Mach number limit of the Euler equations; numerical results using finite volume and discontinuous Galerkin schemes show the potential of the discretization. AMS subject classifications: 35L81, 65M08, 65M60, 76M45 Key words: Euler equations, low-Mach, IMEX Runge-Kutta, RS-IMEX. 1 Introduction The modeling of many processes in fluid dynamics requires the solution of the com- pressible Euler equations.
    [Show full text]
  • Overview of Pressure Coefficient Data in Building Energy Simulation and Airflow Network Programs
    PREPRINT: Costola D, Blocken B, Hensen JLM. 2009. Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment. In press. Overview of pressure coefficient data in building energy simulation and airflow network programs D. Cóstola*, B. Blocken, J.L.M. Hensen Building Physics and Systems, Eindhoven University of Technology, the Netherlands Abstract Wind pressure coefficients (Cp) are influenced by a wide range of parameters, including building geometry, facade detailing, position on the facade, the degree of exposure/sheltering, wind speed and wind direction. As it is practically impossible to take into account the full complexity of pressure coefficient variation, Building Energy Simulation (BES) and Air Flow Network (AFN) programs generally incorporate it in a simplified way. This paper provides an overview of pressure coefficient data and the extent to which they are currently implemented in BES-AFN programs. A distinction is made between primary sources of Cp data, such as full- scale measurements, reduced-scale measurements in wind tunnels and computational fluid dynamics (CFD) simulations, and secondary sources, such as databases and analytical models. The comparison between data from secondary sources implemented in BES-AFN programs shows that the Cp values are quite different depending on the source adopted. The two influencing parameters for which these differences are most pronounced are the position on the facade and the degree of exposure/sheltering. The comparison of Cp data from different sources for sheltered buildings shows the largest differences, and data from different sources even present different trends. The paper concludes that quantification of the uncertainty related to such data sources is required to guide future improvements in Cp implementation in BES-AFN programs.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • 10. Supersonic Aerodynamics
    Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited.
    [Show full text]
  • Compressible Flow in a Converging-Diverging Nozzle
    Compressible Flow in a Converging-Diverging Nozzle Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 19 January 2012 Nomenclature Symbols a speed of sound: a = (kRT)1/2 for an ideal gas A cross-sectional flow area A* critical cross-sectional flow area, at throat when the flow is choked Cp specific heat at constant pressure Cv specific heat at constant volume k ratio of specific heats: k = Cp/Cv (k = 1.4 for air) m mass flow rate through the pipe Ma Mach number: Ma = V/a n index of refraction P static pressure Q or V volume flow rate R specific ideal gas constant: for air, R = 287. m2/(s2K) t time T temperature V mean flow velocity V volume x flow direction y coordinate normal to flow direction, usually normal to a wall z elevation in vertical direction deflection angle for a light beam density of the fluid (for water, 998 kg/m3 at room temperature) Subscripts b back (downstream of converging-diverging nozzle) e exit (at the exit plane of the converging-diverging nozzle) i ideal (frictionless) t throat 0 or T stagnation or total (at a location where the flow speed is nearly zero); e.g. P0 = stagnation pressure Educational Objectives 1. Conduct experiments to illustrate phenomena that are unique to compressible flow, such as choking and shock waves. 2. Become familiar with a compressible flow visualization technique, namely the schlieren optical technique. Equipment 1. supersonic wind tunnel with a converging-diverging nozzle 2. Singer diaphragm flow meter, Model A1-800 3.
    [Show full text]