How to Make a Correct Multiprocess Program Execute Correctly on A

Total Page:16

File Type:pdf, Size:1020Kb

How to Make a Correct Multiprocess Program Execute Correctly on A 96 How to Make a Correct Multipro cess Program Execute Correctly on a Multipro cessor Leslie Lamp ort February 14, 1993 Systems Research Center DEC's business and technology ob jectives require a strong research program. The Systems Research Center (SRC) and three other research lab oratories are committed to lling that need. SRC b egan recruiting its rst research scientists in l984|their charter, to advance the state of knowledge in all asp ects of computer systems research. Our currentwork includes exploring high-p erformance p ersonal computing, distributed computing, programming environments, system mo delling tech- niques, sp eci cation technology, and tightly-coupled multipro cessors. Our approach to b oth hardware and software research is to create and use real systems so that we can investigate their prop erties fully. Complex systems cannot b e evaluated solely in the abstract. Based on this b elief, our strategy is to demonstrate the technical and practical feasibility of our ideas by building prototyp es and using them as daily to ols. The exp erience we gain is useful in the short term in enabling us to re ne our designs, and invaluable in the long term in helping us to advance the state of knowledge ab out those systems. Most of the ma jor advances in information systems have come through this strategy, including time-sharing, the ArpaNet, and distributed p ersonal computing. SRC also p erforms work of a more mathematical avor which complements our systems research. Some of this work is in established elds of theoretical computer science, such as the analysis of algorithms, computational geome- try, and logics of programming. The rest of this work explores new ground motivated by problems that arise in our systems research. DEC has a strong commitment to communicating the results and exp erience gained through pursuing these activities. The Companyvalues the improved understanding that comes with exp osing and testing our ideas within the research community. SRC will therefore rep ort results in conferences, in professional journals, and in our research rep ort series. We will seek users for our prototyp e systems among those with whom wehave common research interests, and we will encourage collab oration with university researchers. Rob ert W. Taylor, Director iii HowtoMake a Correct Multipro cess Program Execute Correctly on a Multipro cessor Leslie Lamp ort February 14, 1993 iv c Digital Equipment Corp oration 1993 This work may not b e copied or repro duced in whole or in part for any com- mercial purp ose. Permission to copy in whole or in part without payment of fee is granted for nonpro t educational and research purp oses provided that all such whole or partial copies include the following: a notice that such copying is by p ermission of the Systems Research Center of Digital Equipment Corp oration in Palo Alto, California; an acknowledgment of the authors and individual contributors to the work; and all applicable p ortions of the copyright notice. Copying, repro ducing, or republishing for any other purp ose shall require a license with payment of fee to the Systems Research Center. All rights reserved. v Author's Abstract Amultipro cess program executing on a mo dern multipro cessor must issue explicit commands to synchronize memory accesses. A metho d is prop osed for deriving the necessary commands from a correctness pro of of the algo- rithm. Capsule Review Recently,anumb er of mechanisms for interpro cess synchronization have b een prop osed. As engineers attempt to implementmultipro cessors of in- creasing scale and p erformance, these mechanisms have b ecome quite com- plex and dicult to reason ab out. This short pap er presents a formalism based only on two ordering relations between the events of an algorithm, \precedes" and \can a ect". It allows the mechanisms that must b e provided to ensure the algorithm's correctness to b e determined directly from the correctness pro of. The formalism and its application to an example mutual exclusion algorithm are presented and discussed. Although the pap er is quite terse, a careful reading will reward those inter- ested in concurrency or multipro cessor design. Chuck Thacker vi Contents 1 The Problem 1 2 The Formalism 2 3 An Example 3 3.1 An Algorithm and its Pro of :: ::: ::: ::: :: ::: ::: 3 3.2 The Implementation ::: ::: ::: ::: ::: :: ::: ::: 5 3.3 Observations :: :: ::: ::: ::: ::: ::: :: ::: ::: 6 4 Further Remarks 7 References 8 vii 1 The Problem Accessing a single memory lo cation in a multipro cessor is traditionally as- sumed to b e atomic. Such atomicity is a ction; a memory access consists of anumb er of hardware actions, and di erent accesses may b e executed con- currently. Early multipro cessors maintained this ction, but more mo dern ones usually do not. Instead, they provide sp ecial commands with which pro cesses themselves can synchronize memory accesses. The programmer must determine, for each particular computer, what synchronization com- mands are needed to make his program correct. One prop osed metho d for achieving the necessary synchronization is with a constrained style of programming sp eci c to a particular typ e of multipro- cessor architecture [7, 8]. Another metho d is to reason ab out the program in a mathematical abstraction of the architecture [5]. We take a di erent ap- proach and derive the synchronization commands from a pro of of correctness of the algorithm. The commonly used formalisms for describing multipro cess programs as- sume atomicity of memory accesses. When an assumption is built into a formalism, it is dicult to discover from a pro of where the assumption is ac- tually needed. Pro ofs based on these formalisms, including invariance pro ofs [4, 16] and temp oral-logic pro ofs [17], therefore seem incapable of yielding the necessary synchronization requirements. We derive these requirements from pro ofs based on a little-used formalism that makes no atomicity as- sumptions [11, 12, 14]. This pro of metho d is quite general and has b een applied to a numb er of algorithms. The metho d of extracting synchroniza- tion commands from a pro of is describ ed by an example|a simple mutual exclusion algorithm. It can b e applied to the pro of of any algorithm. Most programs are written in higher-level languages that provide abstrac- tions, suchaslocks for shared data, that free the programmer from concerns ab out the memory architecture. The compiler generates synchronization commands to implement the abstractions. However, some algorithms| esp ecially within the op erating system|require more ecient implemen- tations than can b e achieved with high-level language abstractions. It is to these algorithms, as well as to algorithms for implementing the higher-level abstractions, that our metho d is directed. 1 2 The Formalism An execution of a program is represented by a collection of operation execu- - - tions with the two relations (read precedes ) and (read can a ect ). An op eration execution can b e interpreted as a nonempty set of events, where - - the relations and have the following meanings. - A B :every eventin Aprecedes every eventin B. - A B: some eventin Aprecedes some eventin B. However, this interpretation serves only to aid our understanding. Formally, we just assume that the following axioms hold, for any op eration executions A, B , C , and D . - - - - A1. is transitive(A B C implies A C ) and irre exive - (A A). = - - - A2. A B implies A B and B A. = - - - - - B C or A B C implies A C . A3. A - - - - A4. A B C D implies A D . - A5. For any A there are only a nite number of B such that A B . = The last axiom essentially asserts that all op eration executions terminate; nonterminating op erations satisfy a di erent axiom that is not relevant here. Axiom A5 is useful only for proving liveness prop erties; safety prop erties are proved with Axioms A1{A4. prop erties. Anger [3] and Abraham and Ben- David [1] intro duced the additional axiom - - - - B C D implies A D . A6. A and showed that A1{A6 form a complete axiom system for the interpretation based on op eration executions as sets of events. Axioms A1{A6 are indep endent of what the op eration executions do. Rea- soning ab out a multipro cess program requires additional axioms to capture the semantics of its op erations. The appropriate axioms for read and write op erations will dep end on the nature of the memory system. 2 The only assumptions we make ab out op eration executions are axioms A1{ A5 and axioms ab out read and write op erations. We do not assume that - - and are the relations obtained byinterpreting an op eration execu- tions as the set of all its events. For example, sequential consistency [10]is - equivalent to the condition that is a total ordering on the set of op er- ation executions|a condition that can b e satis ed even though the events comprising di erent op eration executions are actually concurrent. This formalism was develop ed in an attempt to provide elegant pro ofs of concurrent algorithms|pro ofs that replace conventional b ehavioral argu- - - ments with axiomatic reasoning in terms of the two relations and . Although the simplicity of such pro ofs has b een questioned [6], they do tend to capture the essence of why an algorithm works. 3 An Example 3.1 An Algorithm and its Pro of Figure 1 shows pro cess i of a simple N -pro cess mutual exclusion algo- rithm [13]. We prove that the algorithm guarantees mutual exclusion (two pro cesses are never concurrently in their critical sections).
Recommended publications
  • On-The-Fly Garbage Collection: an Exercise in Cooperation
    8. HoIn, B.K.P. Determining lightness from an image. Comptr. Graphics and Image Processing 3, 4(Dec. 1974), 277-299. 9. Huffman, D.A. Impossible objects as nonsense sentences. In Machine Intelligence 6, B. Meltzer and D. Michie, Eds., Edinburgh U. Press, Edinburgh, 1971, pp. 295-323. 10. Mackworth, A.K. Consistency in networks of relations. Artif. Intell. 8, 1(1977), 99-118. I1. Marr, D. Simple memory: A theory for archicortex. Philos. Trans. Operating R.S. Gaines Roy. Soc. B. 252 (1971), 23-81. Systems Editor 12. Marr, D., and Poggio, T. Cooperative computation of stereo disparity. A.I. Memo 364, A.I. Lab., M.I.T., Cambridge, Mass., 1976. On-the-Fly Garbage 13. Minsky, M., and Papert, S. Perceptrons. M.I.T. Press, Cambridge, Mass., 1968. Collection: An Exercise in 14. Montanari, U. Networks of constraints: Fundamental properties and applications to picture processing. Inform. Sci. 7, 2(April 1974), Cooperation 95-132. 15. Rosenfeld, A., Hummel, R., and Zucker, S.W. Scene labelling by relaxation operations. IEEE Trans. Systems, Man, and Cybernetics Edsger W. Dijkstra SMC-6, 6(June 1976), 420-433. Burroughs Corporation 16. Sussman, G.J., and McDermott, D.V. From PLANNER to CONNIVER--a genetic approach. Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 1171-1179. Leslie Lamport 17. Sussman, G.J., and Stallman, R.M. Forward reasoning and SRI International dependency-directed backtracking in a system for computer-aided circuit analysis. A.I. Memo 380, A.I. Lab., M.I.T., Cambridge, Mass., 1976. A.J. Martin, C.S.
    [Show full text]
  • Arxiv:1909.05204V3 [Cs.DC] 6 Feb 2020
    Cogsworth: Byzantine View Synchronization Oded Naor, Technion and Calibra Mathieu Baudet, Calibra Dahlia Malkhi, Calibra Alexander Spiegelman, VMware Research Most methods for Byzantine fault tolerance (BFT) in the partial synchrony setting divide the local state of the nodes into views, and the transition from one view to the next dictates a leader change. In order to provide liveness, all honest nodes need to stay in the same view for a sufficiently long time. This requires view synchronization, a requisite of BFT that we extract and formally define here. Existing approaches for Byzantine view synchronization incur quadratic communication (in n, the number of parties). A cascade of O(n) view changes may thus result in O(n3) communication complexity. This paper presents a new Byzantine view synchronization algorithm named Cogsworth, that has optimistically linear communication complexity and constant latency. Faced with benign failures, Cogsworth has expected linear communication and constant latency. The result here serves as an important step towards reaching solutions that have overall quadratic communication, the known lower bound on Byzantine fault tolerant consensus. Cogsworth is particularly useful for a family of BFT protocols that already exhibit linear communication under various circumstances, but suffer quadratic overhead due to view synchro- nization. 1. INTRODUCTION Logical synchronization is a requisite for progress to be made in asynchronous state machine repli- cation (SMR). Previous Byzantine fault tolerant (BFT) synchronization mechanisms incur quadratic message complexities, frequently dominating over the linear cost of the consensus cores of BFT so- lutions. In this work, we define the view synchronization problem and provide the first solution in the Byzantine setting, whose latency is bounded and communication cost is linear, under a broad set of scenarios.
    [Show full text]
  • Mathematical Writing by Donald E. Knuth, Tracy Larrabee, and Paul M
    Mathematical Writing by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts This report is based on a course of the same name given at Stanford University during autumn quarter, 1987. Here's the catalog description: CS 209. Mathematical Writing|Issues of technical writing and the ef- fective presentation of mathematics and computer science. Preparation of theses, papers, books, and \literate" computer programs. A term paper on a topic of your choice; this paper may be used for credit in another course. The first three lectures were a \minicourse" that summarized the basics. About two hundred people attended those three sessions, which were devoted primarily to a discussion of the points in x1 of this report. An exercise (x2) and a suggested solution (x3) were also part of the minicourse. The remaining 28 lectures covered these and other issues in depth. We saw many examples of \before" and \after" from manuscripts in progress. We learned how to avoid excessive subscripts and superscripts. We discussed the documentation of algorithms, com- puter programs, and user manuals. We considered the process of refereeing and editing. We studied how to make effective diagrams and tables, and how to find appropriate quota- tions to spice up a text. Some of the material duplicated some of what would be discussed in writing classes offered by the English department, but the vast majority of the lectures were devoted to issues that are specific to mathematics and/or computer science. Guest lectures by Herb Wilf (University of Pennsylvania), Jeff Ullman (Stanford), Leslie Lamport (Digital Equipment Corporation), Nils Nilsson (Stanford), Mary-Claire van Leunen (Digital Equipment Corporation), Rosalie Stemer (San Francisco Chronicle), and Paul Halmos (University of Santa Clara), were a special highlight as each of these outstanding authors presented their own perspectives on the problems of mathematical communication.
    [Show full text]
  • Verification and Specification of Concurrent Programs
    Verification and Specification of Concurrent Programs Leslie Lamport 16 November 1993 To appear in the proceedings of a REX Workshop held in The Netherlands in June, 1993. Verification and Specification of Concurrent Programs Leslie Lamport Digital Equipment Corporation Systems Research Center Abstract. I explore the history of, and lessons learned from, eighteen years of assertional methods for specifying and verifying concurrent pro- grams. I then propose a Utopian future in which mathematics prevails. Keywords. Assertional methods, fairness, formal methods, mathemat- ics, Owicki-Gries method, temporal logic, TLA. Table of Contents 1 A Brief and Rather Biased History of State-Based Methods for Verifying Concurrent Systems .................. 2 1.1 From Floyd to Owicki and Gries, and Beyond ........... 2 1.2Temporal Logic ............................ 4 1.3 Unity ................................. 5 2 An Even Briefer and More Biased History of State-Based Specification Methods for Concurrent Systems ......... 6 2.1 Axiomatic Specifications ....................... 6 2.2 Operational Specifications ...................... 7 2.3 Finite-State Methods ........................ 8 3 What We Have Learned ........................ 8 3.1 Not Sequential vs. Concurrent, but Functional vs. Reactive ... 8 3.2Invariance Under Stuttering ..................... 8 3.3 The Definitions of Safety and Liveness ............... 9 3.4 Fairness is Machine Closure ..................... 10 3.5 Hiding is Existential Quantification ................ 10 3.6 Specification Methods that Don’t Work .............. 11 3.7 Specification Methods that Work for the Wrong Reason ..... 12 4 Other Methods ............................. 14 5 A Brief Advertisement for My Approach to State-Based Ver- ification and Specification of Concurrent Systems ....... 16 5.1 The Power of Formal Mathematics ................. 16 5.2Specifying Programs with Mathematical Formulas ........ 17 5.3 TLA .................................
    [Show full text]
  • The Specification Language TLA+
    Leslie Lamport: The Speci¯cation Language TLA+ This is an addendum to a chapter by Stephan Merz in the book Logics of Speci¯cation Languages by Dines Bj¿rner and Martin C. Henson (Springer, 2008). It appeared in that book as part of a \reviews" chapter. Stephan Merz describes the TLA logic in great detail and provides about as good a description of TLA+ and how it can be used as is possible in a single chapter. Here, I give a historical account of how I developed TLA and TLA+ that explains some of the design choices, and I briefly discuss how TLA+ is used in practice. Whence TLA The logic TLA adds three things to the very simple temporal logic introduced into computer science by Pnueli [4]: ² Invariance under stuttering. ² Temporal existential quanti¯cation. ² Taking as atomic formulas not just state predicates but also action for- mulas. Here is what prompted these additions. When Pnueli ¯rst introduced temporal logic to computer science in the 1970s, it was clear to me that it provided the right logic for expressing the simple liveness properties of concurrent algorithms that were being considered at the time and for formalizing their proofs. In the early 1980s, interest turned from ad hoc properties of systems to complete speci¯cations. The idea of speci- fying a system as a conjunction of the temporal logic properties it should satisfy seemed quite attractive [5]. However, it soon became obvious that this approach does not work in practice. It is impossible to understand what a conjunction of individual properties actually speci¯es.
    [Show full text]
  • Using Lamport Clocks to Reason About Relaxed Memory Models
    Using Lamport Clocks to Reason About Relaxed Memory Models Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin Computer Sciences Department University of Wisconsin - Madison {condon,markhill,plakal,sorin}@cs.wisc.edu Abstract industrial product groups spend more time verifying their Cache coherence protocols of current shared-memory mul- system than actually designing and optimizing it. tiprocessors are difficult to verify. Our previous work pro- To verify a system, engineers should unambiguously posed an extension of Lamport’s logical clocks for showing define what “correct” means. For a shared-memory sys- that multiprocessors can implement sequential consistency tem, “correct” is defined by a memory consistency model. (SC) with an SGI Origin 2000-like directory protocol and a A memory consistency model defines for programmers the Sun Gigaplane-like split-transaction bus protocol. Many allowable behavior of hardware. A commonly-assumed commercial multiprocessors, however, implement more memory consistency model requires a shared-memory relaxed models, such as SPARC Total Store Order (TSO), a multiprocessor to appear to software as a multipro- variant of processor consistency, and Compaq (DEC) grammed uniprocessor. This model was formalized by Alpha, a variant of weak consistency. Lamport as sequential consistency (SC) [12]. Assume that This paper applies Lamport clocks to both a TSO and an each processor executes instructions and memory opera- Alpha implementation. Both implementations are based on tions in a dynamic execution order called program order. the same Sun Gigaplane-like split-transaction bus protocol An execution is SC if there exists a total order of memory we previously used, but the TSO implementation places a operations (reads and writes) in which (a) the program first-in-first-out write buffer between a processor and its orders of all processors are respected and (b) a read returns cache, while the Alpha implementation uses a coalescing the value of the last write (to the same address) in this write buffer.
    [Show full text]
  • Should Your Specification Language Be Typed?
    Should Your Specification Language Be Typed? LESLIE LAMPORT Compaq and LAWRENCE C. PAULSON University of Cambridge Most specification languages have a type system. Type systems are hard to get right, and getting them wrong can lead to inconsistencies. Set theory can serve as the basis for a specification lan- guage without types. This possibility, which has been widely overlooked, offers many advantages. Untyped set theory is simple and is more flexible than any simple typed formalism. Polymorphism, overloading, and subtyping can make a type system more powerful, but at the cost of increased complexity, and such refinements can never attain the flexibility of having no types at all. Typed formalisms have advantages too, stemming from the power of mechanical type checking. While types serve little purpose in hand proofs, they do help with mechanized proofs. In the absence of verification, type checking can catch errors in specifications. It may be possible to have the best of both worlds by adding typing annotations to an untyped specification language. We consider only specification languages, not programming languages. Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifica- tions; D.2.4 [Software Engineering]: Software/Program Verification—formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro- grams—specification techniques General Terms: Verification Additional Key Words and Phrases: Set theory, specification, types Editors’ introduction. We have invited the following
    [Show full text]
  • (LA)TEX Changed the Face of Mathematics: An
    20 TUGboat, Volume 22 (2001), No. 1/2 How (LA)TEX changed the face of Mathematics: An E-interview with Leslie Lamport, the author of LATEX∗ A great deal of mathematics, including this journal, is typeset with TEX or LATEX; this has made a last- ing change on the face of (published) mathematics, and has also permanently revolutionized mathemat- ics publishing. Many mathematicians typeset their own mathematics with these systems, and this has also changed mathematical thinking, so that in a ca- sual√ conversation one might write \sqrt{2} instead of 2 on the tablecloth . We take “ca. 20 years of TEX” as the occasion to ask Leslie Lamport, the author of LATEX, some questions. (GMZ) LL: At the time, it never really occurred to me that − − ∗ − − people would pay money for software. I certainly GMZ: How were your own first papers produced? Did didn’t think that people would pay money for a you start out on a typewriter? On roff/troff/nroff? book about software. Fortunately, Peter Gordon A LL: Typically, when writing a paper, I would write at Addison-Wesley convinced me to turn the LTEX a first draft in pen, then go to typewritten drafts. I manual into a book. In retrospect, I think I made would edit each typed draft with pencil or pen until more money by giving the software away and selling it became unreadable, and would then type the next the book than I would have by trying to sell the A draft. I think I usually had two typewritten drafts. software.
    [Show full text]
  • A Fast Mutual Exclusion Algorithm
    A Fast Mutual Exclusion Algorithm LESLIE LAMPORT Digital Equipment Corporation A new solution to the mutual exclusion problem is presented that, in the absence of contention, requires only seven memory accesses. It assumes atomic reads and atomic writes to shared regis- ters. Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-rnuti mlti General terms: Algorithms Additional Key Words and Phrases: Critical section, multiprocessing I. INTRODUCTION The mutual exclusion problem-guaranteeing mutually exclusive access to a crit- ical section among a number of competing processes-is well known, and many solutions have been published. The original version of the problem, as presented by Dijkstra [2], assumed a shared memory with atomic read and write operations. Since the early 19709, solutions to this version have been of little practical interest. If the concurrent processesare being time-shared on a single processor, then mutual exclusion is easily achieved by inhibiting hardware interrupts at crucial times. On the other hand, multiprocessor computers have been built with atomic test-and- set instructions that permitted much simpler mutual exclusion algorithms. Since about 1974, researchers have concentrated on finding algorithms that use a more restricted form of shared memory or that use message passing instead of shared memory. Of late, the original version of the problem has not been widely studied. Recently, there has arisen interest in building shared-memory multiprocessor computers by connecting standard processors and memories, with as little modifica- tion to the hardware as possible. Because ordinary sequential processors and mem- ories do not have atomic test-and-set operations, it is worth investigating whether shared-memory mutual exclusion algorithms are a practical alternative.
    [Show full text]
  • The Greatest Pioneers in Computer Science
    The Greatest Pioneers in Computer Science Ivan Srba, Veronika Gondová 19th October 2017 5th Heidelberg Laureate Forum 2 Laureates of mathematics and computer science meet the next generation September 24–29, 2017, Heidelberg https://www.heidelberg-laureate-forum.org 3 Awards in Computer Science 4 Awards in Computer Science 5 • ACM A.M. Turing Award • “Nobel Prize of Computing” • Awarded to “an individual selected for contributions of a technical nature made to the computing community” • Accompanied by a prize of $1 million Awards in Computer Science 6 • ACM A.M. Turing Award • “Nobel Prize of Computing” • Awarded to “an individual selected for contributions of a technical nature made to the computing community” • Accompanied by a prize of $1 million • ACM Prize in Computing • Awarded to “an early to mid-career fundamental innovative contribution in computing” • Accompanied by a prize of $250,000 Some of Laureates We Met at 5th HLF 7 PeWe Postcard 8 Leslie Lamport 9 ACM A.M. Turing Award (2013) Source: https://www.heidelberg-laureate-forum.org/blog/laureate/leslie-lamport/ Leslie Lamport 10 ACM A.M. Turing Award (2013) “for fundamental contributions to the theory and practice of distributed and concurrent systems, notably the invention of concepts such as causality and logical clocks, safety and liveness, replicated state machines, and sequential consistency.” • Developed Lamport Clocks for distributed systems • The paper “Time, Clocks, and the Ordering of Events in a Distributed System” from 1978 has become one of the most cited works in computer science • Developed LaTeX • Invented the first digital signature algorithm • Currently work in Microsoft Research Source: https://www.heidelberg-laureate-forum.org/blog/laureate/leslie-lamport/ Balmer’s Peak 11 • The theory that computer programmers obtain quasi-magical, superhuman coding ability • when they have a blood alcohol concentration percentage between 0.129% and 0.138%.
    [Show full text]
  • A Fast Mutual Exclusion Algorithm
    7 A Fast Mutual Exclusion Algorithm Leslie Lamport November 14, 1985, Revised October 31, 1986 Systems Research Center DEC's business and technology objectives require a strong research program. The Systems Research Center (SRC) and three other research laboratories are committed to ®lling that need. SRC began recruiting its ®rst research scientists in l984Ðtheir charter, to advance the state of knowledge in all aspects of computer systems research. Our current work includes exploring high-performance personal computing, distributed computing, programming environments, system modelling techniques, speci®cation technology, and tightly-coupled multiprocessors. Our approach to both hardware and software research is to create and use real systems so that we can investigate their properties fully. Complex systems cannot be evaluated solely in the abstract. Based on this belief, our strategy is to demonstrate the technical and practical feasibility of our ideas by building prototypes and using them as daily tools. The experience we gain is useful in the short term in enabling us to re®ne our designs, and invaluable in the long term in helping us to advance the state of knowledge about those systems. Most of the major advances in information systems have come through this strategy, including time-sharing, the ArpaNet, and distributed personal computing. SRC also performs work of a more mathematical ¯avor which complements our systems research. Some of this work is in established ®elds of theoretical computer science, such as the analysis of algorithms, computational geometry, and logics of programming. The rest of this work explores new ground motivated by problems that arise in our systems research.
    [Show full text]
  • The Pluscal Algorithm Language
    The PlusCal Algorithm Language Leslie Lamport Microsoft Research 2 January 2009 minor corrections 13 April 2011 and 23 October 2017 Abstract Algorithms are different from programs and should not be described with programming languages. The only simple alternative to programming lan- guages has been pseudo-code. PlusCal is an algorithm language that can be used right now to replace pseudo-code, for both sequential and concurrent algorithms. It is based on the TLA+ specification language, and a PlusCal algorithm is automatically translated to a TLA+ specification that can be checked with the TLC model checker and reasoned about formally. Contents 1 Introduction 1 2 Some Examples 4 2.1 Euclid's Algorithm . .4 2.2 The Quicksort Partition Operation . .6 2.3 The Fast Mutual Exclusion Algorithm . .8 2.4 The Alternating Bit Protocol . 12 3 The Complete Language 15 4 The TLA+ Translation 16 4.1 An Example . 16 4.2 Translation as Semantics . 19 4.3 Liveness . 21 5 Labeling Constraints 23 6 Conclusion 25 References 28 Appendix: The C-Syntax Grammar 30 1 Introduction PlusCal is a language for writing algorithms, including concurrent algo- rithms. While there is no formal distinction between an algorithm and a program, we know that an algorithm like Newton's method for approxi- mating the zeros of a real-valued function is different from a program that implements it. The difference is perhaps best described by paraphrasing the title of Wirth's classic book [19]: a program is an algorithm plus an implementation of its data operations. The data manipulated by algorithms are mathematical objects like num- bers and graphs.
    [Show full text]