Process Innovation in Petroleum Refining O George Foster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository ISSN 0020-1685, Inorganic Materials, 2016, Vol. 52, No. 11, pp. 1091–1095. © Pleiades Publishing, Ltd., 2016. Original Russian Text © O.I. Podkopaev, A.F. Shimanskii, T.V. Kulakovskaya, A.N. Gorodishcheva, N.O. Golubovskaya, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1163–1167. Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O. I. Podkopaeva, *, A. F. Shimanskiib, **, T. V. Kulakovskayaa, A. N. Gorodishchevac, ***, and N. O. Golubovskayab aOJSC Germanium, Transportnyi proezd 1, Krasnoyarsk, 660027 Russia bSiberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, 660047 Russia cReshetnev Siberian State Aerospace University, pr. im. gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014 Russia *e-mail: [email protected] **e-mail: [email protected] ***e-mail: [email protected] Received March 2, 2016 Abstract—We have studied the wetting behavior of molten germanium on silica ceramics and amorphous sil- ica coatings in vacuum at a pressure of 1 Pa and a temperature of 1273 K. The results demonstrate that the wetting of rough surfaces of ceramic samples and coatings by liquid Ge is significantly poorer than that of the smooth surface of quartz glass. The contact angle of polished glass is ~100°, and that of the ceramics and coatings increases from 112° to 137° as the total impurity content of the material decreases from 0.120 to 1 × 10–3 wt %. Using experimental contact angle data, we calculated the work of adhesion of molten Ge to the materials studied. -
Review of Market for Octane Enhancers
May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado NREL Technical Monitor: K. Ibsen Prepared under Subcontract No. TXE-0-29113-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. -
What Octane Rating of Gasoline Should I Use? By: Ralph Seekins
What Octane Rating of Gasoline Should I use? By: Ralph Seekins Question: I recently bought my first new car, a Ford Focus. I’ve been told I should use premium fuel because it’s better for my car. However my owner’s manual says to use 87 octane regular gasoline. With today’s gas prices, is there really any benefit to using premium? Answer: Your owner’s manual is right. Your vehicle’s engine was designed and built to run on unleaded 87 octane regular gas. However, if your advisor is from my generation, there was a time when vehicles had carburetors (my grandkids call it the “olden days”) that premium (higher octane rated) gas did have some benefit over regular gas. Octane rating is a measure of the resistance of gasoline to detonation in internal combustion engines that use spark plugs to ignite the air/gas mixture. The higher the octane rating, the lower the chance for a too-early explosion – called engine spark knock. Higher performance engines operate with a higher compression ratio (the air/gas mixture is compressed into a smaller area thereby causing more pressure and heat) so they require a slower burning (higher octane) fuel. That’s not the case for your car or for most modern cars on the highway today. All manufacturers now utilize a number of sensors, an on-board computer and fuel injectors to accurately control the air/gas mixture under all imaginable temperature and environment conditions. These components work together to make sure that every time the cylinders in your car’s engine fire the fuel is completely burned. -
Innovation in Continuous Rectification for Tequila Production
processes Communication Innovation in Continuous Rectification for Tequila Production Estarrón-Espinosa Mirna, Ruperto-Pérez Mariela, Padilla-de la Rosa José Daniel * and Prado-Ramírez Rogelio * Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No. 800, C.P. 44720 Guadalajara, Jalisco, Mexico; [email protected] (E.-E.M.); [email protected] (R.-P.M.) * Correspondence: [email protected] (P.-d.l.R.J.D.); [email protected] (P.-R.R.); Tel.: +33-33455200 (P.-d.l.R.J.D.) Received: 23 March 2019; Accepted: 6 May 2019; Published: 14 May 2019 Abstract: In this study, a new process of continuous horizontal distillation at a pilot level is presented. It was applied for the first time to the rectification of an ordinario fraction obtained industrially. Continuous horizontal distillation is a new process whose design combines the benefits of both distillation columns, in terms of productivity and energy savings (50%), and distillation stills in batch, in terms of the aromatic complexity of the distillate obtained. The horizontal process of continuous distillation was carried out at the pilot level in a manual mode, obtaining five accumulated fractions of distillate that were characterized by gas chromatography (GC-FID). The tequila obtained from the rectification process in this new continuous horizontal distillation process complies with the content of methanol and higher alcohols regulated by the Official Mexican Standard (NOM-006-SCFI-2012). Continuous horizontal distillation of tequila has potential energy savings of 50% compared to the traditional process, besides allowing products with major volatile profiles within the maximum limits established by the regulation for this beverage to be obtained. -
Page2 Sidebar 1.Pdf
Headquarters & Forge Americas Office [email protected] [email protected] +49 (0) 7161 / 97830 215.242.6806 +49 (0) 7161 / 978321 fax fax 215.701.9725 artisan distilling systems 600 liter whiskey still the fine art of distillery technology Germany’s oldest distillery fabricator, since 1869, combining traditional family craftsmanship with leading eau-de-vie distillery innovations and technologies. Meticulously custom-crafted artisan copper pot still systems for all the great distilling traditions, and efficient continuous plants, grappa distillery in copper and stainless steel, for all capacities and applications: 450 liter artisan pot stills – brandy & vodka vodka, whiskey, eaux-de-vie, brandy, rum, gin, grappa, tequila, aguardientes… 1000 liter artisan vodka system 650 liter system with CADi automation continuous mash stripping column C. CARL Ziegelstraße 21 Americas Office Brewing & Distilling Ing. GmbH D-73033 Göppingen PO Box 4388 Technologies Corp. www.christiancarl.com Germany Philadelphia, PA 19118-8388 www.brewing-distilling.com CARL artisan distillery systems the fine art of distillery technology CARL custom-builds each distillery to order in our family shop near Stuttgart in Swabia, with the attention and care of crafting a finely- tuned instrument. All-the-while, we stay focused on the continued development of our distillery technology. There are always new ideas and realizations, such our the in-house developed CARL CADi distillery automation or our patented aroma bubble plate technologies, Our innovations have fostered CARL’s nearly 140 years of family tradition and experience as Germany’s oldest and most respected distillery fabricator, with thousands of successful commissions worldwide. form and function Our diverse customers, from small farmers to winemakers to brewers to large spirits houses, show great enthusiasm and appreciation for the aesthetics and functionality of a CARL distillery: its design, its form, classic and intuitively easy to understand, clear in conception. -
Distillation 6
CHAPTER Energy Considerations in Distillation 6 Megan Jobson School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK CHAPTER OUTLINE 6.1 Introduction to energy efficiency ....................................................................... 226 6.1.1 Energy efficiency: technical issues................................................... 227 6.1.1.1 Heating.................................................................................... 227 6.1.1.2 Coolingdabove ambient temperatures...................................... 229 6.1.1.3 Coolingdbelow ambient temperatures ...................................... 230 6.1.1.4 Mechanical or electrical power.................................................. 232 6.1.1.5 Summarydtechnical aspects of energy efficiency ..................... 233 6.1.2 Energy efficiency: process economics............................................... 233 6.1.2.1 Heating.................................................................................... 233 6.1.2.2 Cooling..................................................................................... 235 6.1.2.3 Summarydprocess economics and energy efficiency ............... 237 6.1.3 Energy efficiency: sustainable industrial development........................ 237 6.2 Energy-efficient distillation ............................................................................... 237 6.2.1 Energy-efficient distillation: conceptual design of simple columns...... 238 6.2.1.1 Degrees of freedom in design .................................................. -
Modelling of Crude Oil Distillation
Modelling of Crude Oil Distillation Modellering av råoljedestillation JENN Y BEATRIC E SOUC K K T H C h em i ca l S ci en c e and E n gi n e e r i n g Master’s Thesis in Chemical Engineering Stockholm, Sweden 2012 " One never notices what has been done; one can only see what remains to be done" (Marie Curie, 1867-1934) 1 Sammanfattning Under de föhållanden som reservoarens miljö erbjuder, definieras en petroleumvätska av dess termodynamiska och volymetriska egenskaper och av dess fysikalisk-kemiska egenskaper. För att korrekt simulera bearbetningen av dessa vätskor under produktion, deras beteende modelleras från experimentella data Med tillkomsten av nya regler och oflexibilitet som finns på tullbestämmelser vid gränserna idag, har forskningscenter stora svårigheter att få större mängder prover levererade. Av den anledningen, trots att det finns flera metoder för att karakterisera de olika komponenterna av råolja, tvingas laboratorier att vända sig mer och mer till alternativa analysmetoder som kräver mindre provvolymer: mikrodestillation, gaskromatografi, etc. Mikrodestillation, som är en snabb och helt datoriserad teknik, visar sig kunna ersätta standarddestillation för analys av flytande petroleumprodukter. Fördelar med metoden jämfört med standarddestillering är minskad arbetstidsåtgång med minst en faktor 4. Därtill krävs endast en [24] begränsad provvolym (några mikroliter) i jämförelse med standarddestillation. Denna rapport syftar till att skapa en enkel modell som kan förutsäga avkastningskurvan av fysisk destillation, utan att använda mikrodestillationsteknik. De resultat som erhölls genom gaskromatografiska analyser möjliggjorde modelleringen av det vätskebeteendet hos det analyserade provet. Efter att ha identifierat och behandlat praktiskt taget alla viktiga aspekter av mikro destillation genom simuleringar med PRO/II, fann jag att, oberoende av inställningen och den termodynamiska metod som används, det alltid finns stora skillnader mellan simulering och mikro destillation. -
Refining Crude Oil
REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product. -
Neutron Transmutation Doping of Silicon at Research Reactors
Silicon at Research Silicon Reactors Neutron Transmutation Doping of Doping Neutron Transmutation IAEA-TECDOC-1681 IAEA-TECDOC-1681 n NEUTRON TRANSMUTATION DOPING OF SILICON AT RESEARCH REACTORS 130010–2 VIENNA ISSN 1011–4289 ISBN 978–92–0– INTERNATIONAL ATOMIC AGENCY ENERGY ATOMIC INTERNATIONAL Neutron Transmutation Doping of Silicon at Research Reactors The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL IRELAND BELGIUM QATAR ISRAEL BELIZE REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN CAMEROON LAO PEOPLES DEMOCRATIC SLOVAKIA CANADA REPUBLIC SLOVENIA CENTRAL AFRICAN LATVIA SOUTH AFRICA REPUBLIC LEBANON SPAIN CHAD LESOTHO SRI LANKA CHILE LIBERIA SUDAN CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE DIVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA -
Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected]
University of Dayton eCommons History Faculty Publications Department of History 1991 Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/hst_fac_pub Part of the History Commons eCommons Citation Heitmann, John Alfred, "Burton Introduces Thermal Cracking for Refining Petroleum" (1991). History Faculty Publications. 92. https://ecommons.udayton.edu/hst_fac_pub/92 This Encyclopedia Entry is brought to you for free and open access by the Department of History at eCommons. It has been accepted for inclusion in History Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. 573 BURTON INTRODUCES THERMAL CRACKING FOR REFINING PETROLEUM Category of event: Chemistry Time: January, 1913 Locale: Whiting, Indiana Employing high temperatures and pressures, Burton developed a large-scale chem ical cracking process, thus pioneering a method that met the need for more fuel Principal personages: WILLIAM MERRIAM BURTON (1865-1954), a chemist who developed a commercial method to convert high boiling petroleum fractions to gas oline by "cracking" large organic molecules into more useful and marketable smaller units ROBERT E. HUMPHREYS, a chemist who collaborated with Burton WILLIAM F. RODGERS, a chemist who collaborated with Burton EUGENE HOUDRY, an industrial scientist who developed a procedure us ing catalysts to speed the conversion process, which resulted in high octane gasoline Summary of Event In January, 1913, William Merriam Burton saw the first battery of twelve stills used in the thermal cracking of petroleum products go into operation at Standard Oil of Indiana's Whiting refinery. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
The Focus on Aromatics in Automotive Fuels Specifications
10 concawe review The focus on aromatics in automotive fuels specifications Can further reductions in aromatic hydrocarbons be environmentally justified? ver the years, and particularly in the past decade, was introduced in 2000 and a further reduction to 35% OEuropean motor fuel specifications have changed from 2005 is already foreseen in the legislation. dramatically. This has followed a general trend, supported mainly by concerns about the effect of road traffic on In the case of automotive diesel, early work in the USA urban air quality. The USA, and more specifically California, suggested a link between regulated emissions and have led the world with regard to gasoline, while diesel total aromatics content of the fuel. Later work, has attracted considerable attention in Europe due to its however, showed the importance of density and much larger share of the personal car market. demonstrated that polyaromatics have more effect than monoaromatics. Polyaromatics have also come Beside sulphur reduction, these changes have been under scrutiny because of the carcinogenic nature of mainly targeted towards aromatic hydrocarbons, with some of these compounds, leading to a polyaromatics an initial focus on benzene in gasoline. Exposure of limit of 11% m/m in European automotive diesel from workers and the public at large to benzene, an acknowl- 2000. Recent CONCAWE work1 showed that, for older edged category 1 carcinogen, has caused particular technology vehicles, the quality of the fuel has a concern and justified drastic reduction measures. discernible effect on exhaust emissions of a marker Benzene can be released into the atmosphere through polyaromatic compound, but that this virtually disap- evaporative emissions from gasoline storage (fixed or pears with more modern technology engines and/or mobile) or through vehicle tailpipe emissions.