Glucagon Secreting Tumors and Glucagonoma Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Glucagon Secreting Tumors and Glucagonoma Syndrome Central JSM Thyroid Disorders and Management Bringing Excellence in Open Access Case Series *Corresponding author G Bano, Thomas Addison Unit, St George’s Hospital, Blackshaw Road, London, SW17 0QT, UK, Tel: Glucagon Secreting Tumors and 442087251027; Fax: 442087250240; Email: Submitted: 15 October 2016 Glucagonoma Syndrome Accepted: 09 February 2017 Yasmeen Khalid1, Faisal Ozair1, John Du Parc2, Nigel Beharry3, Published: 10 February 2017 Satvinder Mudan4, and Gul Bano1* Copyright 1Department of Diabetes and Endocrinology, St George’s Hospital, UK © 2017 Bano et al. 2 Department of Cytopathlogy, St George’s Hospital, UK OPEN ACCESS 3Department of Radiology, St George’s Hospital, UK 4 Department of Surgery, St George’s Hospital, UK Keywords • Glucagonoma Abstract • Glucagonoma syndrome • Multiple endocrine neoplasia Glucagonomas are the functioning neuroendocrine tumors. These arise from pancreatic • Necrolytic migratory erythema islet α-cells. These tumors are extremely rare and have an annual incidence of 1 per 20-40 • Biomarkers million population 80% of glucagon-expressing tumors are sporadic, and 20% are associated with genetic syndromes such as Multiple Endocrine Neoplasia-type 1. Glucagonoma typically occurs in the distal pancreas, and around 85% are in the body or tail. It tends to be large at the time of diagnosis. Most reported cases of glucagonoma are malignant and about 65- 75% patients present with metastatic disease. The liver is usually the first site of metastases, followed by the involvement of peripancreatic lymph nodes. The term Glucagonoma syndrome and glucagonoma are often interchangeably used, but in fact, these are two distinct entities. Glucagonoma syndrome comprises of necrolytic migratory erythema, hyperglucagonemia, diabetes mellitus, anemia, weight loss, glossitis, diarrhea, venous thrombosis and neuropsychiatric disturbances in the presence of a glucagon-producing tumor of the pancreas. Tumors secreting glucagon can occur without the glucagonoma syndrome. The glucagonoma secretion depends on the expression of protein convertase enzyme PC1/3 or PC2 within the tumor itself. As a result of this expression, the clinical manifestations can be variable. The tumor can either present with hyperinsulinemic hypoglycemia in a patient with a previous history of diabetes or with the features of the glucagonoma syndrome. In cases where a tumor is localized surgery is the curative treatment. Reduction of the tumor bulk, removal of the primary by surgery and targeted therapy for the hepatic metastases are the favored approach even when there is the metastasis. ABBREVIATIONS 80% of glucagon-expressing tumors are sporadic, and 20% are related to genetic syndromes such as Multiple Endocrine GEP: Gastroenteropancreatic (GEP); NETs: Neuroendocrine Neoplasia-type 1 (MEN1) [1]. Mahvash disease, a rare inherited Tumors, PGDP: Proglucagon-Derived Peptides; MEN-1: Multiple tumor predisposition syndrome, due to inactivating mutations in Endocrine Neoplasia-Type 1; GLP-1: Glucagon-Like Peptide-1 the glucagon receptor (GCGR) gene is associated with pancreatic INTRODUCTION syndrome and glucagonoma is interchangeably used, but these Gastroenteropancreatic (GEP) neuroendocrine tumors areα-cell two hyperplasia distinct entities. and glucagonoma [2]. The term Glucagonoma (NETs) can be either nonfunctioning or functioning. Functioning tumors can result in an endocrine syndrome due to inappropriate CASE PRESENTATION Case 1 on the hormone production that results in a particular syndrome. GEPhormone NETs secretion. are rare with The anclassification annual incidence of these rate tumors of less depends than 10 64 years old Caucasian male presented with a maculopapular per million population. Glucagonomas are the functioning NETs. pruritic rash on his legs that settled with topical steroid treatment. A year later he developed a rash on his legs, arm, chest secrete proglucagon-derived peptides (PGDP). These tumors and back (Figure 1). His skin biopsy was suggestive of necrolytic areThese extremely arise from rare pancreaticand have an islet annual α-cells incidence that synthesize of 1 per 20-40 and migratory erythema (NME). He had six months history of million population. The frequency of islet cell tumors expressing abdominal pain, bloating, frequent diarrhea and weight loss. His glucagon is reported to be approximately 1% in autopsy studies, investigations showed high glucagon, chromogranin A, and B. His suggesting that many of tumors are either not diagnosed and other gut peptides and hormones, including serum calcium and associated with a sub-clinical disease. parathyroid hormone were normal (Table 1). His oral glucose Cite this article: Khalid Y, Ozair F, Parc JD, Beharry N, Mudan S, et al. (2017) Glucagon Secreting Tumors and Glucagonoma Syndrome. JSM Thyroid Disord Manag 2(1): 1008. Bano et al. (2017) Email: Central Bringing Excellence in Open Access Glucagonoma typically occurs in the distal pancreas. Around 85% of these tumors are in the body or tail of the pancreas. It tends to be large at the time of diagnosis. Most reported cases of glucagonoma are malignant, and about 65-75% patients present with metastatic disease in the liver and this is followed by the involvement of peripancreatic lymph node [4]. Glucagon secreting tumors can also occur without the glucagonoma syndrome. Glucagonoma may occur in patients with MEN-1 and other genetic syndromes, although this association is rare. The tumors in these cases are usually multifocal and, slow growing. Figure 1 Table 1: Generalized skin rash. Peptide Value Range PP 108pmol/l large pancreatic mass with involvement of lymph nodes and Gastrin 9pmol/l 0-40 tolerance confirmed him to be diabetic. His CT scan showed a 0-300 Glucagon 0-50 (Figure 4). He had distal pancreatectomy and splenectomy. His Somatostatin 0-150 histologylocal infiltration showed (Figurenormal tubular2,3). This and mass acinar was morphology octreotide within avid 348pmol/l a vascular stroma. There was modest nuclear pleomorphism with Chromogranin A 33pmol/l74pmol/l 0-60 some chromatin aggregation, prominent nucleoli and abundant Chromogranin B 257pmol/l 0-150 granular cytoplasm (Figure 5). The lymph node showed normal PTH 1.1-6.9 small lymphocytes in a vascular stroma with a small aggregate Prolactin 110mIU/l of tumor cells (Figure 6). He was started on somatostatin analog 2.3pmol/l treatment. His symptoms, including his rash, settled and diabetes IGF-1 18.1nmol/l 86-324 VIP= Vasoactive intestinal peptide, PP= Pancreatic polypeptide, PTH= improved. His genetic test for MEN 1 mutation was negative. 5.6-25.3 parathyroid hormone, IGF-1= Insulin like growth factor Case 2 A 25- year old male presented with recurrent renal calculi. He was diagnosed with primary hyperparathyroidism. He was MEN- 1 mutation positive. He had a total parathyroidectomy but developed hyperparathyroidism an year later. He had an accessory parathyroid gland in the mediastinum and removal of this gland annual blood tests. Four years later his gut peptides including glucagon,normalized pancreatic his serum polypeptide calcium. He and was Chromogranin under surveillance B started with to increase. He had occasional diarrhea. His results are documented in Table 2. His CT and MRI scan showed a cystic abnormality 4.0 x 1.8 cm arising from the posterior aspect of the tail of the pancreas. This cystic lesion was Octreotide avid. His endoscopic ultrasound scan (EUS) showed a lesion in the tail of the pancreas. Figure 2 Pancreatic mass with lymph node involvement. had distal pancreatectomy and splenectomy and remains well. The fine needle aspiration (FNA) of the lesion was inadequate. He DISCUSSION Glucagonoma is a slowly growing PNET, frequently malignant and an extremely rare neuroendocrine tumor of the α-cells of (NME),the pancreas. hyperglucagonemia, Glucagonoma diabetessyndrome mellitus, was first anemia, described weight in loss,1942 glossitis,[3] and is steatorrhea,characterized diarrhea, by Necrolytic venous migratory thrombosis erythema and neuropsychiatric disturbances. These features are present in the settingPseudoglucagonoma of a glucagon-producing syndrome α-cell is thetumor presence of the ofpancreas. NME in the absence of a pancreatic tumor. These conditions include Liver disorders (i.e., coeliac disease) and other malignancies. Figure 3 Pancreatic mass with local tissue invasion. disease, Inflammatory bowel disease, Pancreatitis, Malabsorption JSM Thyroid Disord Manag 2(1): 1008 (2017) 2/5 Bano et al. (2017) Email: Central Bringing Excellence in Open Access improves [6]. Glucagonoma that produces GLP-1 and GLP-2 are After normalization of glucagon level, this clinical entity tends to with hypoglycemia and hyperinsulinemia. These patients can alsounusual have and gastrointestinal not well recognized. dysfunction Such (refractory tumors tend constipation, to present reduced motility, gross structural abnormalities of the small intestine). This type of presentation is mostly described as a paraneoplastic syndrome in the literature [7]. Glucagonomas produce proglucagon-derived peptide (GRP). The variable clinical phenotypes associated with these tumors Figure 4 Positive Octreotide scan. proglucagon in that particular tumor. The proglucagon processing may be related to the specific secreted peptide derived from proglucagon is cleaved to glucagon by prohormone convertase 2happens (PC2). inGlucagon a cell type-specific is cleaved manner.to glucagon-like In α-cells peptide-1 of the pancreas, (GLP- 1) and GLP-2 by PC1 in the intestinal
Recommended publications
  • Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides
    Discovery, characterization, and clinical development of the glucagon-like peptides Daniel J. Drucker, … , Joel F. Habener, Jens Juul Holst J Clin Invest. 2017;127(12):4217-4227. https://doi.org/10.1172/JCI97233. Harrington Prize Essay Endocrinology Gastroenterology The discovery, characterization, and clinical development of glucagon-like-peptide-1 (GLP-1) spans more than 30 years and includes contributions from multiple investigators, science recognized by the 2017 Harrington Award Prize for Innovation in Medicine. Herein, we provide perspectives on the historical events and key experimental findings establishing the biology of GLP-1 as an insulin-stimulating glucoregulatory hormone. Important attributes of GLP-1 action and enteroendocrine science are reviewed, with emphasis on mechanistic advances and clinical proof-of-concept studies. The discovery that GLP-2 promotes mucosal growth in the intestine is described, and key findings from both preclinical studies and the GLP-2 clinical development program for short bowel syndrome (SBS) are reviewed. Finally, we summarize recent progress in GLP biology, highlighting emerging concepts and scientific insights with translational relevance. Find the latest version: https://jci.me/97233/pdf The Journal of Clinical Investigation HARRINGTON PRIZE ESSAY Discovery, characterization, and clinical development of the glucagon-like peptides Daniel J. Drucker,1 Joel F. Habener,2 and Jens Juul Holst3 1Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada. 2Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA. 3Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. sequences of cloned recombinant cDNA copies of messenger RNAs.
    [Show full text]
  • Β Cell Tone Is Defined by Proglucagon Peptides Through Camp Signaling
    β Cell tone is defined by proglucagon peptides through cAMP signaling Megan E. Capozzi, … , David A. D’Alessio, Jonathan E. Campbell JCI Insight. 2019;4(5):e126742. https://doi.org/10.1172/jci.insight.126742. Research Article Endocrinology Metabolism Paracrine interactions between pancreatic islet cells have been proposed as a mechanism to regulate hormone secretion and glucose homeostasis. Here, we demonstrate the importance of proglucagon-derived peptides (PGDPs) for α to β cell communication and control of insulin secretion. Signaling through this system occurs through both the glucagon-like peptide receptor (Glp1r) and glucagon receptor (Gcgr). Loss of PGDPs, or blockade of their receptors, decreases insulin secretion in response to both metabolic and nonmetabolic stimulation of mouse and human islets. This effect is due to reduced β cell cAMP and affects the quantity but not dynamics of insulin release, indicating that PGDPs dictate the magnitude of insulin output in an isolated islet. In healthy mice, additional factors that stimulate cAMP can compensate for loss of PGDP signaling; however, input from α cells is essential to maintain glucose tolerance during the metabolic stress induced by high-fat feeding. These findings demonstrate an essential role for α cell regulation of β cells, raising the possibility that abnormal paracrine signaling contributes to impaired insulin secretion in diabetes. Moreover, these findings support reconsideration of the role for α cells in postprandial glucose control. Find the latest version: https://jci.me/126742/pdf RESEARCH ARTICLE β Cell tone is defined by proglucagon peptides through cAMP signaling Megan E. Capozzi,1 Berit Svendsen,1 Sara E.
    [Show full text]
  • Endocrine Tumors of the Pancreas
    Friday, November 4, 2005 8:30 - 10:30 a. m. Pancreatic Tumors, Session 2 Chairman: R. Jensen, Bethesda, MD, USA 9:00 - 9:30 a. m. Working Group Session Pathology and Genetics Group leaders: J.–Y. Scoazec, Lyon, France Questions to be answered: 12 Medicine and Clinical Pathology Group leader: K. Öberg, Uppsala, Sweden Questions to be answered: 17 Surgery Group leader: B. Niederle, Vienna, Austria Questions to be answered: 11 Imaging Group leaders: S. Pauwels, Brussels, Belgium; D.J. Kwekkeboom, Rotterdam, The Netherlands Questions to be answered: 4 Color Codes Pathology and Genetics Medicine and Clinical Pathology Surgery Imaging ENETS Guidelines Neuroendocrinology 2004;80:394–424 Endocrine Tumors of the Pancreas - gastrinoma Epidemiology The incidence of clinically detected tumours has been reported to be 4-12 per million inhabitants, which is much lower than what is reported from autopsy series (about 1%) (5,13). Clinicopathological staging (12, 14, 15) Well-differentiated tumours are the large majority of which the two largest fractions are insulinomas (about 40% of cases) and non-functioning tumours (30-35%). When confined to the pancreas, non-angioinvasive, <2 cm in size, with <2 mitoses per 10 high power field (HPF) and <2% Ki-67 proliferation index are classified as of benign behaviour (WHO group 1) and, with the notable exception of insulinomas, are non-functioning. Tumours confined to the pancreas but > 2 cm in size, with angioinvasion and /or perineural space invasion, or >2mitoses >2cm in size, >2 mitoses per 20 HPF or >2% Ki-67 proliferation index, either non-functioning or functioning (gastrinoma, insulinoma, glucagonoma, somastatinoma or with ectopic syndromes, such as Cushing’s syndrome (ectopic ACTH syndrome), hypercaliemia (PTHrpoma) or acromegaly (GHRHoma)) still belong to the (WHO group 1) but are classified as tumours with uncertain behaviour.
    [Show full text]
  • 2016 IES Annual Meeting Final Programme
    ROYAL ACADEMY OF MEDICINE IN IRELAND IRISH JOURNAL OF MEDICAL SCIENCE Irish Endocrine Society 40th Annual Meeting 14th and 15th October 2016 Stormont Hotel, Belfast Local Organiser: Doctor Hamish Courtney, REVISEDRoyal Victoria Hospital, PROOF Belfast Irish Journal of Medical Science Volume XXX Supplement X DOI 10.1007/s11845-016-1482-y 123 123 Journal : Large 11845 Dispatch : 17-8-2016 Pages : 57 Article No. : 1482 h LE h TYPESET MS Code : 1482 h44CP h DISK Ir J Med Sci Disclosure statement This supplement is paid for by the Irish Endocrine Society. However the meeting costs are supported by the following commercial sponsors: Abbott Amgen Astra Zeneca Besins Healthcare BMS Boehringer Ingleheim Consilient Ipsen Janssen-Cilag Kyowa Kirin Lilly Menarini Merck Serono MSD Novartis Novo Nordisk Pfizer Sanofi REVISED PROOF 123 Journal : Large 11845 Dispatch : 17-8-2016 Pages : 57 Article No. : 1482 h LE h TYPESET MS Code : 1482 h44CP h DISK Ir J Med Sci Novo Lecture Nordisk Lecture 1976 D.K. O’Donovan 1977 S. Bloom 1978 J.H.S. Robertson 1979 A.G. Cudworth 1980 D.A.D. Montgomery 1981 Peter Watkins 1982 G. Joplin 1983 D.R. London 1984 A.X. Bertagna 1985 Malcolm Nattrass Laurence Kennedy 1986 Brian Frier JB Ferriss 1987 Maurice Scanlon TJ McKenna 1988 D.A. Heath AB Atkinson 1989 J. Ward GH Tomkin 1990 R. Volpe KD Buchanan 1991 Michael Besser PPA Smyth 1992 R.V. Ragontte DH Hadden 1993 Bruce Weintraub David Powell 1994 Oscar Croffard Patrick Bell 1995 Robert Lindsay Brian Sheridan 1996 C.R.W. Edwards Rosemary Freaney 1997 Stephanie Amiel David McCance 1998 Robert Turner Randle Hayes 1999 Ian Hay Sean K Cunningham 2000 Stephen O’Rahilly Michael Cullen 2001 Andre Lacroix Daphne Owens 2002 J.
    [Show full text]
  • C O N F E R E N C E 7 18 October 2017
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2017-2018 C o n f e r e n c e 7 18 October 2017 CASE I: F1753191 (JPC 4101076). veterinarian revealed a regenerative anemia, stress leukogram and hypoproteinemia Signalment: 9-year-old, female intact, Rock characterized by hypoalbuminemia and the Alpine goat, Capra aegagrus hircus, goat was treated with ivermectin. caprine. Bloodwork at CSU revealed hyperglycemia and elevated creatinine, creatine kinase and History: A 9-year-old, female intact Rock aspartate aminotransferase levels. A fecal Alpine goat presented to Colorado State floatation revealed heavy loads of coccidia, University Veterinary Teaching Hospital strongyles and Trichuris spp. During a nine two months prior to necropsy with a three- day hospitalization, the doe was treated with day history of hyporexia and lethargy which intravenous fluids, kaopectate, thiamine, had progressed to lateral recumbency and fenbendazole, sulfadimethoxine, oxy- complete anorexia. The referring tetracycline and multiple blood transfusions. veterinarian had previously diagnosed the After significant improvement of her clinical doe with louse infestation, endoparasites and signs and bloodwork, including partial a heart murmur. Bloodwork by the referring resolution of the dermatitis, the doe was Haired skin goat. The skin was dry, alopecia, and covered with hyperkeratotic crusts and ulcers. (Photo courtesy of: Colorado State University, Microbiology, Immunology, and Pathology Department, College of Veterinary Medicine and Biomedical Sciences, http://csucvmbs.colostate.edu/academics/mip/Pages/default.aspx) 1 discharged. exfoliating epithelial crusts which were often tangled within scant remaining hairs. Two months later, the goat presented with a This lesion most severely affected the skin one month history of progressive scaling and over the epaxials, the ventral abdomen and ulceration over the withers, dew claws, and teats, coronary bands and dew claws.
    [Show full text]
  • Development and Characterization of GLP-1 Total and Active V-PLEX
    T1530-12-77 Development and Characterization of GLP-1 Total and Active V-PLEX® Assays Priscilla Krai, Jennifer Morgan, Lalitha Janaki, Jon Buhrman, Laure Moller, Colleen Kenten, Vivek Chitnis, Seth B. Harkins, David Stewart, and Jacob N. Wohlstadter Meso Scale Discovery, Rockville, Maryland, USA CONTACT INFORMATION: [email protected] PURPOSE CALIBRATION CURVES AND SPECIFICITY ACCURACY AND PRECISION Glucagon like peptide-1 (GLP-1), an incretin hormone, is a major target of interest for researchers studying metabolic, To assess the specificity of each assay, both V-PLEX GLP-1 Total and GLP-1 Active Kits were tested for Quality control samples were prepared by spiking calibrator into non-human serum matrix at three levels (high, neurologic, and cardiovascular disorders. After post-translational processing of proglucagon, the GLP-1 peptide is LIMITS OF DETECTION nonspecific binding to the following GLP-1 metabolites and other general metabolic targets. mid, and low) within the quantitative linear range of the assay. The controls were measured using a minimum of secreted in its bioactive form, which binds a specific receptor (GLP-1R) to stimulate insulin release. Once in circulation, Cross-reactivity at or below 0.02% is reported as not detected (ND). three replicates tested over multiple days and multiple operators for a total of at least 36 runs. The accuracy of The figure below demonstrates typical calibration curves for the analytes in the V-PLEX GLP-1 Total and however, the peptide is rapidly cleaved by proteases (e.g. DPP-IV), yielding several other metabolites that account for *Although weakly cross-reactive, Liraglutide and GLP-1 have nearly identical sequences and have the control determinations fell within 20% of the expected concentration with precision of less than 20% CV in the GLP-1 Active Kits.
    [Show full text]
  • Lessons from Single and Double Incretin Receptor Knockout Mice
    Regulatory Peptides 128 (2005) 125–134 www.elsevier.com/locate/regpep Review GIP and GLP-1 as incretin hormones: Lessons from single and double incretin receptor knockout mice Tanya Hansotia, Daniel J. Drucker* Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, and the University of Toronto, 200 Elizabeth Street MBRW4R-402, Toronto, Ontario, Canada M5G 2C4 Received 6 July 2004; received in revised form 8 July 2004; accepted 15 July 2004 Available online 25 August 2004 Abstract Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance h-cell mass through regulation of h-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. Furthermore, human subjects with Type 2 diabetes exhibit relative resistance to the actions of GIP, but not GLP-1R agonists. The physiological importance of both incretins has been investigated through generation and analysis of incretin receptor knockout mice. Elimination of incretin receptor action in GIPRÀ/À or GLP-1RÀ/À mice produces only modest impairment in glucose homeostasis. Similarly, double incretin receptor knockout (DIRKO) mice exhibit normal body weight and normal levels of plasma glucagon and hypoglycemic responses to exogenous insulin. However, glucose-stimulated insulin secretion is significantly decreased following oral but not intraperitoneal glucose challenge in DIRKO mice and the glucose lowering actions of dipeptidyl peptidase-IV (DPP-IV) inhibitors are extinguished in DIRKO mice. Hence, incretin receptor signaling exerts physiologically relevant actions critical for glucose homeostasis, and represents a pharmacologically attractive target for development of agents for the treatment of Type 2 diabetes.
    [Show full text]
  • Production of the a Subunit of Guanine Nucleotide-Binding Protein GO by Neuroendocrine Tumors1
    [CANCER RESEARCH 47, 5800-5805, November 1, 1987] Production of the a Subunit of Guanine Nucleotide-binding Protein GO by Neuroendocrine Tumors1 Kanefusa Kato,2 Tomiko Asano, Nobuko Kamiya, Hajime Haimoto, Syun Hosoda, Akio Nagasaka, Yutaka Ariyoshi, and Yukio Ishiguro Department of Biochemistry ¡K.K„T.A., N. K.], Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03; Laboratory of Pathology ¡H.H., S. H.] and Department of Internal Medicine [Y, A.], Aichi Cancer Center, Chikusa-ku, Nagoya 464; Department of Internal Medicine [A. N.J. Fujita-Gakuen Health University, School of Medicine, Toyoake, Aichi 470-11; and Department of Surgery [Y. IJ, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan ABSTRACT is localized exclusively in the nervous tissues and some endo crine cells in pancreas, pituitary, thyroid, and adrenal,4 which We have found that neuroendocrine tumors (including neuroblastoma, belong to a family designated as APUD (amine precursor ganglioneuroma, gut carcinoid, pheochromocytoma, medullary thyroid uptake and decarboxylation) or diffuse neuroendocrine system carcinoma, insulinoma, glucagonoma, prolactinoma, carotid body tumor, (10). We describe here the presence of G0«in tumors derived and small cell lung carcinoma) produce considerable amounts (about 1000-80,000 ng/g tissue) of the a subunit of guanine nucleotide-binding from the above mentioned neuroendocrine cells and in sera of protein, G0 (Goa), whereas nonneuroendocrine tumors contain less than patients with neuroblastoma, and evaluate G0a for the appli 300 ng of Goa/g tissue. Goat in the neuroendocrine tumors was present cation to clinical and immunohistochemical diagnosis. both in the soluble fraction, and cholate-extractable membrane-bound fraction of tissues.
    [Show full text]
  • Glucose-Dependent Insulinotropic Polypeptide (GIP): from Prohormone to Actions in Endocrine Pancreas and Adipose Tissue
    PHD THESIS DANISH MEDICAL BULLETIN Glucose-dependent Insulinotropic Polypeptide (GIP): From prohormone to actions in endocrine pancreas and adipose tissue Randi Ugleholdt The two incretins, glucagon-like peptide 1 (GLP-1) and glu- This review has been accepted as a thesis with two original papers by University of cose dependent insulinotropic polypeptide (gastric inhibitory Copenhagen 14th of December 2009 and defended on 28th of January 2010 peptide, GIP) have long been recognized as important gut hor- mones, essential for normal glucose homeostasis. Plasma levels Tutor: Jens Juul Holst of GLP-1 and GIP rise within minutes of food intake and stimulate Official opponents: Jens Frederik Rehfeld, Baptist Gallwitz & Thure Krarup pancreatic β-cells to release insulin in a glucose-dependent man- ner. This entero-insular interaction is called the incretin effect and Correspondence: Department of Biomedical Sciences, Cellular and Metabolic Re- search Section, University of Copenhagen, Faculty of Health Sciences, Blegdamsvej accounts for up to 70% of the meal induced insulin release in man 3B build. 12.2, 2200 Copenhagen N, Denmark and via this incretin effect, the gut hormones facilitate the uptake of glucose in muscle, liver and adipose tissue (2). Although the E-mail: [email protected] pancreatic effects of these two gut hormones have been the target of extensive investigation both hormones also have nu- merous extrapancreatic effects. Thus, GLP-1 decreases gastric Dan Med Bull 2011;58:(12)B4368 emptying and acid secretion and affects appetite by increasing fullness and satiety thereby decreasing food intake and, if main- THE TWO ORIGINAL PAPERS ARE tained at supraphysiologic levels, eventually body weight (3).
    [Show full text]
  • Rising Incidence of Neuroendocrine Tumors
    Rising Incidence of Neuroendocrine Tumors Dasari V, Yao J, et al. JAMA Oncology 2017 S L I D E 1 Overview Pancreatic Neuroendocrine Tumors • Tumors which arise from endocrine cells of the pancreas • 5.6 cases per million – 3% of pancreatic tumors • Median age at diagnosis 60 years • More indolent course compared to adenocarcinoma – 10-year overall survival 40% • Usually sporadic but can be associated with hereditary syndromes – Core genetic pathways altered in sporadic cases • DNA damage repair (MUTYH) Chromatin remodeling (MEN1) • Telomere maintenance (MEN1, DAXX, ATRX) mTOR signaling – Hereditary: 17% of patients with germline mutation Li X, Wang C, et al. Cancer Med 2018 Scarpa A, Grimond S, et al. NatureS L I2017 D E 2 Pathology Classification European American Joint World Health Organization Neuroendocrine Committee on Cancer (WHO) Tumor Society (AJCC) (ENETS) Grade Ki-67 Mitotic rt TNM TNM T1: limit to pancreas, <2 cm T1: limit to pancreas, ≦2 cm T2: limit to pancreas, 2-4 cm T2: >limit to pancreas, 2 cm T3: limit to pancreas, >4 cm, T3: beyond pancreas, no celiac or Low ≤2% <2 invades duodenum, bile duct SMA T4: beyond pancreas, invasion involvement adjacent organs or vessels T4: involves celiac or SMA N0: node negative No: node negative Intermed 3-20% 2-20 N1: node positive N1: node positive M0: no metastases M0: no metastases High >20% >20 M1: metastases M1: metastases S L I D E 3 Classification Based on Functionality • Nonfunctioning tumors – No clinical symptoms (can still produce hormone) – Accounts for 40% of tumors – 60-85%
    [Show full text]
  • Purification and Sequence of Rat Oxyntomodulin (Enteroglucagon/Peptide/Intestine/Proglucagon/Radlolmmunoassay) NATHAN L
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9362-9366, September 1994 Biochemistry Purification and sequence of rat oxyntomodulin (enteroglucagon/peptide/intestine/proglucagon/radlolmmunoassay) NATHAN L. COLLIE*t, JOHN H. WALSHO, HELEN C. WONG*, JOHN E. SHIVELY§, MIKE T. DAVIS§, TERRY D. LEE§, AND JOSEPH R. REEVE, JR.t *Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90024; *Center for Ulcer Research and Education, Gastroenteric Biology Center, Department of Medicine, Veterans Administration Wadsworth Center, School of Medicine, University of California, Los Angeles, CA 90073; and §Division of Immunology, Beckman Institute of City of Hope Research Institute, Duarte, CA 91010 Communicated by Jared M. Diamond, May 26, 1994 ABSTRACT Structural information about rat enteroglu- glucagon plus two glucagon-like sequences (GLP-1 and -2) cagon, intestinal peptides containing the pancreatic glucagon arranged in tandem. The present study concerns the enter- sequence, has been based previously on cDNA, immunologic, oglucagon portion of proglucagon (i.e., the N-terminal 69 and chromatographic data. Our interests in testing the phys- residues and its potential cleavage fragments). iological actions of synthetic enteroglucagon peptides in rats Our use of the term "enteroglucagon" refers to intestinal required that we identify precisely the forms present in vivo. peptides containing the pancreatic glucagon sequence. Fig. 1 From knowledge of the proglucagon gene sequence, we syn- shows two proposed enteroglucagon forms, proglucagon-(1- thesized an enteroglucagon C-terminal octapeptide common to 69) (glicentin) and proglucagon-(33-69) (OXN; see Fig. 1). both proposed enteroglucagon forms, glicentin and oxynto- The primary structures based on amino acid sequence data of modulin, but sharing no sequence overlap with glucagon.
    [Show full text]
  • Preclinical Cushing's Syndrome Resulting from Adrenal Black
    Endocrine Journal 2007, 54 (4), 543–551 Preclinical Cushing’s Syndrome Resulting from Adrenal Black Adenoma Diagnosed with Diabetic Ketoacidosis TOSHIO KAHARA, CHIKASHI SETO*, AKIO UCHIYAMA**, DAISUKE USUDA, HIROSHI AKAHORI, EIJI TAJIKA*, ATSUO MIWA**, RIKA USUDA, TAKASHI SUZUKI*** AND HIRONOBU SASANO*** Department of Internal Medicine, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama 930-8550, Japan *Department of Urology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama 930-8550, Japan **Department of Pathology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama 930-8550, Japan ***Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan Abstract. A right adrenal tumor was incidentally discovered on abdominal computed tomography performed on a 53- year-old Japanese man, who had been hospitalized with diabetic ketoacidosis. Normal values were obtained for adrenal hormones in the morning after an overnight fast and urinary cortisol excretion after treatment of diabetic ketoacidosis with insulin. However, overnight dexamethasone administration with 1 mg or 8 mg did not completely suppress serum cortisol levels. There were no remarkable physical findings related to Cushing’s syndrome. The patient was diagnosed as having preclinical Cushing’s syndrome (PCS). Histological examination of the adrenalectomy specimen demonstrated adrenal black adenoma. Blood glucose levels subsequently improved after adrenalectomy, and the patient never developed adrenal insufficiency after hydrocortisone withdrawal. The patient was treated with diet therapy alone, and maintained good glycemic control. However, the patient still showed a diabetic pattern in an oral glucose tolerance test. It seems that the existence of PCS in addition to the underlying type 2 diabetes mellitus contributed to aggravation of blood glucose levels.
    [Show full text]