Races of Maize in Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Races of Maize in Colombia NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 510 RACES OF MAIZE IN COLOMBIA L. M. Roberts, U. J. Grant, Ricardo Ramirez E., W. H. Hatheway and D. L. Smith in collaboration with Paul C. Mangelsdorf Publication 51 O NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1957 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES-NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Merle T. Jenkins William L. Brown Paul C. Mangelsdorf C. O. Erlanson G. H. Stringfield Claud L. Horn Paul Weatherwax Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS-NRC Publication 453 I957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E. J. Wellhausen, Alejandro Fuentes O. and Antonio Hernandez Corzo I in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 51 I 1957 Price $1.50 Previously published by the Bussey Institution, Harvard University, in 1952: RACES OF MAIZE IN MEXICO E. J. Wellhausen, L. M. Roberts and E. Hernandez X. in collaboration with Paul C. Mangelsdorf Library of Congress Card Catalog Number: 57-60039 Price $1.50 TABLE OF CONTENTS Page ACKNOWLEDGMENTS...................................................................... v INTRODUCTION.............................................................................. 1 GEOGRAPHYAND CLIMATEOF COLOMBIA.................................... 3 COLOMBIANINDIAN GROUPS AND THEIR AGRICULTURE.............. 7 THEANTIQUITY OF MAIZEIN COLOMBIA.................................... 9 WHEREMAIZE IS GROWN IN COLOMBIA...................................... 11 FACTORSINVOLVED IN THE EVOLUTIONOF MAIZE IN COLOMBIA 13 Hybridization between Races ............................................ 14 Hybridization with Teosinte-contaminated Maize .......... 15 Possible Hybridization with Tripsacum ............................ 16 COLLECTINGPROCEDURES ............................................................ 18 IDENTIFYINGTHE RACES ...................................... CHARACTERSUSED IN CLASSIFICATION........................................ 20 Vegetative Characters of the Plant .................................... 21 Characters of the Tassel ...................................................... 24 Characters of the Ear .......................................................... 25 Physiological, Genetic and Cytological Characters .......... 29 DESCRIPTIONOF COLOMBIANRACES ............................................ 31 Primitive Races ............... ................................................. 32 Pollo .................................................................................. 33 Pira .................................................................................... 38 Races Probably Introduced ................................................ 40 Pira Naranja ...................................................................... 42 Clavo ................................................................................ 44 Güirua .............................................................................. 48 Maíz Dulce ................................................................ Maíz Harinoso Dentado .................................................. 50 Cariaco .............................................................................. 53 PAGE Andaquí ............................................................................ 57 Imbricado ........................................................................ 59 Sabanero .......................................................................... 62 Colombian Hybrid Races .................................................... 71 Cabuya .............................................................................. 71 Montaña .......................................................................... 75 Capio ................................................................................. 80 Amagaceño ...................................................................... 84 Común .............................................................................. 88 Yucatán ............................................................................ 95 Cacao ................................................................................ 98 Costeño ............................................................................ 103 Negrito .............................................................................. 107 Puya .................................................................................. 109 Puya Grande .................................................................... 114 Chococeño ........................................................................ 116 THEVALUE OF THE MAIZECOLLECTIONS .................................... 120 SUMMARY...................................................................................... 122 LITERATURECITED ........................................................................ 123 APPENDIX ...................................................................................... 127 iv ACKNOWLEDGMENTS We wish to express our grateful appreciation to all who have contributed to the preparation of this monograph. We could not have reached the conclusions here presented, and for which we accept complete responsibility, without having had at our com- mand the collections of maize from Colombia and the neighbor- ing countries of South America, and the thousands of notes and measurements which have been assembled over a period of five years through the labors of many dedicated workers. The following Ingenieros Agrónomos merit special mention for their assistance in collecting and summarizing the data on which this study is based: Ing. Eduardo Chavarriaga M., who participated in the program in its early stages, has generously continued to give us the benefit of his years of experience in working with Colombian maize. Ing. Emilio A. Yepes Y. was primarily responsible for the ear and plant data on the highland collections and for the preliminary classification of the highland races. Ings. Manuel Torregroza C., Bertulfo Peña V. and Efrain Díaz B. assembled the data on the lowland collections at Mede- llín and assisted in their classification. Ings. Roberto Astralaga R. and Daniel Sarria V. took notes on the IowIand collections grown at Palmira. Both Ing. Torregroza and Ing. Sarria wrote theses on the characteristics of lowland races. Ings. Clímaco Cassalett D. and Libardo Escobar R. grew the lowland collec- tions at Montería. Ing. Estela Escudero M. summarized many of the ear and plant data and helped with the diagrams and graphs. Ings. Daniel Varela A. and Rosendo Chamorro M. gave much of their time to taking notes and making the pollinations required in renewing the collections. Many students from the Facultad de Agronomía at Medellín devoted their spare hours to assisting the Ingenieros Agrónomos. Sr. Victor Manuel Patiño R. served as the principal field col- lector from 1950 until 1955, and it was largely due to his diligent efforts that such a thorough job was done of bringing together V vi ACKNOWLEDGMENTS the collections from Colombia, Venezuela, Ecuador, Peru, Chile and Bolivia. He was ably aided in this work by Sr. Pablo E. Daza B. who has also been of great assistance in organizing materials for study in the laboratory and in receiving, cataloguing and storing collections. We cannot be too grateful to the agri- cultural workers in this and other countries who gave the collec- tors their enthusiastic and effective help and to the thousands of individual farmers who allowed the .collectors to enter fields and who willingly contributed ears of their maize and eagerly told all they knew about it. The collecting work was greatly expanded and expedited, especially in the neighboring countries in the Andean region, by financial grants from the International Cooperation Administra- tion to the National Academy of Sciences-the National Research Council of the United States of America. Grateful acknowledgment is made to Dr. Luis Duque Gómez and Ing. Agr. Daniel Mesa B. for their interest and invaluable assistance, especially in connection with the review of the litera- ture on archaeology, ethnology and linguistics related to the problem. We wish especially to thank Mr. John Paxson who made some of the chromosome-knob counts; Mrs. P. C. Mangelsdorf who studied the internal characteristics of the ears; Mrs. U. J. Grant who typed the final manuscript; Sr. Rafael Rodriguez L. who made the photographs, maps and some of the diagrams; Srta. Nubia Osorio C., Srta. Eloisa Rivera E. and Srta. Elvia Quiceno A. who did the typing of first drafts and tables and who attended efficiently and cheerfully to innumerable details connected with this work. Finally, the authors wish to express their deep gratitude to the Rockefeller Foundation and especially to its Director for Agri- culture, Dr. J. George Harrar, and to the Colombian Ministry of Agriculture for their constant interest, encouragement and sup- port, without which this study could not have been completed. RACES OF MAIZE IN COLOMBIA L. M. Roberts,1 U. J. Grant, Ricardo Ramirez E., W. H. Hatheway and D. L. Smith in collaboration with Paul C. Mangelsdorf INTRODUCTION Early in 1950 the Colombian Ministry of Agriculture, seeking to improve the basic food plants of the country, established, in cooperation with the Rockefeller Foundation, a program of corn
Recommended publications
  • Races of Maize in Brazil and Other Eastern South American Countries
    RACES OF MAIZE IN BRAZIL AND OTHER EASTERN SOUTH AMERICAN COUNTRIES F. G Brieger J. T. A. Gurgel E. Paterniani A. Blumenschein M. R. Alleoni NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 593 Funds were provided for this publication by a contract between the National Academy of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made for the work of the Committee on Preservation of Indigenous Strains of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BRAZIL AND OTHER EASTERN SOUTH AMERICAN COUNTRIES F. G. Brieger, J. T. A. Gurgel, E. Paterniani, A. Blumenschein, and M. R. Alleoni Publication 593 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1958 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS - NRC Publication 4.53 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA L. M. Roberts, U. J. Grant, Ricardo Ramirez E., W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E. J. Wellhausen, Alejandro Fuedes O., and Antonio Hernandez Corzo in collaboration with Paul C.
    [Show full text]
  • Different Types of Corn There a Various Types of Corn and They All Have Different Purposes and Distinguished Traits
    Different Types of Corn There a various types of corn and they all have different purposes and distinguished traits. Read about the 5 different types of corn and write a 5 paragraph essay on what type of corn you would want to grow. Make sure you do your research! Dent Corn: This type of corn is often used for livestock feeds, industrial products, and as well as used to make processed foods. Another name for dent corn is “Field Corn”. This type of corn is mostly grown in the United States. This corn is a mix of hard and soft starches that become indented when the corn dries out. Flint Corn: Also known as “Indian Corn” is very similar to Dent Corn. They have primarily the same purpose as dent corn, but in the United States its main purpose is decoration. Flint Corn is primarily grown in Central and South America. It has a hard outer shell and the kernels are a variety of colors from red to white. Popcorn: Popcorn is a type of Flint Corn, although it has it has different size, shape, starch level, and moisture content. It has a soft starchy center surrounded by a very hard exterior shell. When popcorn is heated, the natural moisture inside the shell turns into steam and builds up enough pressure until it explodes. Sweet Corn: Also known as “corn on the cob”. This type of corn you will find at your summer BBQ’s and you love to enjoy it with a burger on a hot summer day. This type of corn can be canned or frozen for future consumption.
    [Show full text]
  • Urban Climate in Urban Design How Land Use Patterns and Building Types Influence the Urban Comfort
    Urban climate in urban design How land use patterns and building types influence the urban comfort ABSTRACT This paper will argue the importance of Another factor that is often neglected is consider urban climate in the urban the land use pattern -morphology- that spatial quality, improving urban comfort creates the public space. Basically in the public spaces. The main topics there are three main land use patterns taken into consideration were the land in Medellin, Colombia, that influence use patterns and the building types. the character of the public spaces they The role of the architect here takes are: importance in the way to get a sustaintable future. i) Traditional: Courtyard houses ("Indian" laws) ii) Planned: Rowhouses (modern INTRODUCTION pattern) iii)lnformal invasion of land by squat The climatic behavior in any urban ters (transit step). space depends on many factors such as surrounding vegetation, During the architectural design process, the urban furniture -lamps, and benches. building's orientation and the size of roads Traffic signals, small commercial sites, should be taken into account, but most of the time the street orientation is not considered. etc- , the orientation of the space, other There are very wonderful examples in this climatic conditions such as solar radia- matter in traditional architecture, in Mompox, tion and wind direction and speed. located in Magdalena river bank, with hot and Also the shape of the buildings, their humid climate, where the orientation of the height, materials and the width of the streets give the public space very efficient street. climatic conditions all day round. Arquinotas.
    [Show full text]
  • Colombia Climate Risk Country Profile
    Climate Risk and Adaptation Country Profile April 2011 Key to Map Symbols Capital N !( City Barranquilla Roads Santa Marta !( !( River Valledupar Cartagena !( !( Lake Elevation Sincelejo !( Value High : 7088 Monteria !( Low : -416 Terrestrial Biomes !(Cucuta Tropical Broadleaf Forest Tropical Savanna Rio Magdalena !( Rio Atrato Bucaramanga Medellin !( Manizales Rio Tomo !( Rio Meta Pereira !( Bogota !( !( Rio Vichada Armenia Ibague !( Villavicencio !( Cali !( Neiva Rio Guaviare Rio Inirida !( Pasto Rio Vaupes Rio Apaporis Rio Caqueta 0 125 250 500 Kilometers Vulnerability, Risk Reduction, and Adaptation to CLIMATE Climate Change DISASTER RISK ADAPTATION REDUCTION COLOMBIA Climate Change Team ENV Climate Risk and Adaptation Country Profile Colombia COUNTRY OVERVIEW Colombia encompasses an area of more than 1.1 million square kilometers and is the only country in South America with both a Caribbean and Pacific coastline. With an estimated population of 44.5 million, Colombia is the third most populous country in Latin America.1 Even though Colombia is ranked 77th in the Human Development Index and has an upper middle-income country status and annual GDP of 234 billion USD2, it has one of the highest levels of inequality in the world – 52.6 percent of the total population live below the poverty line and this figure reaches 69 percent in rural areas.3 Colombia has one of the highest rates of internally displaced people (IDP) in the world due to civil conflicts, leaving as many as 3.7 million especially vulnerable to climate change.4 Key Sectors The majority of the population resides in two areas: the elevated Andes, where water shortages and land degradation already pose a threat, and the coastal and Agriculture and Livestock insular areas, where the expected increase in sea level and floods will affect human Water Resources settlements and economic activities.
    [Show full text]
  • Origin of Corn Belt Maize and Its Genetic Significance
    EDGAR ANDERSON Missouri Botanical Garden and WILLIAM L. BROWN Pioneer Hybrid Corn Company Chapter 8 Origin of Corn Belt Maize and Its Genetic Significance Several ends were in view when a general survey of the races and varieties of Zea mays was initiated somewhat over a decade ago (Anderson and Cutler, 1942). Maize, along with Drosophila, had been one of the chief tools of mod­ ern genetics. If one were to use the results of maize genetics most efficiently in building up general evolutionary theories, he needed to understand what was general and what was peculiar in the make-up of Zea mays. Secondly, since maize is one of the world's oldest and most important crops, it seemed that a detailed understanding of Zea mays throughout its entire range might be useful in interpreting the histories of the peoples who have and are using it. Finally, since maize is one of our greatest national resources, a survey of its kinds might well produce results of economic importance, either directly or indirectly. Early in the survey it became apparent that one of the most significant sub-problems was the origin and relationships of the common yellow dent corns of the United States Corn Belt. Nothing exactly like them was known elsewhere in the world. Their history, though embracing scarcely more than a century, was imperfectly recorded and exasperatingly scattered. For some time it seemed as if we might be able to treat the problem only inferentially, from data derived from the inbred descendants of these same golden dent corns. Finally, however, we have been able to put together an encouragingly complete history of this important group of maize varieties, and to confirm our historical research with genetical and cytological evidence.
    [Show full text]
  • NOF Floriani Info Sheet.Pdf
    Nick’s Organic Farm Potomac and Buckeystown, MD www.nicksorganicfarm.com ORGANIC RED FLORIANI “Spin Rossa della Valsugana” Whole-Grain Heritage Flint Corn—GMO-Free ~ Ideal for Polenta and Cornbread ~ Keep refrigerated The Story of Floriani Red Corn Originally from the Americas hundreds of years ago, “Spin Rossa della Valsugana" or “Spiny Red from the Valley of Sugana” probably arrived in Italy in the 16th century via Spain, as European explorers brought plants and animals home. Over the centuries, this Native American red flint corn adapted to the climate of northern Italy in the foothills of the Alps. The plants are open pollinated, in nature, uncontrolled by hybrid techniques, thus allowing for a wide range of genetic diversity to arise. Farmers selected which seeds to keep based on their good flavor and palatability, red color, and pointed kernels, while the plants developed an ability to germinate and mature in the cool Alpine climate. This special red corn was reintroduced to the Americas around 2008, when William Rubel, a food historian and writer, visited Italy and brought some back. Coordinating with farmers across the United States, Rubel was able to test it in various locations, effectively returning it to this side of the Atlantic. The farmers decided on the name “Floriani Red,” after the Italian family who gave Rubel the seeds. Similar efforts to revitalize red flint corns on a larger scale are also taking place today in northern Italy. This Floriani Red corn is particularly important because it is a “landrace,” that is, a traditionally farmed, locally adapted variety with high genetic diversity.
    [Show full text]
  • Zea-Amaizing - Some Facts About Corn
    Zea-amaizing - some facts about Corn Corn (Zea maize) as we know it today would There are many kinds of corn but the most not exist if humans hadn't cultivated and common types are: Flint corn, also known as developed it. It is a plant that does not grow Indian corn, that can be red, yellow, white or naturally in the wild and can only survive if blue; Dent corn, which is a yellow or white planted and protected by humans. field corn grown for livestock and industry; Unfortunately, many varieties of corn have Sweet corn, which contains more sugar and now been damaged by "genetic pollution" is for eating; and Popcorn, which is a kind of (GMO corn). 80% of conventional corn in the Flint corn with an extra starchy center and USA is GM. For more info and action go to very hard capsule. OrganicConsumers.org/corn/index.cfm Corn is gluten-free and a cupful has 16 gm Scientists believe the indigenous peoples of of protein, 1 gm of sugar (123 gm central Mexico developed corn at least 7000 carbohydrate), 12 gm of fiber and 8 gm of fat years ago. It was started from a wild grass (1 gm of which is saturated). It contains called teosinte. The kernels were small and nine amino acids that are best were not placed close together like kernels complemented by animal protein, and is on the husked ear of modern corn. Also high in magnesium, calcium, iron, known as maize, Indians throughout North phosphorus, potassium, selenium and and South America eventually depended sodium.
    [Show full text]
  • Mari Leland Wayzata High School Medina, MN Colombia, Factor 5: Climate Volatility
    1 Mari Leland Wayzata High School Medina, MN Colombia, Factor 5: Climate Volatility Colombia: Feeding the Future and Sustaining Safe Water Despite Climate Change In the past, Colombia’s agriculture was blocked by guerrilla violence, rural displacement, and dangerous narcotic businesses. Now that Colombia has worked past those problems and established itself as a Presidential Republic (The World Factbook), a new, bigger, and more indiscriminate barrier is blocking their way: climate volatility. With a diverse geography, Colombia faces different risks throughout. But with increasing political stability, and a new drive to safeguard against a changing climate; water safety and agricultural production can be sustainable. With a population nearing 50 million (The World Factbook), Colombia is the third most populous country in Latin America (Penarredonda). Of its large population, 76.72% of Colombians live in urban settings, leaving around 23.29% to live rurally (Colombia - Urban Population). Recent years in Colombia have seen rapid urbanization, but with the end of corrupt political instability and rural isolation caused by internal conflict, it is likely more Colombians will migrate back to rural areas and farm again (Ama). Rural farming in Colombia is important; the economy has a large base in agricultural exports and overall, 37.5% of land is used for agricultural production (The World Factbook). High-value crops for Colombia include, but are not limited too, tropical fruit, coffee, and cocoa (Daniels). Not only are these crops important to Colombia, but to the world. As the world’s second-largest coffee grower, Colombia produces 13-16% of the global coffee supply and is also the worlds third largest banana exporter (Colombia - Agriculture).
    [Show full text]
  • Mining-Induced Displacement and Resettlement in Colombia
    Mining-induced displacement and resettlement in Colombia Socio-economic and cultural consequences of resettlements of campesinos and indigenous people - The case of the Cerrejón open pit mine in La Guajira Masterarbeit vorgelegt von Benedikt Hora bei Univ. Prof. Dr. Martin Coy Universität Innsbruck August 2014 Masterarbeit Mining-induced displacement and resettlement in Colombia Socio-economic and cultural consequences of resettlements of campesinos and indigenous people – The case of the Cerrejón open pit mine in La Guajira Verfasser Benedikt Hora B.Sc. Angestrebter akademischer Grad Master of Science (M.Sc.) eingereicht bei Herrn Univ. Prof. Dr. Martin Coy Institut für Geographie Fakultät für Geo- und Atmosphärenwissenschaften an der Leopold-Franzens-Universität Innsbruck Eidesstattliche Erklärung Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebene Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich an den angegebenen Quellen entnommen wurde, sind als solche kenntlich gemacht. Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister- /Master-/Diplomarbeit/Dissertation eingereicht. _______________________________ Innsbruck, August 2014 Unterschrift Contents CONTENTS Contents ................................................................................................................................................................................. 3 Preface
    [Show full text]
  • Flint Corn…From Seed to Décor
    Flint Corn…From Seed to Décor • Flint corn is often called Indian or ornamental corn. Its colorful kernels make it a popular decoration during the fall. • Flint corn kernels have a hard outer shell called the hull. Its namesake comes from flint stone, which is a strong rock used for making arro heads and fires. • Hominy and polenta are popular dishes that use flint corn as the main ingredient. • Most flint corn is grown in Central and South America. Sweet Corn…From Seed to Veggie • Farmers planted 5,600 acres of sweet corn in Indiana last year. That’s less than one percent of total corn acreage! For reference, an acre is about the size of a football field. • Sweet corn is the type of corn we eat as a vegetable—either from a can or off the cob. • Most corn varieties are harvested by a combine, but sweet corn is picked by hand. • Native Americans once used sweet corn husks as chewing gum. • Sweet corn is harvested when the ear is immature, giving the kernels a soft, milky texture. Popcorn…From Seed to Snack • Indiana ranks second in popcorn production, with 80,000 acres planted in 2012. For reference, an acre is about the size of a football field. • Before popcorn pops, the pressure in side each kernel reaches 135 pounds per square inch. • Sold at 5 cents per bag, popcorn be came an affordable and popular treat during the Great Depression. • Air popped popcorn contains only 31 calories. Dent Corn…From Seed to Feed • Imagine 6.2 million football fields full of corn! That size is equivalent to the amount of dent corn grown in Indiana last year.
    [Show full text]
  • Introduction an Experiment in Maize Processing and Charring Michele Williams University of Minnesota Departf'.Ler1t of Anthropol
    www.escholarship.org/uc/item/5p339v An Experiment in Maize Processing and Charring Michele Williams University of Minnesota Departf'.ler1t of Anthropology 1 June 1990 Introduction Maize was and still is an important food stuff in much of the New World. Maize is genetically flexible; hundreds of maize races exist adapted for many cultural uses and to an extreme range of ecological niches. Maize has served not only as food but as a religious and social symbol. The prehistoric importance of maize is illustrated in its abundance in the archaeological record. Maize appears in garbage heaps, household structures, religious structures and is even depicted on prehispanic I Peruvian pottery. Unfortunately, archaeologists working in open sites usually recover only kernel or cob fragments, rarely whole cobs. An unknown array of forces effects these isolated maize fragments before an archaeologist ever finds and analyses the remains; everything from disturbance by worms to differential deposition by humans for ceremonial purposes may occur. Therefore, reconstruction of prehistoric races of maize is very difficult. Knowing the appearance and distribution of these ancient races of maize could help us reconstruct the evolution of maize as it was mediated by humans. Many paleoethnobotanical specialists have attempted replication of archaeological maize by charring modern varieties, in order to better reconstruct the pre-charred morphology of the ancient maize by assessing the effects of charring. These experiments have been largely unsuccessful in producing undistorted, charred maize which resembles the maize typically recovered archaeologically. Toward this goal, Goette (1989) developed a method of charring maize which c~aused little kernel and cupule distortion.
    [Show full text]
  • Counting Kernels (Mean, Median, Mode and Range)
    Counting Kernels (Mean, Median, Mode and Range) Introduction Middle School Everywhere we look we see numbers: speed limit signs, gas prices, temperature for the day, and the population of a city. A set of numbers or numbers comparing more than one thing can take on a different meaning. For example, the average salary of the players on a sports team or the average class score on a math test can have various meanings. Many career fields use mean, median, mode and range to find important information that helps with understanding data and trends. Farming is one career field that uses information to help and predict corn yields in a field. Why do you think it is important for farmers to predict harvest yields? Background Information Most of the corn we grow in the U.S. is dent corn (also called field corn). While a small portion of dent corn is used for corn cereal, corn starch, corn oil and corn syrup, dent corn is a grain used mostly for livestock feed and ethanol production. You could cook and eat both sweet corn and dent corn as corn on the cob, but the dent corn won’t be as sweet and juicy. Activity This activity is designed to reinforce the concept of how to calculate mean, median, mode and range on an ear of field corn. If you have access to multiple ears, you may use them, but for this activity we will provide the data from three ears of corn. The number of kernels on an ear of corn varies depending on many factors during the growth process.
    [Show full text]