Establishing Benchmark Criteria for Single Chromosome Bacterial Genome Assembly Timothy Krause [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Transcriptional Landscape of a Rewritten Bacterial Genome Reveals Control Elements and Genome Design Principles ✉ ✉ Mariëlle J
ARTICLE https://doi.org/10.1038/s41467-021-23362-y OPEN The transcriptional landscape of a rewritten bacterial genome reveals control elements and genome design principles ✉ ✉ Mariëlle J. F. M. van Kooten 1 , Clio A. Scheidegger1, Matthias Christen1 & Beat Christen 1 Sequence rewriting enables low-cost genome synthesis and the design of biological systems with orthogonal genetic codes. The error-free, robust rewriting of nucleotide sequences can 1234567890():,; be achieved with a complete annotation of gene regulatory elements. Here, we compare transcription in Caulobacter crescentus to transcription from plasmid-borne segments of the synthesized genome of C. ethensis 2.0. This rewritten derivative contains an extensive amount of supposedly neutral mutations, including 123’562 synonymous codon changes. The tran- scriptional landscape refines 60 promoter annotations, exposes 18 termination elements and links extensive transcription throughout the synthesized genome to the unintentional intro- duction of sigma factor binding motifs. We reveal translational regulation for 20 CDS and uncover an essential translational regulatory element for the expression of ribosomal protein RplS. The annotation of gene regulatory elements allowed us to formulate design principles that improve design schemes for synthesized DNA, en route to a bright future of iteration- free programming of biological systems. 1 Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland. ✉ email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:3053 | https://doi.org/10.1038/s41467-021-23362-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23362-y e can program biological systems with DNA that is In previous work, we synthesized and assembled the rewritten Wbased on native nucleotide sequences. -
Reference Genome Sequence of the Model Plant Setaria
UC Davis UC Davis Previously Published Works Title Reference genome sequence of the model plant Setaria Permalink https://escholarship.org/uc/item/2rv1r405 Journal Nature Biotechnology, 30(6) ISSN 1087-0156 1546-1696 Authors Bennetzen, Jeffrey L Schmutz, Jeremy Wang, Hao et al. Publication Date 2012-05-13 DOI 10.1038/nbt.2196 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES Reference genome sequence of the model plant Setaria Jeffrey L Bennetzen1,13, Jeremy Schmutz2,3,13, Hao Wang1, Ryan Percifield1,12, Jennifer Hawkins1,12, Ana C Pontaroli1,12, Matt Estep1,4, Liang Feng1, Justin N Vaughn1, Jane Grimwood2,3, Jerry Jenkins2,3, Kerrie Barry3, Erika Lindquist3, Uffe Hellsten3, Shweta Deshpande3, Xuewen Wang5, Xiaomei Wu5,12, Therese Mitros6, Jimmy Triplett4,12, Xiaohan Yang7, Chu-Yu Ye7, Margarita Mauro-Herrera8, Lin Wang9, Pinghua Li9, Manoj Sharma10, Rita Sharma10, Pamela C Ronald10, Olivier Panaud11, Elizabeth A Kellogg4, Thomas P Brutnell9,12, Andrew N Doust8, Gerald A Tuskan7, Daniel Rokhsar3 & Katrien M Devos5 We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. -
Pluralibacter Gergoviae Als Spender- Oder Empfängerorganismus Gemäß § 5 Absatz 1 Gentsv
Az. 45241.0205 Juni 2020 Empfehlung der ZKBS zur Risikobewertung von Pluralibacter gergoviae als Spender- oder Empfängerorganismus gemäß § 5 Absatz 1 GenTSV Allgemeines Pluralibacter gergoviae (früher: Enterobacter gergoviae [1]) ist ein Gram-negatives, fakultativ anaerobes, peritrich begeißeltes, stäbchenförmiges Bakterium aus der Familie der Enterobacteriaceae, das zuerst 1980 beschrieben wurde [2]. Es ist weltweit verbreitet und wurde aus klinischen Proben (Blut, Urin, Sputum, Stuhl, Hautabstriche, Ohrendrainage, nicht näher beschriebene Wunden, Abszesse, Lunge, Niere) sowie aus dem Darm eines Roten Baumwollkapselwurms, Wasserproben und Kosmetikprodukten isoliert [2–7]. Das Überleben in Kosmetikprodukten wird dadurch ermöglicht, dass P. gergoviae eine hohe Toleranz gegen Konservierungsmittel wie Benzoesäure und Parabenen aufweist [8]. Aufgrund dieser Toleranz ist P. gergoviae in der Vergangenheit mehrfach als mikrobielle Verunreinigung in Kosmetikprodukten aufgetreten, die daraufhin zurückgerufen werden mussten [9]. Im klinischen Kontext tritt P. gergoviae vergleichsweise selten als Krankheitserreger auf. Das Bakterium löst vor allem bei Immunkompromittierten Infektionen aus, die tödlich verlaufen können. Es verursachte Harnwegsinfektionen oder Infektionen der Operationswunde bei Empfängern von Nierentransplantaten [10], mehrere Sepsisfälle auf einer Neugeborenenstation, von denen die Mehrzahl Frühgeborene betrafen [3], und führte zu einem Septischen Schock bei einem Leukämie-Patienten [11]. Bei Immunkompetenten wurden eine Sepsis -
Službeni List Grada Subotice
POŠTARINA PLA ĆENA TISKOVINA KOD POŠTE 24000 SUBOTICA SLUŽBENI LIST GRADA SUBOTICE BROJ: 22 GODINA: XLVII DANA:25. maj 2011. CENA: 87,00 DIN. Na osnovu člana 22. i člana 26. Odluke o mesnim zajednicama (pre čiš ćeni tekst) («Službeni list Grada Subotica», broj 17/2009- pre čiš ćeni tekst i 26/2009) i člana 24. Uputstva za sprovo đenje izbora za članove skupština mesnih zajednica («Službeni list Grada Subotica», broj 12/2011), Izborna komisija grada Subotice, na sednici održanoj dana 25. maja 2011. godine, donela je ZBIRNU IZBORNU LISTU KANDIDATA ZA IZBOR ČLANOVA SKUPŠTINE MESNE ZAJEDNICE ALEKSANDROVO I Zbirna izborna lista kandidata za izbor članova Skupštine Mesne zajednice Aleksandrovo koji se održava 05. juna 2011. godine sastoji se od slede ćih izbornih lista sa slede ćim kandidatima: 1.) Naziv izborne liste: DEMOKRATSKA STRANKA – BOŽIDAR KRSTI Ć Podnosilac izborne liste: Demokratska stranka Kandidati: 1. Božidar Krsti ć, 1953., elektroinženjer, Subotica, Vladimira Rolovi ća 22 2. Danijel Horvat, 1984., dipl. ekonomista, Subotica, Jovana Pa čua 43 3. Jadranka Vukovi ć, 1957., maturant gimnazije, Subotica, Aksentija Marodi ća 62 4. Slobodan Bukvi ć, 1974., matemat. program. sarad., Subotica, Josipa Lihta 13 5. Vlado Nim čevi ć, 1964., poljoprivredni tehni čar, Subotica, Kameni čka 16 6. Ljiljana Majlat, 1962., ekonomski tehni čar, Subotica, Josipa Lihta 64 7. Dragoljub Vesi ć, 1942., penzioner, Subotica, Trg Paje Jovanovi ća 3 8. Savo Mar četi ć, 1961., knjigovo đa, Subotica, Vojislava Ili ća 67 9. Judit Radakov, 1969., medicinski tehni čar-sestra, Subotica, Josipa Lihta 54 10. Vjekoslav Šar čevi ć, 1984., student, Subotica, Jelene Čovi ć 69 11. -
CATALOGO GENERALE - Listino Prezzi 2020 2021 Chromart CATALOGOTERRENI GENERALE Listinocromogeni Prezzi 2021 - 2022 Per La Microbiologia Industriale
Microbiologia Microbiologia Microbiologia Microbiologia Microbiologia Microbiologia CATALOGO GENERALE - Listino Prezzi 2020 2021 CATALOGO ChromArt CATALOGOTERRENI GENERALE ListinoCROMOGENI Prezzi 2021 - 2022 Per la Microbiologia Industriale Microbiologia Clinica e Industriale Ph: A. Geraci Microbiologia Clinica e Industriale Terreni cromogeni Rev. 02/2021 per l’isolamento e l’identificazione dei principali patogeni ed indicatori fecali negli alimenti, mangimi ed acque. Biolife Biolife ItalianaBiolife srl - VItalianaiale Monza srl - 272Viale 20128 Monza Milano272 20128 - Tel. 02Milano 25209.1 - Tel. 02- www 25209.1.biolifeitaliana.i - www.biolifeitaliana.it t Biolife Italiana srl - Viale Monza 272 20128 Milano - Tel. 02 25209.1 - www.biolifeitaliana.it t .biolifeitaliana.i www - 25209.1 02 l. Te - Milano 20128 272 Monza iale V - l sr Italiana Biolife CONDIZIONI GENERALI DI VENDITA PREZZI I prezzi segnati nei nostri listini si intendono Iva esclusa e sono comprensivi di imballo normale e spedizione con vettori con noi convenzionati. Gli imballi speciali e/o refrigerati saranno addebitati al costo. Le spedizioni con vettori scelti dal cliente saranno a carico di quest’ultimo. L’IVA (Imposta sul Valore Aggiunto) è sempre a carico del Committente nella misura di legge. ORDINI Gli ordini devono essere formulati per iscritto e verranno evasi rispettando le unità di confezioni indicate nel listino. Per evitare errori raccomandiamo di indicare sempre negli ordini il numero di codice e la denominazione di ciascun articolo nonché la quantità richiesta. È nostro diritto accettare, annullare e procrastinare in tutto o in parte ordini a seguito di sopravvenute impossibilità da parte nostra, dei nostri fornitori e dei vettori. Tali cause ci sollevano da ogni obbligo precedentemente assunto con l’accettazione dell’ordine. -
2021 ECCMID | 00656 in Vitro Activities of Ceftazidime-Avibactam and Comparator Agents Against Enterobacterales
IHMA In Vitro Activities of Ceftazidime-avibactam and Comparator Agents against Enterobacterales and 2122 Palmer Drive 00656 Schaumburg, IL 60173 USA Pseudomonas aeruginosa from Israel Collected Through the ATLAS Global Surveillance Program 2013-2019 www.ihma.com M. Hackel1, M. Wise1, G. Stone2, D. Sahm1 1IHMA, Inc., Schaumburg IL, USA, 2Pfizer Inc., Groton, CT USA Introduction Results Results Summary Avibactam (AVI) is a non-β- Table 1 Distribution of 2,956 Enterobacterales from Israel by species Table 2. In vitro activity of ceftazidime-avibactam and comparators agents Figure 2. Ceftazidime and ceftazidime-avibactam MIC distribution against 29 . Ceftazidime-avibactam exhibited a potent lactam, β-lactamase inhibitor against Enterobacterales and P. aeruginosa from Israel, 2013-2019 non-MBL carbapenem-nonsusceptible (CRE) Enterobacterales from Israel, antimicrobial activity higher than all Organism N % of Total mg/L that can restore the activity of Organism Group (N) %S 2013-2019 comparator agents against all Citrobacter amalonaticus 2 0.1% MIC90 MIC50 Range ceftazidime (CAZ) against Enterobacterales (2956) 20 Enterobacterales from Israel (MIC90, 0.5 Citrobacter braakii 5 0.2% Ceftazidime-avibactam 99.8 0.5 0.12 ≤0.015 - > 128 Ceftazidime Ceftazidime-avibactam organisms that possess Class 18 mg/L; 99.8% susceptible). Citrobacter freundii 96 3.2% Ceftazidime 70.1 64 0.25 ≤0.015 - > 128 A, C, and some Class D β- Cefepime 71.8 > 16 ≤0.12 ≤0.12 - > 16 16 . Susceptibility to ceftazidime-avibactam lactmase enzymes. This study Citrobacter gillenii 1 <0.1% Meropenem 98.8 0.12 ≤0.06 ≤0.06 - > 8 increased to 100% for the Enterobacterales Amikacin 95.4 8 2 ≤0.25 - > 32 14 examined the in vitro activity Citrobacter koseri 123 4.2% when MBL-positive isolates were removed Colistin (n=2544)* 82.2 > 8 0.5 ≤0.06 - > 8 12 of CAZ-AVI and comparators Citrobacter murliniae 1 <0.1% Piperacillin-tazobactam 80.4 32 2 ≤0.12 - > 64 from analysis. -
Y Chromosome Dynamics in Drosophila
Y chromosome dynamics in Drosophila Amanda Larracuente Department of Biology Sex chromosomes X X X Y J. Graves Sex chromosome evolution Proto-sex Autosomes chromosomes Sex Suppressed determining recombination Differentiation X Y Reviewed in Rice 1996, Charlesworth 1996 Y chromosomes • Male-restricted • Non-recombining • Degenerate • Heterochromatic Image from Willard 2003 Drosophila Y chromosome D. melanogaster Cen Hoskins et al. 2015 ~40 Mb • ~20 genes • Acquired from autosomes • Heterochromatic: Ø 80% is simple satellite DNA Photo: A. Karwath Lohe et al. 1993 Satellite DNA • Tandem repeats • Heterochromatin • Centromeres, telomeres, Y chromosomes Yunis and Yasmineh 1970 http://www.chrombios.com Y chromosome assembly challenges • Repeats are difficult to sequence • Underrepresented • Difficult to assemble Genome Sequence read: Short read lengths cannot span repeats Single molecule real-time sequencing • Pacific Biosciences • Average read length ~15 kb • Long reads span repeats • Better genome assemblies Zero mode waveguide Eid et al. 2009 Comparative Y chromosome evolution in Drosophila I. Y chromosome assemblies II. Evolution of Y-linked genes Drosophila genomes 2 Mya 0.24 Mya Photo: A. Karwath P6C4 ~115X ~120X ~85X ~95X De novo genome assembly • Assemble genome Iterative assembly: Canu, Hybrid, Quickmerge • Polish reference Quiver x 2; Pilon 2L 2R 3L 3R 4 X Y Assembled genome Mahul Chakraborty, Ching-Ho Chang 2L 2R 3L 3R 4 X Y Y X/A heterochromatin De novo genome assembly species Total bp # contigs NG50 D. simulans 154,317,203 161 21,495729 -
In Vitro Activities of Aztreonam-Avibactam and Ceftazidime-Avibactam Against Less Commonly Encountered Gram-Negative Bacteria Co
IHMA, Inc. In Vitro Activities of Aztreonam-avibactam and Ceftazidime-avibactam Against Less Commonly Encountered Gram-Negative 2122 Palmer Drive P1155 Schaumburg, IL 60173 USA Bacteria Collected During the ATLAS Global Surveillance Program 2012-2017 www.ihma.com M. Hackel1, G Stone2, B. deJonge3, D. Sahm1 1IHMA, Inc., Schaumburg IL, USA 2Pfizer Inc., Cambridge, MA USA 3Pfizer Inc., Cambridge MA, USA Introduction Results Results While antimicrobial susceptibility Table 1. Less commonly isolated gram-negative species Table 2. In vitro activity of ceftazidime-avibactam, aztreonam-avibactam and comparators against less commonly encountered gram-negative bacteria collected in 2012-2017 . ATM-AVI and CAZ-AVI showed MIC90 values from the ATLAS Global Surveillance Program 2012-2017 AZT-AVI CAZ-AVI CST* MEM TGC TZP LVX profiles have been well described in Organism N ranging from ≤0.015 to 0.5 mg/L and 0.06 to 1 %S MIC Range %S MIC Range %S MIC Range %S MIC Range %S MIC Range %S MIC Range %S MIC Range more common members of the 90 90 90 90 90 90 90 mg/L, respectively, against members of the Organism N Percent of total Acinetobacter nosocomialis 183 na 64 2 - >128 na 32 1 - >128 96.8 2 0.25 - >8 79.8 > 8 0.015 - >8 na 1 0.06 - 4 na > 128 ≤0.25 - >128 76.5 >4 0.06 - >8 Enterobacterales, notably Escherichia Enterobacterales (Table 2). 98.3% were coli and Klebsiella pneumoniae, and in Acinetobacter nosocomialis 183 5.1 Acinetobacter pittii 402 na 64 2 - >128 na 16 0.5 - >128 99.2 2 0.12 - 4 92.3 1 ≤0.06 - >8 na 1 0.03 - >8 na 64 ≤0.25 - >128 88.6 2 0.06 - >8 Citrobacter spp. -
The Bacteria Genome Pipeline (BAGEP): an Automated, Scalable Workflow for Bacteria Genomes with Snakemake
The Bacteria Genome Pipeline (BAGEP): an automated, scalable workflow for bacteria genomes with Snakemake Idowu B. Olawoye1,2, Simon D.W. Frost3,4 and Christian T. Happi1,2 1 Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria 2 African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria 3 Microsoft Research, Redmond, WA, USA 4 London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom ABSTRACT Next generation sequencing technologies are becoming more accessible and affordable over the years, with entire genome sequences of several pathogens being deciphered in few hours. However, there is the need to analyze multiple genomes within a short time, in order to provide critical information about a pathogen of interest such as drug resistance, mutations and genetic relationship of isolates in an outbreak setting. Many pipelines that currently do this are stand-alone workflows and require huge computational requirements to analyze multiple genomes. We present an automated and scalable pipeline called BAGEP for monomorphic bacteria that performs quality control on FASTQ paired end files, scan reads for contaminants using a taxonomic classifier, maps reads to a reference genome of choice for variant detection, detects antimicrobial resistant (AMR) genes, constructs a phylogenetic tree from core genome alignments and provide interactive short nucleotide polymorphism (SNP) visualization across -
Horizontal Gene Flow Into Geobacillus Is Constrained by the Chromosomal Organization of Growth and Sporulation
bioRxiv preprint doi: https://doi.org/10.1101/381442; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Horizontal gene flow into Geobacillus is constrained by the chromosomal organization of growth and sporulation Alexander Esin1,2, Tom Ellis3,4, Tobias Warnecke1,2* 1Molecular Systems Group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom 2Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom 3Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom 4Department of Bioengineering, Imperial College London, London, United Kingdom *corresponding author ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/381442; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Horizontal gene transfer (HGT) in bacteria occurs in the context of adaptive genome architecture. As a consequence, some chromosomal neighbourhoods are likely more permissive to HGT than others. Here, we investigate the chromosomal topology of horizontal gene flow into a clade of Bacillaceae that includes Geobacillus spp. Reconstructing HGT patterns using a phylogenetic approach coupled to model-based reconciliation, we discover three large contiguous chromosomal zones of HGT enrichment. -
Lawrence Berkeley National Laboratory Recent Work
Lawrence Berkeley National Laboratory Recent Work Title 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Permalink https://escholarship.org/uc/item/7cx5710p Journal Nature biotechnology, 35(7) ISSN 1087-0156 Authors Mukherjee, Supratim Seshadri, Rekha Varghese, Neha J et al. Publication Date 2017-07-01 DOI 10.1038/nbt.3886 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESOU r CE OPEN 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life Supratim Mukherjee1,10, Rekha Seshadri1,10, Neha J Varghese1, Emiley A Eloe-Fadrosh1, Jan P Meier-Kolthoff2 , Markus Göker2 , R Cameron Coates1,9, Michalis Hadjithomas1, Georgios A Pavlopoulos1 , David Paez-Espino1 , Yasuo Yoshikuni1, Axel Visel1 , William B Whitman3, George M Garrity4,5, Jonathan A Eisen6, Philip Hugenholtz7 , Amrita Pati1,9, Natalia N Ivanova1, Tanja Woyke1, Hans-Peter Klenk8 & Nikos C Kyrpides1 We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. -
Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).