Ether Bridge Formation and Chemical Diversification in Loline Alkaloid Biosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Ether Bridge Formation and Chemical Diversification in Loline Alkaloid Biosynthesis University of Kentucky UKnowledge Theses and Dissertations--Plant Pathology Plant Pathology 2014 Ether Bridge Formation and Chemical Diversification in Loline Alkaloid Biosynthesis Juan Pan University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Pan, Juan, "Ether Bridge Formation and Chemical Diversification in Loline Alkaloid Biosynthesis" (2014). Theses and Dissertations--Plant Pathology. 14. https://uknowledge.uky.edu/plantpath_etds/14 This Doctoral Dissertation is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant Pathology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Juan Pan, Student Dr. Christopher L. Schardl, Major Professor Dr. Lisa J. Vaillancourt, Director of Graduate Studies ETHER BRIDGE FORMATION AND CHEMICAL DIVERSIFICATION IN LOLINE ALKALOID BIOSYNTHESIS DISSERTATION A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture, Food and Environment at the University of Kentucky By Juan Pan Lexington, Kentucky Director: Dr. Christopher L. Schardl, Professor Plant Pathology Lexington, Kentucky 2014 Copyright © Juan Pan 2014 ABSTRACT OF DISSERTATION ETHER BRIDGE FORMATION AND CHEMICAL DIVERSIFICATION IN LOLINE ALKALOID BIOSYNTHESIS Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids. Through gene complementation of a natural lolO mutant and comparison of LOL clusters in strains with different loline alkaloid profiles, I found that lolO, predicted to encode a 2-oxoglutarate-dependent nonheme iron (2OG/Fe) dioxygenase, is required in formation of the ether bridge. Through application of isotopically labeled compound to Epichloë uncinata culture, I established that exo-1-acetamidopyrrolizidine (AcAP) and N- acetylnorloline (NANL) are true pathway intermediates. Application of AcAP to yeast expressing lolO resulted in production of NANL, establishing that LolO is sufficient to catalyze this unusual oxygenation reaction. After ether formation, modifications on the 1-amino group give loline, N- methylloline (NML), N-formylloline (NFL) and N-acetylloline (NAL). A double knockout of lolN, predicted to encode an acetamidase, and lolM, predicted to encode a methyltransferase, produced only NANL. Complementation of the double knockout with wild-type lolN and lolM restored the loline alkaloid profile. These results indicate that LolN is involved in deacetylating NANL to produce norloline, which is then modified to form the other lolines. Crude protein extract of a yeast transformant expressing LolM converted norloline to loline and NML, and loline to NML, supporting the hypothesis that LolM functions as a methyltransferase in the loline-alkaloid biosynthesis pathway. The alkaloid NAL was observed in some but not all plants symbiotic with Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline (NAL), indicating that a plant acetyltransferase converts loline to NAL. I further analyzed the basis for loline alkaloid diversity by comparing the LOL clusters in the Epichloë and Atkinsonella species with different loline alkaloid profiles, and found that LOL clusters changed position, orientation and gene content over their evolutionary history. Frequent, independent losses of some or all late pathway genes, lolO, lolN, lolM and lolP, resulted in diverse loline alkaloid profiles. In addition, phylogenetic analyses demonstrated transspecies polymorphism of the LOL clusters. Based on my findings, I established that in Epichloë and Atkinsonella species the ether bridge is formed on acetamidopyrrolizidine. My study of the loline alkaloid profile of Adenocarpus decorticans (Fabaceae) suggests that these plants probably use a similar strategy at least with respect to ether-bridge formation. Further diversification steps of loline alkaloids in grass-Clavicipitaceae symbiota are carried out by enzymes of both Epichloë species and the host plant. Finally, I present evidence that LOL clusters have evolved by balancing selection for chemical diversity. Keywords: loline alkaloids, Epichloë, ether bridge, biosynthesis, chemical diversification _________ Juan Pan ______________ Student’s Signature _________6/25/2014______________ Date ETHER BRIDGE FORMATION AND CHEMICAL DIVERSIFICATION IN LOLINE ALKALOID BIOSYNTHESIS By Juan Pan Dr. Christopher L. Schardl _____________________________ Director of Dissertation Dr. Lisa J. Vaillancourt _____________________________ Director of Graduate Studies 6/25/2014 _____________________________ Date ACKNOWLEDGEMENTS The last four and half years in the University of Kentucky has been both short and long, and there are days of joy and days of frustration, but I am only sure that it has been rewarding. I’d like to take the chance to acknowledge my advisor Dr. Christopher L. Schardl, who has always been patient, supportive, enthusiastic, and inspiring. He showed me a way I would like myself to work with my students if one day I am to take the route of being a faculty; his way of treating a student with such respect as he does with a decent scientist, being patient with even the seemingly silly question or easiest concepts and to lead the discussion to a deeper understanding, and to infect the student simply with his passion for his work. I also greatly appreciate Dr. Robert B. Grossman for his kind advice and help regarding the chemical side of the work I have been involved in, and Minakashi Bhardwaj in his lab for synthesizing the compounds, helping with isolations, explaining to me the chemical concepts, and the moral support as a great friend. I would also like to thank the other committee members, Dr. Mark L. Farman, Dr. Aardra Kachroo, and Dr. Steve Van Lanen for the advice and support. Also I’d like to thank my outside examiner Dr. Robert B. Houtz for his insights and help with my work. I would also like to extend my deep appreciation to Dr. Patrick J. Calie, who kindly allowed me to freely invade his bench when he was busy working in Eastern Kentucky University, and always generously shared his wisdom and kindness as a committed scientist and a great friend. I would also like to express my gratitude to Dr. Carolyn A. iii Young for generously sharing her insights and resources regarding my research, and her encouragements and friendship. I would like to thank past and present CLS lab members and lab manager for their help and support, especially Dr. Padmaja Nagabhyru, who showed me the basics of loline work and has been supportive like an elder sister. I’m thankful to John May at the ERTL of the University of Kentucky for GC-MS analysis and discussion of my work; Dr. Neil Fannin for advice on purification of loline alkaloids with TLC; Dr. Judit Pogany, Jannine Baker, Ching-kai Chuang, and Kai Xu in the laboratory of Dr. Peter Nagy, and Hexiang Luan and Wendy Havens in the laboratory of Dr. Aardra Kachroo for help with protein expression and extraction. I am also grateful for the help I got from undergraduate students, Trevor Kellen, Haley Herndon, and Julien Nolleau. I would also like to thank all the members of the Department of Plant Pathology for their support and encouragement. I would like to share this with my dear friends I’ve made in the past several years: a friend
Recommended publications
  • Tesis L Baena.Pdf
    UNIVERSIDAD DE GRANADA DEPARTAMENTO DE BOTÁNICA TESIS DOCTORAL TRATAMIENTO DE LAS BASES DE DATOS DEL HERBARIO DE LA UNIVERSIDAD DE GRANADA (GDA) COMO FUENTE PARA ESTUDIOS DE BIODIVERSIDAD: ENSAYO EN DETERMINADAS FAMILIAS DE ANGIOSPERMAS DICOTILEDÓNEAS DE LA PROVINCIA DE GRANADA (CARYOPHYLLACEAE, CISTACEAE, CRUCIFERAE, CHENOPODIACEAE, ERICACEAE, LEGUMINOSAE, PAPAVERACEAE Y RANUNCULACEAE) LAURA BAENA COBOS GRANADA 2003 HERBARIO DE LA UNIVERSIDAD DE GRANADA Editor: Editorial de la Universidad de Granada Autor: Laura Baena Cobos D.L.: Gr. 295 - 2006 ISBN: 84-338-3719-2 UNIVERSIDAD DE GRANADA DEPARTAMENTO DE BOTÁNICA TRATAMIENTO DE LAS BASES DE DATOS DEL HERBARIO DE LA UNIVERSIDAD DE GRANADA (GDA) COMO FUENTE PARA ESTUDIOS DE BIODIVERSIDAD: ENSAYO EN DETERMINADAS FAMILIAS DE ANGIOSPERMAS DICOTILEDÓNEAS DE LA PROVINCIA DE GRANADA (CARYOPHYLLACEAE, CISTACEAE, CRUCIFERAE, CHENOPODIACEAE, ERICACEAE, LEGUMINOSAE, PAPAVERACEAE Y RANUNCULACEAE) LAURA BAENA COBOS TESIS DOCTORAL GRANADA, OCTUBRE DE 2003 TRATAMIENTO DE LAS BASES DE DATOS DEL HERBARIO DE LA UNIVERSIDAD DE GRANADA (GDA) COMO FUENTE PARA ESTUDIOS DE BIODIVERSIDAD: ENSAYO EN DETERMINADAS FAMILIAS DE ANGIOSPERMAS DICOTILEDÓNEAS DE LA PROVINCIA DE GRANADA (CARYOPHYLLACEAE, CISTACEAE, CRUCIFERAE, CHENOPODIACEAE, ERICACEAE, LEGUMINOSAE, PAPAVERACEAE Y RANUNCULACEAE) Memoria que presenta la licenciada Laura Baena Cobos para aspirar al grado académico de Doctora en Ciencias Biológicas por la Universidad de Granada Laura Baena Cobos VºBº de las directoras: Fdo: Dra. Mª Concepción Morales Torres Fdo.: Dra. Carmen Quesada Ochoa TESIS DOCTORAL GRANADA, OCTUBRE DE 2003 Agradecimientos A mis queridas Concha y Carmen, mis maestras. Mujeres sabias y luchadoras donde las haya, predicáis con el ejemplo, gracias por muchísimas cosas, que queréis que os diga… me habéis visto crecer en el Herbario.
    [Show full text]
  • MEMOIRE KADA RABAH Fatima Zohra Thème Etude Comparative
    République Algérienne Démocratique et Populaire Ministère de l’Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DE TLEMCEN Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers Département d’Ecologie et Environnement Laboratoire d’Ecologie et Gestion des Ecosystèmes Naturels MEMOIRE Présentée KADA RABAH Fatima Zohra En vue de l’obtention du Diplôme de MASTER en ECOLOGIE VEGETALE ET ENVIRONNEMENT Thème Etude comparative des Fabacées de 1962 et actuellement dans la région de Tlemcen. Soutenue le 11-07-2017.devant le jury composé de : Président TABTI Nassima M.C.B Université de Tlemcen Encadreur STAMBOULI Hassiba M.C.A Université de Tlemcen Examinateur HASSANI Faïçal M.C.A Université de Tlemcen Année Universitaire : 2016 /2017 Remerciement Mes grands remerciements sont à notre Dieu qui m’a aidé et m’a donné le pouvoir, la patience et la volonté d’avoir réalisé ce modeste travail. me J’exprime ma profonde reconnaissance à M STAMBOULI- MEZIANE Hassiba – maître de conférences –, dont les conseilles et les critiquesm’ont été d’une grande aide, en suivant le déroulement de mon travail. Mr. HASSANI Faïçal; Maitre de conférence à l’Université Abou Bakr Belkaïd de Tlemcen, d’avoir accepté de juger ce travail et qu’il trouve ici toute ma sympathie. Mme TABTI Nassima ; Maître de conférences – d’avoir accepter de présider le jury de ce mémoire. Dédicaces Je dédie ce travail A mes très chérs parents qui m’on toujours soutenue malgré les difficultés du déroulement de ce travail. A mon frère : Mohammed. A mes sœurs : Wassila , Khadidja , Amina , et Marwa A Les enfants : Bouchra, Nardjesse, Meriem et Boumediene.
    [Show full text]
  • 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus
    Genetics: Published Articles Ahead of Print, published on January 16, 2005 as 10.1534/genetics.104.035972 1 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus 2 Neotyphodium uncinatum 3 4 Martin J. Spiering*, Christina D. Moon*1, Heather H. Wilkinson† and Christopher L. 5 Schardl* 6 7 *Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546- 8 0312 9 10 †Department of Plant Pathology and Microbiology, Texas A&M University, College 11 Station, Texas 77843-2132 12 13 1Present address: Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, 14 United Kingdom 15 16 Sequence data from this article have been deposited with the GenBank database under 17 accession nos. AY723749, AY723750 and AY724686. 18 2 18 Running title: Loline alkaloid gene clusters 19 20 Key words: alkaloids, biosynthesis genes, pyrrolizidines, RNA-interference, symbiosis 21 22 Corresponding author: Christopher L. Schardl, Department of Plant Pathology, 23 University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, 24 KY 40546-0312, USA. Email [email protected]; Tel 859-257-7445 ext 80730; Fax 859- 25 323-1961 26 3 26 ABSTRACT 27 Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and protect 28 the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium 29 uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline- 30 alkaloid production. Nine genes were identified in a 25-kb region of LOL-1, and 31 designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and 32 lolE-1.
    [Show full text]
  • Conservation Biology of the Last Italian Population of Cistus Laurifolius (Cistaceae): Demographic Structure, Reproductive Success and Population Genetics
    A peer-reviewed open-access journal Nature ConservationDemography, 22: 169–190 reproduction (2017) and genetics of the Italian population of Cistus laurifolius 169 doi: 10.3897/natureconservation.22.19809 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Conservation biology of the last Italian population of Cistus laurifolius (Cistaceae): demographic structure, reproductive success and population genetics Giovanni Astuti1, Francesco Roma-Marzio1, Marco D’Antraccoli1, Gianni Bedini1, Angelino Carta1, Federico Sebastiani2, Piero Bruschi3, Lorenzo Peruzzi1 1 Dipartimento di Biologia, Università di Pisa, Pisa, Italy 2 IPSP, Consiglio Nazionale delle Ricerche, Firenze, Italy 3 DISPAA, Università degli studi di Firenze, Firenze, Italy Corresponding author: Francesco Roma-Marzio ([email protected]) Academic editor: M. Kleyer | Received 25 July 2017 | Accepted 29 September 2017 | Published 20 October 2017 http://zoobank.org/48F827B9-9250-47C4-91D8-61C4BDE6FEEB Citation: Astuti G, Roma-Marzio F, D’Antraccoli D, Bedini G, Carta A, Sebastiani F, Bruschi P, Peruzzi L (2017) Conservation biology of the last Italian population of Cistus laurifolius (Cistaceae): demographic structure, reproductive success and population genetics. Nature Conservation 22: 169–190. https://doi.org/10.3897/natureconservation.22.19809 Abstract Isolated populations are usually subject to low fitness and reduced genetic diversity, both of which may negatively affect their survival and adaptive potential. Hence, these issues cannot be neglected when plan- ning conservation actions for isolated populations. The Italian population of Cistus laurifolius subsp. lau- rifolius is extremely isolated. Furthermore, it is affected by fragmentation, being constituted by a single larger subpopulation, surrounded by three much smaller subpopulations, a few hundred metres to a few kilometres apart.
    [Show full text]
  • Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants
    molecules Review Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants Sebastian Schramm, Nikolai Köhler and Wilfried Rozhon * Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; [email protected] (S.S.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2023 Academic Editor: John C. D’Auria Received: 20 December 2018; Accepted: 29 January 2019; Published: 30 January 2019 Abstract: Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals.
    [Show full text]
  • Endemism in Recently Diverged Angiosperms Is Associated with Chromosome Set Duplication
    Endemism in Recently Diverged Angiosperms Is Associated With Chromosome Set Duplication Sara Villa University of Milan: Universita degli Studi di Milano Matteo Montagna Universita degli Studi di Milano Simon Pierce ( [email protected] ) Università degli Studi di Milano: Universita degli Studi di Milano https://orcid.org/0000-0003-1182- 987X Research Article Keywords: adaptative radiation, apo-endemics, diversity creation, genome doubling, neo-endemism, speciation mechanism Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-550165/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Chromosome set duplication (polyploidy) drives instantaneous speciation and shifts in ecology for angiosperms, and is frequently observed in neo-endemic species. However, the extent to which chromosome set duplication is associated with endemism throughout the owering plants has not been determined. We hypothesised that across the angiosperms polyploidy is more frequent and more pronounced (higher evident ploidy levels) for recent endemics. Data on chromosome counts, molecular dating and distribution for 4210 species belonging to the major clades of angiosperms were mined from literature-based databases. As all clades include diploid taxa, with polyploids representing a possible ‘upper limit’ to the number of chromosomes over evolutionary time, upper boundary regression was used to investigate the relationship between the number of chromosomes and time since taxon divergence, both across clades and separately for families, with endemic and non-endemic species compared. A signicant negative exponential relationship between the number of chromosomes and taxon age was 2 evident across angiosperm clades (R adj=0.48 with endemics and non-endemics considered together, 2 2 R adj=0.46 for endemics; R adj=0.44 for non-endemics; p ≤0.0001 in all cases), which was three times stronger for endemics (decay constant=0.12, cf.
    [Show full text]
  • Intermediate Steps of Loline Alkaloid Biosynthesis
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS Jerome Ralph Faulkner University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Faulkner, Jerome Ralph, "INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS" (2011). University of Kentucky Doctoral Dissertations. 209. https://uknowledge.uky.edu/gradschool_diss/209 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION JEROME RALPH FAULKNER THE GRADUATE SCHOOL UNIVERSITY OF KENTUCKY 2011 INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS DISSERTATION A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Jerome Ralph Faulkner Lexington, Kentucky Director: Dr. Christopher L. Schardl, Professor Plant Pathology Lexington, Kentucky 2011 Copyright © Jerome Ralph Faulkner 2011 ABSTRACT OF DISSERTATION INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS Epichloë species and their anamorphs, Neotyphodium species, are fungal endophytes that inhabit cool-season grasses and often produce bioprotective alkaloids. These alkaloids include lolines, which are insecticidal and insect feeding deterrents. Lolines are exo-1- aminopyrrolizidines with an oxygen bridge between carbons 2 and 7, and are usually methylated and formylated or acetylated on the 1-amine. In previously published studies lolines were shown to be derived from the amino acids L-proline and L-homoserine.
    [Show full text]
  • Enzymes from Fungal and Plant Origin Required For
    University of Kentucky UKnowledge Chemistry Faculty Publications Chemistry 12-22-2014 Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota Juan Pan University of Kentucky, [email protected] Minakshi Bhardwaj University of Kentucky, [email protected] Padmaja Nagabhyru University of Kentucky, [email protected] Robert B. Grossman University of Kentucky, [email protected] Christopher L. Schardl University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub Part of the Chemistry Commons Repository Citation Pan, Juan; Bhardwaj, Minakshi; Nagabhyru, Padmaja; Grossman, Robert B.; and Schardl, Christopher L., "Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota" (2014). Chemistry Faculty Publications. 59. https://uknowledge.uky.edu/chemistry_facpub/59 This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota Notes/Citation Information Published in PLOS One, v. 9, no. 12, article e115590, p. 1-19. © 2014 Pan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Loline Alkaloid Production by Fungal Endophytes of Fescue Species Select for Particular Epiphytic Bacterial Microflora
    The ISME Journal (2014) 8, 359–368 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora Elizabeth Roberts and Steven Lindow Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloe¨ sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria,
    [Show full text]
  • The Role of the Testa During Development and in Establishment of Dormancy of the Legume Seed
    Tennessee State University Digital Scholarship @ Tennessee State University Agricultural and Environmental Sciences Department of Agricultural and Environmental Faculty Research Sciences 7-17-2014 The role of the testa during development and in establishment of dormancy of the legume seed Petr Smýkal Palacký University Vanessa Vernoud Institut National de la Recherche Agronomique (INRA) Matthew W. Blair Tennessee State University Aleš Soukup Charles University Richard D. Thompson Institut National de la Recherche Agronomique (INRA) Follow this and additional works at: https://digitalscholarship.tnstate.edu/agricultural-and-environmental- sciences-faculty Part of the Plant Sciences Commons Recommended Citation Smýkal Petr, Vernoud Vanessa, Blair Matthew W., Soukup Aleš, Thompson Richard D., The role of the testa during development and in establishment of dormancy of the legume seed, Frontiers in Plant Science, VOLUME 5, YEAR 2014, PAGES 351, ISSN 1664-462X. https://www.frontiersin.org/article/10.3389/ fpls.2014.00351 This Article is brought to you for free and open access by the Department of Agricultural and Environmental Sciences at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Agricultural and Environmental Sciences Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact [email protected]. REVIEW ARTICLE published: 17 July 2014 doi: 10.3389/fpls.2014.00351 The role of the testa during development and in establishment
    [Show full text]
  • Determination of Loline Alkaloids and Mycelial Biomass in Endophyte-Infected Schedonorus Pratensis by Near-Infrared Spectroscopy and Chemometrics
    microorganisms Article Determination of Loline Alkaloids and Mycelial Biomass in Endophyte-Infected Schedonorus pratensis by Near-Infrared Spectroscopy and Chemometrics Giovanni Cagnano 1,2 , Beatriz R. Vázquez-de-Aldana 3, Torben Asp 2, Niels Roulund 1, Christian S. Jensen 1 and Milton Carlos Soto-Barajas 4,* 1 DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark; [email protected] (G.C.); [email protected] (N.R.); [email protected] (C.S.J.) 2 Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, 8000 Aarhus C, Denmark; [email protected] 3 Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain; [email protected] 4 Cátedras-CONACYT, Instituto Tecnológico de Chiná, 24520 Campeche, Mexico * Correspondence: [email protected] Received: 7 March 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: Near infrared spectroscopy (NIRS) is an accurate, fast and nondestructive technique whose use in predicting forage quality has become increasingly relevant in recent decades. Epichloë-infected grass varieties are commonly used in areas with high pest pressure due to their better performances compared to endophyte-free varieties. The insect resistance of Epichloë-infected grasses has been associated with four main groups of endophyte secondary metabolites: ergot alkaloids, indole-diterpenes, lolines and peramine. Concentrations of these alkaloids are usually measured with high performance liquid chromatography or gas chromatography analysis, which are accurate methods but relatively expensive and laborious. In this paper, we developed a rapid method based on NIRS to detect and quantify loline alkaloids in wild accessions of Schedonorus pratensis infected with the fungal endophyte Epichloë uncinata.
    [Show full text]
  • Genetic Analysis of Biosynthesis and Roles of Anti-Herbivore Alkaloids Produced by Grass Endophytes
    118 Genetic Analysis of Biosynthesis and Roles of Anti-Herbivore Alkaloids Produced by Grass Endophytes C. L. Schardl, J. Wang, H. H. Wilkinson and K.-R. Chung Abstract A characteristic of seed-borne clavicipitaceous symbionts (endophytes) that mediates their mutualisms with host grasses is production of anti-herbivore metabolites. Ergot alkaloids and indolediterpenes are potent neurotoxins in vertebrates ; saturated 1- aminopyrrolizidines (lolines) and the pyrrolopyrazine alkaloid, peramine, are active against insects. All except lolines are reported to be produced in cultures of fungal endophytes free of plant material. We identified lolines in defined-medium cultures of Neotyphodium un- cinatum. We have also developed Epichloe festucae and Epichloe typhina as Mendelian genetic models to test the effects on aphids of lolines and peramine, respectively. In each case, the phenotypic difference of expression or non-expression was apparently governed by a single locus. Genotypes of E. typhina expressing peramine caused killing of greenbug aphid (Schizaphis graminum) on the host plants. Lolines were associated with killing of both greenbug and bird-cherry oat aphid (Rhopalosiphum padi). Statistically, the anti-aphid activities of the endophytes were entirely attributable to their alkaloids. Recent progress on genetic control of ergot alkaloid and indolediterpene expression holds promise for analogous tests for roles of these alkaloids in host benefits. Mendelian segregation and molecular knockouts can be used eventually to test the ecological importance of all known endophyte alkaloids in the many established endophyte effects, including increased drought tolerance, competitiveness, resistance to nematodes, and resistance to vertebrate and insect herbivores. Genetic knockouts in endophytes of genes for anti-vertebrate alkaloids will likely become an integral part of forage cultivar development.
    [Show full text]