[email protected] Contact Skype: Live:Linda 8965

Total Page:16

File Type:pdf, Size:1020Kb

Linda@Hubeijusheng.Com Contact Skype: Live:Linda 8965 Contact email: [email protected] Contact skype: live:linda_8965 Oxandrolone (Anavar) Stanozolol (Winstrol) HOT Sell Oxymetholone (Anadrol) Dianabol(Methandrostenolone) Test Base (No ester) Test Undecanoate Test Enanthate 17-methyltestosterone Test Propionate 17α-Methyl-1-Testosterone Test Phenylpropionate Oral turinabol Testosterone Test Isocaproate Turinabol Test Cypionate Mesterolone Test Sustanon 250 Fluoxymesterone Mestanolone(MDHT) Stanolone (DHT) Nandrolone Decanoate/DECA Nandrolone undecanoate Nandrolone Nandrolone Phenypropionate Nandrolone cypiontate Boldenone base Boldenone Boldenone Undecylenate(Equipoise) Boldnone cypiontate Trenbolone base Trenbolone acetate (Finaplix) Trenbolone Trenbolone enanthate (Parabolan) Trenbolone cyclohexylmethylcarbonate Methyltrienolone (Metribolone) Drostanolone Propionate (Masteron p) Drostanolone Drostanolone Enanthate (Masteron) Superdrol Powder (methyl-drostanolone) Methasterone Methenolone Methenolone Enanthate Methenolone Acetate Tibolone Dehydroepiandrosterone/DHEA Mibolerone 7-Keto- DHEA Others Methylstenbolone Triamcinolone Dehydronandrolon Finasteride L-Thyroxine, T4 Cytomel, T3 Tamoxifen Citrate (Nolvadex) DL-Aminoglutethimide 1,4,6-Androstatrien-3,17-dione Clomiphene citrate (Clomid) Anti-Estrogen (ATD) Exemestane(Aromasin) SERMs and SARMs Anastrozole (Arimidex) Letrazole/Femara/ Formestane Androstenedione Dimethazine Pro hormone Epistane (Epithio / Havoc) (Epitiostanol) Methoxygonadiene ( Max LMG) (Furazabol) Methoxydienone (Methoxygonadiene) Norandrostenedione/19-nor-4-androstene-3;Estr-4-ene-3, Orastan-A (Furazabol THP) Orastan-E (Stanozol THP) Superdrol (Methyldrostanolone) Trenavar/ Trendione/ Celtitren 1,4-AD (Boldione) (Androstadienedione) Methyl 1,4-AD (Methyl-1,4-androstadienediol) 4-Androstenediol ( 4-AD ) 6-OXO (4-Androstenetrione) 11-OXO (11-Ketotestosterone/ Adrenosterone ) 17a-Methyl-1-testosterone ( M1T) 19 Tren X (Methyldienedione) (Estra-4,9-diene-3,17-dione) Cialis (Tadalafil) Acetildenafil (Hongdenafil) Sex Enhance Viagra (Sildenafil) Yohimbine Hcl vardenafil (Levitra) Dapoxetine Benzocaine Lidocaine Procaine Tetracaine Pain Killer Phenacetin Gamma-Butyrolactone /GBL.
Recommended publications
  • Expression of Recombinant Human Androgen Receptor and Its Use for Screening Methods
    Institut für Physiologie FML Weihenstephan Technische Universität München Expression of recombinant human androgen receptor and its use for screening methods Ellinor Rose Sigrid Bauer Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. B. Hock Prüfer der Dissertation: Univ.-Prof. Dr. H. H. D. Meyer Univ.-Prof. Dr. H. Sauerwein (Rheinische Friedrich-Wilhelms-Universität Bonn) Die Dissertation wurde am 31.10.2002 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.12.2002 angenommen. Introduction Content 1. INTRODUCTION ..................................................................................................................................... 5 1.1. ENDOCRINE DISRUPTERS 5 1.2. ANDROGENS AND ANTIANDROGENS 7 1.2.1. DEFINITIONS 7 1.2.2. MODE OF ACTION 8 1.3. STRUCTURES OF ENDOCRINE DISRUPTERS 10 1.4. STRATEGIES FOR MONITORING ANDROGEN ACTIVE SUBSTANCES 13 1.4.1. IN VIVO METHODS 13 1.4.2. IN VITRO METHODS 15 1.5. OBJEKTIVE OF THE STUDIES 18 2. MATERIALS AND METHODS ................................................................................................................. 19 2.1. PREPARATION OF RECEPTORS 19 2.2. ASSAY SYSTEMS 19 2.2.1. IN SOLUTION AR ASSAY 19 2.2.2. IMMUNO-IMMOBILISED RECEPTOR ASSAY (IRA) 20 2.2.3. PR AND SHBG ASSAYS 21 2.2.4. DATA EVALUATION 21 2.3. ANALYTES 22 3. RESULTS AND DISCUSSION ................................................................................................................. 23 3.1. DEVELOPMENT OF NEW ASSAY SYSTEMS 23 3.1.1. BAR ASSAY 23 3.1.2. CLONING OF THE HUMAN AR AND PRODUCTION OF FUNCTIONAL PROTEIN 24 3.1.3. DEVELOPMENT OF A SCREENING ASSAY ON MICROTITRE PLATES (IRA) 25 3.2.
    [Show full text]
  • (Cyp19a1b-GFP) Zebrafish Embryos
    Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos Franc¸ois Brion1, Yann Le Page2, Benjamin Piccini1, Olivier Cardoso1, Sok-Keng Tong3, Bon-chu Chung3, Olivier Kah2* 1 Unite´ d’Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en- Halatte, France, 2 Universite´ de Rennes 1, Institut de Recherche Sante´ Environnement & Travail (IRSET), INSERM U1085, BIOSIT, Campus de Beaulieu, Rennes France, 3 Taiwan Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan Abstract The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.
    [Show full text]
  • Download (PDF 277.63
    PROJECT REVIEW “Characterization of the main metabolites of 17-methylstenblone and 17 methylmethenolone produced by human hepatocytes and liver fractions” Prof C. Ayotte, (INRS-Institut Armand-Frappier, Canada) New steroids openly appear on the market in products labelled with a rather confusing nomenclature. Once characterized, pharmaceutical grade products not being available, knowledge of the biotransformation pathways essential to an efficient detection of utilization by athletes is difficult to gain since administration to human volunteers should be restricted to the minimum. The alternative is a reliable in vitro model. Human hepatocytes, fresh or cryopreserved are now available commercially. We have successfully produced and identified phase I metabolites from incubations of human hepatocytes with different steroids, such as 17-methyldrostanolone and desoxymethyltestosterone (DMT). The aim of this project is to produce in vitro from human hepatocytes and liver fractions the metabolites of two steroids, the 17-methylated derivatives of stenbolone and its isomer methenolone. The principal metabolites will be synthesized and characterized by NMR and mass spectrometry. The characterization of metabolites will enable the identification of markers of utilization to be incorporated in routine testing methods. The approach for the chemical synthesis of metabolites will be shared with NMI insuring the distribution to other doping control laboratories. Improving the knowledge of steroid biotransformation is a further benefit from these studies. Characterization of 17-Methylstenbolone and 17-Methylmethenolone and Identification of Metabolites Produced by Human Hepatocytes and Liver Fractions WADA Project no. 11A16CA Christiane Ayotte, Philippe Räss, Alexandre Sylvestre, INRS-Institut Armand-Frappier Summary We have synthesized and characterized two designer steroids, 17α-methylmethenolone and 17α- methylstenbolone; the latter is proposed on the internet and two groups have reported different and contradictory results.
    [Show full text]
  • Vargas KEA, Et Al. Hepatotoxicity Associated with Methylstenbolone and Copyright© Vargas KEA, Et Al
    1. Medical Journal of Clinical Trials & Case Studies ISSN: 2578-4838 Hepatotoxicity Associated with Methylstenbolone and Stanozolol Abuse Vargas KEA*, Guaraná TA, Biccas BN, Agoglia LV, Carvalho ACG, Case Report Gismondi R and Esberard EBC Volume 2 Issue 5 Received Date: July 27, 2018 Department of Gastroenterology/Hepatology, Department of Clinical Medicine, and Published Date: September 03, 2018 Department of Pathology, Antônio Pedro University Hospital, Federal Fluminense DOI: 10.23880/mjccs-16000176 University, Rio de Janeiro, Brazil *Corresponding author: Vargas Karen Elizabeth Arce, Department of Gastroenterology/Hepatology, Department of Clinical Medicine, and Department of Pathology, Antônio Pedro University Hospital, Federal Fluminense University, Rio de Janeiro, Ernani do Amaral Peixoto Avenue, 935. Ap.901 / Cep.24020043, Brazil, Tel: 005521981584624; Email: [email protected] Abstract Background & Objectives: Drug hepatotoxicity is a major cause of liver disease. Many drugs are well known to induce liver damage. Some toxic products, like anabolic androgenic steroids, that are pharmaceutical preparations since they contain pharmaceutically active substance, are available as nutritional supplements. Many patients are used to consume these like dietary stuff. Methods: We introduce a case series of two patients who developed hepatic damage after the consumption of anabolic- androgenic steroids, accompanied by a detailed bibliographic research on this topic. Results: We present two young men who developed significant liver damage, both with hyperbilirubinemia pattern after consumption of anabolic-androgenic steroids. This was associated with considerable morbidity, although both recovered without liver transplantation. The two anabolic-androgenic steroids were being marketed as dietary supplements. Conclusions: Although not well controlled substances in Brazil, anabolic-androgenic steroids are cause of severe hepatotoxicity.
    [Show full text]
  • A10 Anabolic Steroids Hardcore Info
    CONTENTS GENERAL INFORMATION 3 Anabolic steroids – What are they? 4 How do they Work? – Aromatisation 5 More molecules – More problems 6 The side effects of anabolic steroids 7 Women and anabolic steroids 8 Injecting steroids 9 Abscesses – Needle Exchanges 10 Intramuscular injection 11 Injection sites 12 Oral steroids – Cycles – Stacking 13 Diet 14 Where do steroids come from? Spotting a counterfeit 15 Drug Information – Drug dosage STEROIDS 16 Anadrol – Andriol 17 Anavar – Deca-Durabolin 18 Dynabolon – Durabolin – Dianabol 19 Esiclene – Equipoise 20 Primobolan Depot – Proviron – Primobolan orals – Pronobol 21 Sustanon – Stromba, Strombaject – Testosterone Cypionate Testosterone Enanthate 22 Testosterone Propionate – Testosterone Suspension 23 Trenbolone Acetate – Winstrol OTHER DRUGS 24 Aldactone – Arimidex 25 Clenbuterol – Cytomel 26 Ephedrine Hydrochloride – GHB 27 Growth Hormone 28 Insulin 30 Insulin-Like Growth Factor-1 – Human Chorionic Gonadotrophin 31 Tamoxifen – Nubain – Recreational Drugs 32 Steroids and the Law 34 Glossary ANABOLIC STEROIDS People use anabolic steroids for various reasons, some use them to build muscle for their job, others just want to look good and some use them to help them in sport or body building. Whatever the reason, care needs to be taken so that as little harm is done to the body as possible because despite having muscle building effects they also have serious side effects especially when used incorrectly. WHAT ARE THEY? Anabolic steroids are man made versions of the hormone testosterone. Testosterone is the chemical in men responsible for facial hair, deepening of the voice and sex organ development, basically the masculine things Steroids are in a man. used in medicine to treat anaemia, muscle weakness after These masculine effects surgery etc, vascular are called the androgenic disorders and effects of testosterone.
    [Show full text]
  • 伊域化學藥業(香港)有限公司 Cyclopentyl Substituted Compounds
    ® 伊 域 化 學(香 藥 香 港) 業 港有 有 限 限 公 公 司 司 YICK-VIC CHEMICALS & PHARMACEUTICALS (HK) LTD Rm 1006, 10/F, Hewlett Centre, Tel: (852) 25412772 (4 lines) No. 52-54, Hoi Yuen Road, Fax: (852) 25423444 / 25420530 / 21912858 Kwun Tong, E-mail: [email protected] YICKYICK----VICVICVICVIC 伊域伊域伊域 Kowloon, Hong Kong. Site: http://www.yickvic.com Cyclopentyl Substituted Compounds Product Code CAS Product Name CC-0052BA 39746-00-4 (-)-COREY LACTONE BENZOATE CC-3702AD 1211-29-6 (-)-METHYL JASMONATE SPI-4467C 87269-86-1 (-)-OCTAHYDROCYCLOPENTA[B]PYRROLE-2-CARBOXYLIC ACID HYDROCHLORIDE SPI-4467A 93779-30-7 (+/-)-OCTAHYDROCYCLOPENTA[B]PYRROLE-2-CARBOXYLIC ACID HYDROCHLORIDE SPI-2956FG 142217-81-0 (1S,3R,4S)-2-AMINO-9-(4-BENZYLOXY)-3-(BENZYLOXYMETHYL)-2-METHYLIDENECYCLOPENTYL-3H-PURINE-9-ONE SPI-2956FJ 142217-78-5 (2R,3S,5S)-3-(BENZYLOXY)-5-[2-[[(4-METHOXYPHENYL)DIPHENYLMETHYL]AMINO]-6-(PHENYLMETHOXY)-9H-PURIN-9-Y L]-2-(BENZYLOXYMETHYL)CYCLOPENTANOL SPI-1560DH 4167-77-5 1,1-CYCLOPENTANEDICARBOXYLIC ACID DIETHYL ESTER SPI-2808C 5763-44-0 1,2-CYCLOPENTANE DICARBOXIMIDE CC-1957B 1222-05-5 1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLCYCLOPENTA[G]-2-BENZOPYRAN SPI-1246B 3859-41-4 1,3-CYCLOPENTANEDIONE SPI-1955AA 646-06-0 1,3-DIOXOLANE SPI-3082AA 54078-29-4 1,8-DIAZAFLUOREN-9-ONE UNIE-13864 564-35-2 11-KETOTESTOSTERONE SPI-0098CA 640-87-9 17-ALPHA,21-DIHYDROXYPREGN-4-ENE-3,20-DIONE 21-ACETATE UNIE-13126 302-76-1 17ALPHA-METHYL-17BETA-ESTRADIOL UNIE-14695 3563-27-7 17BETA-DIHYDROQUILIN UNIE-2836 10316-79-7 1-AMINO-1-CYCLOPENTANEMETHANOL SPI-3077CB 61379-64-4 1-AMINO-4-CYCLOPENTYLPIPERAZINE
    [Show full text]
  • ( 12 ) United States Patent
    US010314797B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 314 ,797 B2 Narayanan et al. ( 45 ) Date of Patent : * Jun . 11, 2019 ( 54 ) SELECTIVE ANDROGEN RECEPTOR ( 56 ) References Cited DEGRADER (SARD ) LIGANDS AND METHODS OF USE THEREOF U . S . PATENT DOCUMENTS 5 ,480 ,656 A 1 / 1996 Okada et al . (71 ) Applicant: University of Tennessee Research 5 ,575 , 987 A 11/ 1996 Kamei et al . Foundation , Knoxville , TN (US ) 5 ,631 , 020 A 5 / 1997 Okada et al. 5 , 643 ,607 A 7 / 1997 Okada et al. 5 ,716 ,640 A 2 / 1998 Kamei et al. ( 72 ) Inventors : Ramesh Narayanan , Cordova , TN 5 , 814 ,342 A 9 / 1998 Okada et al . (US ) ; Duane D . Miller , Collierville , 6 ,036 , 976 A 3 / 2000 Takechi et al . TN (US ) ; Thamarai Ponnusamy , 7 , 118 , 552 B2 10 / 2006 Shaw et al . Memphis , TN (US ); Dong - Jin Hwang, 7 , 220 , 247 B25 / 2007 Shaw et al . 7 ,500 , 964 B23 / 2009 Shaw et al . Arlington , TN (US ) ; Yali He, 9 ,815 , 776 B2 * 11 / 2017 Narayanan . .. .. C07C 255 /60 Germantown , TN (US ) 9 , 834 , 507 B2 * 12 / 2017 Narayanan . .. .. .. C07C 255 /60 2005 /0101657 A1 5 /2005 Furuya et al . (73 ) Assignee : University of Tennessee Research 2007 /0265290 A1 11/ 2007 Dalton et al . 2010 /0227846 AL 9 /2010 Ito et al. Foundation , Knoxville , TN ( US ) 2014 / 0018433 A11 / 2014 Dalton et al . ( * ) Notice : Subject to any disclaimer , the term of this 2018 /0118663 A1 * 5 / 2018 Narayanan . C07C 237/ 20 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U . S .
    [Show full text]
  • Blackstone Indictment
    Case 9:19-cr-80030-WPD Document 1 Entered on FLSD Docket 03/08/2019 Page 1 of 39 M\~ 0 7 2019 ANGELA E. NOBLE UNITED STATES DISTRICT COURT CLERK U.S. DIST CT. S i) OF FLA. - MiAMi SOUTHERN DISTRICT OF FLORIDA 19-80030-CR-DIMITROULEAS/MATTHEWMAN Case No. ------------- 18 u.s.c. § 371 21 U.S.C. §§ 33l(d), 355(a), 333(a)(2) 21 u.s.c. § 846 21 u.s.c. § 841 18 u.s.c. § 1957 18 u.s.c. §§ 981, 982 21 u.s.c. § 853 UNITED STATES OF AMERICA vs. PHILLIP BRAUN, a/k/a "PJ," AARON SINGERMAN, ROBERT DIMAGGIO, ANTHONY VENTRELLA, a/k/a "Joey," JAMES BOCCUZZI, DAVID WINSAUER, BLACKSTONE LABS, LLC, and VENTECH LABS, LLC, Defendants. ______________/ INDICTMENT The Grand Jury charges that: GENERAL ALLEGATIONS At all times relevant to this Indictment: Food, Drugs, and Dietary Supplements Under the Food, Drug, and Cosmetic Act 1. The Food and Drug Administration (FDA) was the agency of the United States responsible for, among other things, enforcing the provisions of the Federal Food, Drug, and Case 9:19-cr-80030-WPD Document 1 Entered on FLSD Docket 03/08/2019 Page 2 of 39 Cosmetic Act (FDCA), 21 U.S.C. § 301 et seq. FDA's primary purpose in enforcing the FDCA was to protect the health and safety of consumers in the United States. FDA's responsibilities included regulating the manufacturing, labeling, and distribution of food and drugs shipped or received in interstate commerce. FDA's responsibilities included preventing improperly packaged or labeled food and drugs not approved for sale from reaching consumers.
    [Show full text]
  • 7.Alpha.-Methyl 19-Nortestosterone
    Europäisches Patentamt *EP001087986B1* (19) European Patent Office Office européen des brevets (11) EP 1 087 986 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07J 1/00, A61K 31/565 of the grant of the patent: 10.04.2002 Bulletin 2002/15 (86) International application number: PCT/EP99/04102 (21) Application number: 99929208.9 (87) International publication number: (22) Date of filing: 14.06.1999 WO 99/67271 (29.12.1999 Gazette 1999/52) (54) 7.ALPHA.-METHYL 19-NORTESTOSTERONE UNDECANOATE WITH ANDROGENIC ACTIVITY 7.ALPHA.-METHYL 19-NORTESTOSTERON UNDECANOAT MIT ANDROGENISCHER AKTIVITÄT DERIVE DE TESTOSTERONE (84) Designated Contracting States: (56) References cited: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU US-A- 5 342 834 MC NL PT SE • CHEMICAL ABSTRACTS, vol. 127, no. 18, 3 (30) Priority: 19.06.1998 EP 98202052 November 1997 (1997-11-03) Columbus, Ohio, US; abstract no. 243354, KUMAR N ET AL: (43) Date of publication of application: "Pharmacokinetics of 04.04.2001 Bulletin 2001/14 7.alpha.-methyl-19-nortestosterone in men and cynomolgus monkeys" page 89; column 2; (73) Proprietor: Akzo Nobel N.V. XP002082919 & J. ANDROL., vol. 18, no. 4, 1997, 6824 BM Arnhem (NL) pages 352-358, • CHAUDRY M A Q ET AL: "Hansch analysis of the (72) Inventors: anabolic activities of some nandrolone esters" • LEYSEN, Dirk JOURNAL OF MEDICINAL CHEMISTRY., vol. 17, B-3920 Lommel (BE) no. 2, February 1974 (1974-02), pages 157-161, • VAN DER VOORT, Hendrikus, Adrianus, XP002082918 WASHINGTON US Antonius • CHEMICAL ABSTRACTS, vol.
    [Show full text]
  • Order in Council 1243/1995
    PROVINCE OF BRITISH COLUMBIA ORDER OF THE LIEUTENANT GOVERNOR IN COUNCIL Order in Council No. 12 4 3 , Approved and Ordered OCT 121995 Lieutenant Governor Executive Council Chambers, Victoria On the recommendation of the undersigned, the Lieutenant Governor, by and with the advice and consent of the Executive Council, orders that Order in Council 1039 made August 17, 1995, is rescinded. 2. The Drug Schedules made by regulation of the Council of the College of Pharmacists of British Columbia, as set out in the attached resolution dated September 6, 1995, are hereby approved. (----, c" g/J1"----c- 4- Minister of Heal fandand Minister Responsible for Seniors Presidin Member of the Executive Council (This pan is for adnwustratlye purposes only and is not part of the Order) Authority under which Order Is made: Act and section:- Pharmacists, Pharmacy Operations and Drug Scheduling Act, section 59(2)(1), 62 Other (specify): - Uppodukoic1enact N6145; Resolution of the Council of the College of Pharmacists of British Columbia ("the Council"), made by teleconference at Vancouver, British Columbia, the 6th day of September 1995. RESOLVED THAT: In accordance with the authority established in Section 62 of the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia, S.B.C. Chapter 62, the Council makes the Drug Schedules by regulation as set out in the attached schedule, subject to the approval of the Lieutenant Governor in Council. Certified a true copy Linda J. Lytle, Phr.) Registrar DRUG SCHEDULES to the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia The Drug Schedules have been printed in an alphabetical format to simplify the process of locating each individual drug entry and determining its status in British Columbia.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Section B Changed Classes/Guidelines Final
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2019 Section B Changed Classes/Guidelines Final Version Date of issue: 24th December 2018 1 A3 FUNCTIONAL GASTRO-INTESTINAL DISORDER DRUGS R2003 A3A PLAIN ANTISPASMODICS AND ANTICHOLINERGICS R1993 Includes all plain synthetic and natural antispasmodics and anticholinergics. A3B Out of use; can be reused. A3C ANTISPASMODIC/ATARACTIC COMBINATIONS This group includes combinations with tranquillisers, meprobamate and/or barbiturates except when they are indicated for disorders of the autonomic nervous system and neurasthenia, in which case they are classified in N5B4. A3D ANTISPASMODIC/ANALGESIC COMBINATIONS R1997 This group includes combinations with analgesics. Products also containing either tranquillisers or barbiturates and analgesics to be also classified in this group. Antispasmodics indicated exclusively for dysmenorrhoea are classified in G2X1. A3E ANTISPASMODICS COMBINED WITH OTHER PRODUCTS r2011 Includes all other combinations not specified in A3C, A3D and A3F. Combinations of antispasmodics and antacids are classified in A2A3; antispasmodics with antiulcerants are classified in A2B9. Combinations of antispasmodics with antiflatulents are classified here. A3F GASTROPROKINETICS r2013 This group includes products used for dyspepsia and gastro-oesophageal reflux. Compounds included are: alizapride, bromopride, cisapride, clebopride, cinitapride, domperidone, levosulpiride, metoclopramide, trimebutine. Prucalopride is classified in A6A9. Combinations of gastroprokinetics with other substances
    [Show full text]