Measurements of the Secondary Electron Emission Properties of Insulators

Total Page:16

File Type:pdf, Size:1020Kb

Measurements of the Secondary Electron Emission Properties of Insulators Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2005 Measurements of the Secondary Electron Emission Properties of Insulators Clint D. Thomson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Physics Commons Recommended Citation Thomson, Clint D., "Measurements of the Secondary Electron Emission Properties of Insulators" (2005). All Graduate Theses and Dissertations. 2093. https://digitalcommons.usu.edu/etd/2093 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. MEASUREMENTS OF THE SECONDARY ELECTRON EMISSION PROPERTIES OF INSULATORS by Clint D. Thomson A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics Approved: Dr. John R. Dennison Dr. W. John Raitt Major Professor Committee Member Dr. D. Mark Riffe Dr. Jan J. Sojka Committee Member Committee Member Dr. Charles Swenson Dr. Laurens H. Smith, Jr. Committee Member Interim Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2005 ii Copyright © Clint D. Thomson 2005 All Rights Reserved iii ABSTRACT Measurements of the Secondary Electron Emission Properties of Insulators by Clint D. Thomson, Doctor of Philosophy Utah State University, 2005 Major Professor: Dr. John Robert Dennison Department: Physics Measurements of the electron-induced electron emission properties of insulators are important to many applications including spacecraft charging, scanning electron microscopy, electron sources, and particle detection technology. However, these measurements are difficult to make since insulators can charge either negatively or positively under charge particle bombardment that in turn alters insulator emissions. In addition, incident electron bombardment can modify the conductivity, internal charge distribution, surface potential, and material structure in ways that are not well understood. A primary goal of this dissertation work has been to make consistent and accurate measurements of the uncharged electron yields for insulator materials using innovative instrumentation and techniques. Furthermore, this dissertation reports on the experimental work undertaken by our group to explore insulator charging rates as a function of incident electron energy and fluence. Specifically, these charging studies include: (i) the study of the effectiveness of charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials induced by incident electron irradiation, (ii) the exploration of several noncontacting methods used to determine insulator surface potentials and the insulator iv first and second crossover energies that are important in determining both the polarity and magnitude of spacecraft material potentials, (iii) the dynamical evolution of electron emissions and sample displacement current as a function of incident charge fluence and energy with ties to evolving surface potentials as an insulator reaches its current steady state condition, and (iv) the slow evolution of electron yields with continuous incident electron bombardment. These charging data are explained in the context of available insulator charging models. Specific insulator materials tested included chromic acid anodized aluminum, RTV- silicone solar array adhesives, and KaptonTM on aluminum. (357 pages) v ACKNOWLEDGMENTS I am grateful to NASA Marshall Space Flight Center for providing me with the funding to pursue a PhD in physics. I am especially thankful for my advisor, J.R. Dennison, for his continual counsel, encouragement, and optimism. I am indebted to Rob Davies, Neal Nickles, and Albert Chang for leaving to me a great lab, and for showing me the ropes. Vladimir Zavyalov was also a great teacher. He imparted to me many great lessons, and without his data acquisition electronics, I would have been in the lab for several more years. My fellow graduate students have made life more enjoyable over the last few years. I am thankful to Jason Kite, Alec Sim, and Prasanna Swaminathan for many stimulating conversations that broke up the occasional monotony of lab work and dissertation writing. Also, Jodie Corbridge was a fun lab partner, and because of her scrutinizing glares, I probably broke less equipment than I would have if I had been on my own. I am grateful to Ralph Carruth and his group at Marshall Space Flight Center for their collaboration and hospitality. I was also grateful to have interacted with other members of the spacecraft charging community, including Rob Frederickson, Leon Levy, Jodie Minor, and Dale Ferguson. These people imparted to me both their resources and invaluable experience. I am thankful for the Physics Department staff, Deborah Reece, Karalee Ransom, Marilyn Griggs, and Sharon Pappas for helping me with all of my administrative needs, and for providing a small haven where I could catch up on the latest gossip. I want to thank Lee Pearson and Tim Doyle at Thiokol for providing me with an internship that has, in the end, led to a career away from Utah State. I am deeply appreciative of Gwena Couillard for her time, wisdom, and kindness. I want to thank members of my family including my mom and dad for their support, Tige for our fall hunting excursions, and my girls, Kensi, Jaidyn, and Ady, for patiently vi enduring a graduate student’s lifestyle of poverty. Finally, I want to thank Julie for sticking with me through some tough times. I have finally finished, and easier times lie ahead. Clint D. Thomson vii CONTENTS Page ABSTRACT.............................................................................................................................iii ACKNOWLEDGMENTS......................................................................................................... v LIST OF TABLES ................................................................................................................... ix LIST OF FIGURES................................................................................................................. xii NOMENCLATURE.............................................................................................................. xvii CHAPTER 1. INTRODUCTION .............................................................................................................. 1 2. BACKGROUND ................................................................................................................ 7 2.1 Secondary and Backscattered Electron Emission ..................................................... 7 2.2 Electron Emission Measurements on Insulators ..................................................... 14 2.3 Physical Models for Insulator Electron Emissions ................................................. 22 2.3.1 Overview of the Three-Stage Model............................................................. 23 2.3.2 Traditional Semiempirical Models................................................................ 25 2.3.3 Production Mechanism for Uncharged Insulators......................................... 35 2.3.4 Transport Mechanism for Uncharged Insulators........................................... 36 2.3.5 Escape Mechanism for Uncharged Insulators............................................... 44 2.3.6 Relationships between Evolving Surface Potentials and Electron Emissions ............................................................................... 48 2.3.7 Electron Radiation Induced Charge Distributions in Insulators.................... 66 2.3.8 Models for Internal and Surface Charge Distributions, Electric Fields, and Potentials ..................................................................... 76 2.3.9 Evolving Electron Yields, Sample Currents, and Surface Potentials by a Pulsed Incident Electron Source ........................................................ 82 3. INSTRUMENTATION .................................................................................................... 92 3.1 General Experimental Setup ................................................................................... 92 3.2 DC-Yield Measurement Setup................................................................................ 97 3.3 Pulsed-Yield Measurement Setup......................................................................... 101 3.4 Electron Gun Operation and Characterization ...................................................... 114 3.5 Charge Neutralization Sources.............................................................................. 124 4. PULSED-YIELD MEASUREMENTS .......................................................................... 134 4.1 General Pulsed-Yield Measurement Procedure .................................................... 134 viii 4.2 Electron Yield and Spectral Analysis ................................................................... 139 4.3 Absolute Electron Yields: Measurement Correction Factors................................ 152 4.4 Validation of Pulsed Measurements with DC Measurements............................... 164 4.5 Monitoring of Sample Charging ........................................................................... 171 4.6 Other Methods for Determining Yield Crossover Energies.................................
Recommended publications
  • Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode
    BNL-81607-2008-IR C-A/APl#328 October 2008 Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode Qiong Wu Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973 Notice: This document bas been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the US.Department of Energy. Tbe United States Government retains a non- exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form ofthis document, or allow others to do so, for United States Government purposes. MEASUREMENTSAND STUDIES OF SECONDARY ELECTRONEMISSION OF DIAMONDAMPLIFIED PHOTOCATHODE Qiong Wu September, 2008 CONTENTS 1 Introduction .......................................................................................................... 1 1.1 The Diamond Amplified Photocathode (DAF') hoject .................................... 1 1.2 Advantages of diamond for amplified photocathodes ...................................... 4 1.2.1 Wide Band Gq ..... ....................................... 5 1.2.2 Best Rigidiiy ..................... ............ 6 1.2.3 Highest Thermal Conducfivity ................................................................................................ 7 1.2.4 Very high Mobility and Sahrralion Velocity............ ....................... ....8 2 DAP Design ........................................................................................................ 10 2.1 vacuum ..........................................................................................................
    [Show full text]
  • Abstract an Introduction to the Physics and Applications Of
    Abstract An Introduction To The Physics And Applications Of Electron Sources Kevin L. Jensen Naval Research Laboratory Models of thermal, field, photo, and secondary emission, as well as space charge limited current flow, have existed since the 1920’s. With the realization that such sources were crucial to Radar and communications, research in harnessing their capabilities greatly accelerated, and now they are key components of cutting edge applications such as High Power Microwave generation and x-ray Free Electron Lasers. Although the processes behind the emission mechanisms (namely, heat, electric field, photoemission effect, and ejection of secondaries due to a high energy primary beam) appear distinct, they can all be understood collectively using simple models from quantum mechanics, condensed matter physics, and electrostatics. A description of the theoretical models and some history behind each mechanism, examples of the kinds of emitters that employ those mechanisms, and the challenges to utilizing the beams generated by various electron source candidates (particularly with respect to beam parameters such as current density, space charge, emittance, and brightness) will be covered. A full description of the canonical emission equations of thermal (Richardson), field (Fowler-Nordheim), photo (Fowler-DuBridge), and secondary (Young) equations is given – but even more interestingly, a demonstration of how the equations are fundamentally related is explored. Processes that affect emission, such as electrostatic shielding, coatings, space charge (Child-Langmuir), and complications due to material properties (metal versus semiconductor) shall be described. Biographical Summary Kevin L. Jensen is a theoretical physicist whose research concerns emission properties of electron sources, particularly cold cathodes and photocathodes, but also thermal and secondary sources, for vacuum nanoelectronics, space-based applications, high power microwave generation, and particle accelerators and Free Electron Lasers.
    [Show full text]
  • Thermionic Emission
    Gas Discharge Fundamentals Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Thermionic emission Theoretically, the current density, , of electrons emitted from a cathode at an absolute temperature, (K), is given by: = / Richardson-Dushman equation 2 − Work function (eV) Schottky effect (field enhanced thermionic emission): For a constant temperature, the current still slowly increases with the applied extraction potential by lowering the surface barrier. = exp 4 2 − − 0 Space charge limited current : When the external electric field is not sufficiently high, the emitted electron current density is limited by space charge. The space charge limited current is determined by the extraction voltage and independent of the cathode current. Emission (source) limited current: When the external electric field is sufficiently high, the saturation emission electron current is determined by the cathode temperature. 2/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE) Electrons, ions or neutral particles cause secondary electron emission through different physical processes. The secondary electron emission is described by the secondary emission coefficient, , which is defined as the number of secondaries produced per an incident primary for normal incidence. = Since depends on the state of the surface, e.g. depending on the surface film, there is an extremely wide variation in the measured values. SEE by ion impact ( ) SEE by electron impact ( ) 3/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE) The coefficient of the secondary emission for a proton incident on a gold-plated tungsten filament with an energy of 1.6-15 keV is given by = (1.06 ± 0.01) / Ep is the proton energy in keV 1 2 The dependence of SEE on the incidence angle is given approximately by a sec law.
    [Show full text]
  • Ultrafast Secondary Emission 2D X-Ray Imaging Detectors
    TRNT _^______—J WIS-91/74/Oct.-PH Ultrafast Secondary Emission 2D X-ray Imaging Detectors A. Akkerman,1 A. Breskin, R. Chechik,2 V. Elkind, I. FVumkin3 and I. Gibrekhterman The Weizmann Institute of Science 76100 Rehovot, Israel Presented at the European Workshop on X-ray Detectors for Synchrotron Radiation Sources Aussois, France, September 30-October 4, 1991 Also Soreq Research Center, Yavne, Israel The Hettie H. Heinemann Research Fellow Technion. Haifa, Israel Ultra fast Secondary Emission 2D X-ray Imaging Detectors A. Akkerman,1 A. Breskin, R. Chechik,2 V. Elkind, I. Frumkin3 and I. Gibrekhterman The Weizmann Institute of Science 76100 Rehovot, Israel Abstract We describe a new method for subnanosecond, parallax-tree, high accuracy X-ray imaging at high photon flux. X-rays are ronverted in thin Csl layers. Secondary emitted electrons are amplified in multistage electron multipliers, operating at low gas pressures (10-40 Torr). Introduction Fast and accurate large area X-ray imaging is requested in many applications in basic and applied re­ search. Examples are particle identification with Transition Radiation, plasma diagnostics, medical or indus­ trial radiography and X-ray diffraction experiments with high luminosity Synchrotron Radiation Sources. Gaseous wire chambers, traditionally used for X-ray imaging1' over a large area, are often too slow (100 ns typical resolution) and suffer from parallax errors in localization, due to different photon absorption depths in the detection volume. Space charge effects limit the counting rate of traditional gaseous detectors. Re­ cently developed gaseous ji-strip detectors2* are also based on photon conversion in the gas, and therefore suffer from the same limitations.
    [Show full text]
  • Photomultiplier Tubes 1)-5)
    CHAPTER 2 BASIC PRINCIPLES OF PHOTOMULTIPLIER TUBES 1)-5) A photomultiplier tube is a vacuum tube consisting of an input window, a photocathode, focusing electrodes, an electron multiplier and an anode usu- ally sealed into an evacuated glass tube. Figure 2-1 shows the schematic construction of a photomultiplier tube. FOCUSING ELECTRODE SECONDARY ELECTRON LAST DYNODE STEM PIN VACUUM (~10P-4) DIRECTION e- OF LIGHT FACEPLATE STEM ELECTRON MULTIPLIER ANODE (DYNODES) PHOTOCATHODE THBV3_0201EA Figure 2-1: Construction of a photomultiplier tube Light which enters a photomultiplier tube is detected and produces an output signal through the following processes. (1) Light passes through the input window. (2) Light excites the electrons in the photocathode so that photoelec- trons are emitted into the vacuum (external photoelectric effect). (3) Photoelectrons are accelerated and focused by the focusing elec- trode onto the first dynode where they are multiplied by means of secondary electron emission. This secondary emission is repeated at each of the successive dynodes. (4) The multiplied secondary electrons emitted from the last dynode are finally collected by the anode. This chapter describes the principles of photoelectron emission, electron tra- jectory, and the design and function of electron multipliers. The electron multi- pliers used for photomultiplier tubes are classified into two types: normal dis- crete dynodes consisting of multiple stages and continuous dynodes such as mi- crochannel plates. Since both types of dynodes differ considerably in operating principle, photomultiplier tubes using microchannel plates (MCP-PMTs) are separately described in Chapter 10. Furthermore, electron multipliers for vari- ous particle beams and ion detectors are discussed in Chapter 12.
    [Show full text]
  • THE IMPORTANCE of ACCURATE COMPUTATION of SECONDARY ELECTRON EMISSION for MODELING SPACECRAFT CHARGING Abstract
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU THE IMPORTANCE OF ACCURATE COMPUTATION OF SECONDARY ELECTRON EMISSION FOR MODELING SPACECRAFT CHARGING S. Clerc, Alcatel Space, 100 boulevard du Midi, Cannes la Bocca, FRANCE, tel / fax: +33(0) 492 926 052 / 970, [email protected] J.R. Dennison, C.D. Thomson, Physics Department UMC 4415 Utah State University Logan, UT 84322-4415 Office: (435)797-2936 Lab: (435) 797-0925 Abstract Secondary electron emission is a critical contributor to the current balance in spacecraft charging. Spacecraft charging codes use a parameterized expression for the secondary electron yield d(Eo) as a function of incident electron energy Eo. Simple three-step physics models of the electron penetration, transport and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence or range R(Eo ), and the mean free path of the n1 secondary electron, l(E). We recall classical models for the range R(Eo): a power law expression of the form b1Eo , n1 n2 and a more general empirical bi-exponential expression R(Eo) = b1Eo +b2Eo . Expressions are developed that relate the theoretical fitting parameters (l, b1, b2, n1 and n2) to experimental terms (the energy Emax at the maximum secondary electron yield dmax, the first and second crossover energies E1 and E2, and the asymptotic limits for d(Eo ® ¥)). In most models, the yield is the result of an integral along the path length of incident electrons. Special care must be taken when computing this integral.
    [Show full text]
  • Leptonic Secondary Emission in a Hadronic Microquasar Model
    A&A 476, 9–15 (2007) Astronomy DOI: 10.1051/0004-6361:20078495 & c ESO 2007 Astrophysics Leptonic secondary emission in a hadronic microquasar model M. Orellana1,2,,P.Bordas3, V. Bosch-Ramon4,G.E.Romero1,2,, and J. M. Paredes3 1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata, Argentina e-mail: [email protected] 2 Instituto Argentino de Radioastronomía, C.C.5, (1894) Villa Elisa, Buenos Aires, Argentina 3 Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain 4 Max Planck Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany Received 16 August 2007 / Accepted 4 September 2007 ABSTRACT Context. It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that includes the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims. We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods. The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. The spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets.
    [Show full text]
  • The Challenges of Low-Energy Secondary Electron Emission Measurement
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 11-2019 The Challenges of Low-Energy Secondary Electron Emission Measurement Matthew J. Vincie Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electromagnetics and Photonics Commons Recommended Citation Vincie, Matthew J., "The Challenges of Low-Energy Secondary Electron Emission Measurement" (2019). Theses and Dissertations. 3151. https://scholar.afit.edu/etd/3151 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. THE CHALLENGES OF LOW-ENERGY SECONDARY ELECTRON EMISSION MEASUREMENT DISSERTATION Matthew J. Vincie, Captain, USAF AFIT-ENG-DS-19-D-007 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this prospectus are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-DS-19-D-007 THE CHALLENGES OF LOW-ENERGY SECONDARY ELECTRON EMISSION MEASUREMENT DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Matthew J.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Computational Modeling of Plasma-induced Secondary Electron Emission from Micro- architected Surfaces Permalink https://escholarship.org/uc/item/5n50s2wj Author Chang, Hsing-Yin Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Computational Modeling of Plasma-induced Secondary Electron Emission from Micro-architected Surfaces A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Materials Science and Engineering by Hsing-Yin Chang 2019 c Copyright by Hsing-Yin Chang 2019 ABSTRACT OF THE DISSERTATION Computational Modeling of Plasma-induced Secondary Electron Emission from Micro-architected Surfaces by Hsing-Yin Chang Doctor of Philosophy in Materials Science and Engineering University of California, Los Angeles, 2019 Professor Jaime Marian, Chair Advances in electrode, chamber, and structural materials will enable breakthroughs in future gen- erations of electric propulsion and pulsed power (EP & PP) technologies. Although wide ranges of EP & PP technologies have witnessed rapid advances during the past few decades, much of the progress was based on empirical development of materials through experimentation and trial-and- error approaches. To enable future technologies and to furnish the foundations for quantum leaps in performance metrics of these systems, a science-based materials development effort is required. The present study aims to develop computational models to simulate, analyze, and predict the sec- ondary electron emission of plasma devices in order to aid the design of materials architectures for EP & PP technologies through an integrated research approach that combines multi-scale modeling of plasma-material interactions, experimental validation, and material characterization.
    [Show full text]
  • Characterization and Optimization of CERN Secondary Emission Monitors (SEM) Used for Beam Diagnostics
    CONSEIL EUROPEEN´ POUR LA RECHERCHE NUCLEAIRE´ UNIVERSITAT POLITECNICA` DE CATALUNYA Characterization and optimization of CERN Secondary Emission Monitors (SEM) used for beam diagnostics. BACHELOR DEGREE IN PHYSICS ENGINEERING FINAL DEGREE PROJECT by Araceli Navarro Fern´andez Supervisors: Dr. Federico Roncarolo CERN, Gen`eve Dr. Jordi Llorca UPC, Barcelona May 2017 Abstract The European Organization for Nuclear Research, more commonly known as CERN, is one of the world's most influential particle physics center. The organization is based in a northwest suburb of Geneva, on the Franco-Swiss border and has 22 member states. At CERN, people with different backgrounds from all around the world work together in order to understand, among other things, the fundamental structure of the universe. To do that, particles have to be accelerated up to extremely high energies in a controlled and safe way. This work has been carried out within the BE-BI-PM section, responsible of the beam diagnostics instruments that allow the observation of the transverse profiles of particle beams. Different instruments and techniques are used for this purpose but in the following pages only the monitors based on Secondary Electron Emission (SEE) phenomena will be tackled. After introducing the physics behind Secondary Emission Monitors (SEM), their performance and limitations will be discussed. This will be based on simulations and beam experiments performed during the thesis work, mostly related to the LINAC4 , a new linear accelerator just completed at CERN. The first part of this document contains an introduction to the CERN accelerator chain, with particular emphasis on LINAC4 . Chapter 2 focuses on various aspects of the particles interaction with matter, which are used to define the theory behind SEE, the main process behind the SEM's signal generation.
    [Show full text]
  • Dynamic Secondary Electron Emission in Dielectric/Conductor Mixed Coatings
    Utah State University DigitalCommons@USU Conference Proceedings Materials Physics 2017 Dynamic Secondary Electron Emission in Dielectric/Conductor Mixed Coatings Leandro Olano Instituto de Ciencia de Materiales de Madrid Maria E. Davila Instituto de Ciencia de Materiales de Madrid A. Jacas Instituto de Ciencia de Materiales de Madrid M A. Rodriguez Instituto de Ceramica y Vidrio JR Dennison Utah State Univesity Follow this and additional works at: https://digitalcommons.usu.edu/mp_conf Part of the Condensed Matter Physics Commons Recommended Citation Olano, Leandro; Davila, Maria E.; Jacas, A.; Rodriguez, M A.; and Dennison, JR, "Dynamic Secondary Electron Emission in Dielectric/Conductor Mixed Coatings" (2017). Mulcopim. Conference Proceedings. Paper 42. https://digitalcommons.usu.edu/mp_conf/42 This Conference Paper is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Conference Proceedings by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DYNAMIC SECONDARY ELECTRON EMISSION IN DIELECTRIC/CONDUCTOR MIXED COATINGS L. Olano1, I. Montero1, M. E. Dávila1, A. Jacas1, M. A. Rodriguez2, J.R. Dennison3. (1) Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. [email protected] (2) Instituto de Cerámica y Vidrio, CSIC, Kelsen, 5, Cantoblanco, 28049 Madrid, Spain. (3) Utah State University Dept. of Physics, 4415 Old Main Hill, Logan, UT 84322-4415 USA. INTRODUCTION Secondary Emission Yield (SEY) of dielectric materials is of great importance for prediction and testing of the Multipaction discharge in RF components for space applications.
    [Show full text]
  • SECONDARY ELECTRON EMISSION COEFFICIENT from LEXAN: the LOW ENERGY CROSSOVER by ELISE RENE BOERWINKLE ADAMSON, B.S.E.P., M.S
    SECONDARY ELECTRON EMISSION COEFFICIENT FROM LEXAN: THE LOW ENERGY CROSSOVER by ELISE RENE BOERWINKLE ADAMSON, B.S.E.P., M.S. A DISSERTATION IN PHYSICS Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved May, 1993 \^>•V^tZ ar.c %^^i-y ®1993, Elise Adamson ACKNOWLEDGEMENTS I would like to express my thanks to Dr. Lynn Hatfield for his guidance and support throughout the course of this research. I would also like to thank the other members of my committee: Dr. Magne Kristiansen, Dr. Hermann Krompholz, Dr. Thomas Gibson and Dr. Roger Lichti. Many of my co­ workers and fellow graduate students provided assistance on this project; I would specifically like to thank Michael Angier, Deneen Bennett and Daniel James III for extra help. I would like to acknowledge all of the shop and technical staff for their assistance. And I would like to thank my family, especially my husband David Adamson and my son Brian Adamson, for their help and encouragement. I am grateful to Los Alamos National Laboratory, and the SDIO through the management of DNA, for financial support during this project. 11 TABLE OF CONTENTS ACKNOWLEDGEMENTS ii ABSTRACT i V LIST OF TABLES V LIST OF FIGURES vi CHAPTER I. INTRODUCTION 1 II. THEORETICAL AND EXPERIMENTAL WORK 7 III. METHOD 24 IV. EXPERIMENTAL SETUP 39 V. RESULTS 52 VI. CONCLUSIONS AND FUTURE WORK 65 REFERENCES 69 111 ABSTRACT The energy location of the first crossover point of the secondary electron emission curve of the polymer insulator Lexan (polycarbonate) has been experimentally investigated.
    [Show full text]