University of Groningen Engineering of Sugar Metabolism in Lactococcus

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Engineering of Sugar Metabolism in Lactococcus University of Groningen Engineering of sugar metabolism in Lactococcus lactis Pool, Weia Arianne IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pool, W. A. (2008). Engineering of sugar metabolism in Lactococcus lactis. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 06-10-2021 CHAPTER 3 FUNCTIONAL CHARACTERIZATION OF THREE DIFFERENT GLUCOSE UPTAKE ROUTES IN LACTOCOCCUS LACTIS Wietske A. Pool, Ana R. Neves, Helena Santos, Oscar P. Kuipers, Jan Kok. Chapter 3 52 Glucose transport and metabolism SUMMARY Molecular and physiological characteristics of lactococcal strains harbouring mutations in three different glucose uptake or dissimilation routes were determined, to gain insight into the specific roles of the two glucose-transporting phosphoenolpyruvate-dependent phosphotransfer systems (PEP:PTS) (EIIglc/man and EIIcel/glc) and the non-PTS glucose transport route(s) in Lactococcus lactis. Disruption of any of the pathways resulted in a considerable change in glucose transport. EIIcel/glc and the non-PTS route(s), had a preference for transport of the β-anomer of glucose. The main route for glucose transport was via EIIglc/man. Furthermore, a regulatory role for glucokinase (Glk) is proposed. Disruption of either glk, EIIglc/man, EIIcel/glc or both PTS systems had significant effects on overall glucose metabolism: changes in the pools of intracellular metabolites (fructose-1,6-bisphosphate (FBP), 3-phosphoglycerate (3PGA) and phosphoenolpyruvate (PEP)), in end-products formed (PEP, 3PGA, lactate, acetate, ethanol, 2,3-butanediol), and in key enzyme activities were observed. The lower lactate dehydrogenase (LDH) and pyruvate kinase (PK) activities, which might be caused by a lower FBP pool, together with transcriptional regulation, indicated by the induction of the gene encoding pyruvate formate lyase (pfl) in the glucose-PTS negative strain, resulted in the shifted fermentation pattern. This study demonstrates and specifies the roles that the three sugar uptake systems play in directing glucose uptake and subsequent metabolic processes in L. lactis. 53 Chapter 3 INTRODUCTION Lactococcus lactis, a lactic acid bacterium used in the dairy industry for the production of fermented milk products, has been studied intensely over the last decades. Its relatively simple carbon metabolism and the availability of a number of molecular cloning tools make L. lactis an attractive organism for in depth studies on sugar utilization (84, 96). In L. lactis, glucose is taken up either via a phosphoenolpyruvate-dependent phosphotransferase system (PEP:PTS), or it is imported via a non-PTS permease, and phophorylated by glucokinase (Fig. 1). The PTS is considered to be the main route for glucose metabolism (36, 148, 191). PEP:PTSs are group translocators, which import and phosphorylate sugars via a phosphoryl-transfer process. The sugar-specific enzyme II (EII) imports the sugar, while the non-sugar-specific phosphocarriers enzyme I (EI) and histidine protein (HPr) are involved in the phosphate cascade in which the phosphate moiety of PEP is transferred to the incoming sugar (42, 148, 205). Recently, we have shown that L. lactis can import glucose via two different PTS-systems, the mannose/glucose-PTS encoded by ptnABCD, and the cellobiose/glucose-PTS specified by ptcBAC (141). PTSman/glc consists of a cytosolic EIIAB protein and an integral membrane EIICD protein, the PTScel/glc is made up of a cytosolic EIIAB protein and an integral membrane EIIC protein. The glucokinase of L. lactis is an ATP-dependent protein of 33.8 kD (based on the nucleotide sequence of glk), which is able to phosphorylate intracellular glucose (195). The protein has three domains: an ATP-binding site at the N-terminus, a NagC-domain, specifying a possible transcriptional regulatory site, spanning almost the complete protein and a ROK-motif also present in certain sugar kinases and regulator proteins, in the middle of the protein. The main role of glucokinase in L. lactis is so far thought to be the prevention of accumulation of unphosphorylated glucose from the hydrolysis of disaccharides, such as lactose (195). Therefore, a deletion of glucokinase is expected to have no or at most a limited effect on the metabolism of the monosaccharide glucose in L. lactis.. The main end-product of lactococcal sugar fermentation is lactic acid (homolactic fermentation). The control of the flux through glycolysis has been studied extensively over the last decades: glycolytic intermediates have been determined using different conditions, and several glycolytic enzymes and their effectors have been described (122). 54 Glucose transport and metabolism Figure 1: Glucose Schematic Out overview of Non- glucose Membrane EIIman/glc EIIcel/glc PTS metabolism in L. In PEP lactis NZ9000. ATP Pyruvate α- And β-glucose GLK can be imported via Glucose Glucose-6P PTSman/glc (EII man/glc; ATP cel/glc ADP + Pi ptnABCD), PTS ADP + Pi (EII cel/glc; ptcBAC), or FBP by (an) as yet unidentified non-PTS glucose DHAP GAP transporter(s). The + NAD points of formation ADP + Pi NADH ATP or expenditure of GAPDH ATP and NADH are 3-PGA depicted as well as some of the enzymes involved PEP (bold). ADP + Pi PK Abbreviations: ATP NADH NAD+ glucose-6P, glucose- 6-phosphate; FBP, fructose-1,6- α-Acetolactate Pyruvate LDH Lactate ALS bisphosphate; O2 NAD+ CO DHAP, CO 2 PFL PDH NADH 2 Formate dihydroxyacetone phosphate; GAP, Diacetyl CO Acetyl-CoA 2 glyceraldehyde-3- NADH ADP + Pi 2NADH NAD+ Acetoin phosphate; 3-PGA, ATP 2NAD+ NADH 3-phosphoglycerate; NAD+ Acetate Ethanol PEP, phosphoenolpyruvat 2,3-Butanediol e; CO2, carbon dioxide; O2, oxygen; ATP, adenosine triphosphate; ADP, adenosine diphosphate; Pi, inorganic phosphate; NAD+, nicotinamide adenine nucleotide; NADH, dihydronicotinamide adenine dinucleotide; GLK, glucokinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PK, pyruvate kinase; LDH, lactate dehydrogenase; PFL, pyruvate formate lyase; PDH, pyruvate dehydrogenase; ALS, α-acetolactate synthase. 55 Chapter 3 Although L. lactis is generally homofermentative, under conditions of limited glucose availability or when it has to metabolize less favourable sugars, it can perform a mixed-acid fermentation in which besides lactate also acetate, ethanol, 2,3- butanediol and formate are produced (30, 67, 112).Regulation takes place at several points in the glycolytic pathway. A high level of fructose-1,6-bisphosphate (FBP) is known to activate lactate dehydrogenase (LDH) and pyruvate kinase (PK), while high levels of inorganic phosphate (Pi) together with low FBP-concentrations (when the cells are starved) inhibit PK (109, 153, 186, 191, 199). Inhibition of PK leads to accumulation of phosphoenolpyruvate (PEP) and 3-phosphoglycerate (3PGA) (152). Pyruvate metabolism is also influenced by concentrations of the glycolytic intermediates FBP, glyceraldehyde-3-phosphate (GAP), and dihydroxyacetone- phosphate (DHAP). Under anaerobic conditions LDH and pyruvate formate lyase (PFL) compete for pyruvate. During fast growth, high FBP-levels are present that activate LDH, while the high levels of DHAP and GAP under these conditions inhibit the activity of PFL (50). When a less favourable sugar is used or growth rates are lowered, less FBP, DHAP, and GAP accumulate, relieving PFL inactivation, enabling the enzyme to metabolize some of the pyruvate. Regulation of glycolysis by redox- and energy-state modulation has also been described (50). The intracellular NADH / NAD+ ratio has been suggested to control the flux through glycolysis mainly via the activity of GAP-dehydrogenase, producing NADH (50), while other studies measuring metabolites in vivo suggest a more important role for the ATP/ADP/Pi content of the cells (127, 132). In addition to regulation by glycolytic intermediates, sugar metabolism in L. lactis is also regulated at the transcriptional level via the transcriptional regulator CcpA (carbon catabolite protein A), which is involved in global metabolic control (105). Recently, L. lactis CcpA was found to intertwine regulation of carbon and nitrogen metabolism by regulating pepQ (225), a gene located tail-to-tail to ccpA (55). Besides being part of the PTS sugar phosphorylation cascade, which ultimately leads to the transfer of a phosphate-group from PEP to the incoming sugar, HPr also plays a role in regulation, since
Recommended publications
  • Production of Succinic Acid by E.Coli from Mixtures of Glucose
    2005:230 CIV MASTER’S THESIS Production of Succinic Acid by E. coli from Mixtures of Glucose and Fructose ANDREAS LENNARTSSON MASTER OF SCIENCE PROGRAMME Chemical Engineering Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Biochemical and Chemical Engineering 2005:230 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 05/230 - - SE Abstract Succinic acid, derived from fermentation of renewable feedstocks, has the possibility of replacing petrochemicals as a building block chemical. Another interesting advantage with biobased succinic acid is that the production does not contribute to the accumulation of CO2 to the environment. The produced succinic acid can therefore be considered as a “green” chemical. The bacterium used in this project is a strain of Escherichia coli called AFP184 that has been metabolically engineered to produce succinic acid in large quantities from glucose during anaerobic conditions. The objective with this thesis work was to evaluate whether AFP184 can utilise fructose, both alone and in mixtures with glucose, as a carbon source for the production of succinic acid. Hydrolysis of sucrose yields a mixture of fructose and glucose in equal ratio. Sucrose is a common sugar and the hydrolysate is therefore an interesting feedstock for the production of succinic acid. Fermentations with an initial sugar concentration of 100 g/L were conducted. The sugar ratios used were 100 % fructose, 100 % glucose and a mixture with 50 % fructose and glucose, respectively. The fermentation media used was a lean, low- cost media based on corn steep liquor and a minimal addition of inorganic salts. Fermentations were performed with a 12 L bioreactor and the acid and sugar concentrations were analysed with an HPLC system.
    [Show full text]
  • The Formate Channel Foca Exports the Products of Mixed-Acid Fermentation
    The formate channel FocA exports the products of mixed-acid fermentation Wei Lü, Juan Du, Nikola J. Schwarzer, Elke Gerbig-Smentek, Oliver Einsle, and Susana L. A. Andrade1 Institute of Organic Chemistry and Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved July 10, 2012 (received for review March 11, 2012) Formate is a major metabolite in the anaerobic fermentation of and is then oxidized to CO2 by a periplasmic formate de- glucose by many enterobacteria. It is translocated across cellular hydrogenase, FDH-N or FDH-O, resulting in the generation of membranes by the pentameric ion channel/transporter FocA that, proton motive force (11–13). In addition, the complex pathway together with the nitrite channel NirC, forms the formate/nitrite of mixed-acid fermentation produces acetate, ethanol, lactate, transporter (FNT) family of membrane transport proteins. Here we and succinate as further end products (Fig. 1A). FocA acts as have carried out an electrophysiological analysis of FocA from Sal- a passive exporter for formate anions generated in the cyto- monella typhimurium to characterize the channel properties and plasm, but a remarkable functional switch of transport mode was assess its specificity toward formate and other possible permeat- found for this protein when the pH of the growth medium ing ions. Single-channel currents for formate, hypophosphite and dropped below 6.8 (14). With ample protons available in the nitrite revealed two mechanistically distinct modes of gating that periplasm, the cell switches to active import of formate and reflect different types of structural rearrangements in the trans- again uses FocA for the task.
    [Show full text]
  • Accelerated Electro-Fermentation of Acetoin in Escherichia Coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism
    microorganisms Article Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism 1, 1 1,2, Sebastian Beblawy y, Laura-Alina Philipp and Johannes Gescher * 1 Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; [email protected] (S.B.); [email protected] (L.-A.P.) 2 Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany * Correspondence: [email protected] Current affiliation: Environmental Biotechnology, Centre for Applied Geosciences, University of Tübingen, y Schnarrenbergstr. 94-96, 72074 Tübingen, Germany. Received: 25 September 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold.
    [Show full text]
  • Elucidating Flux Regulation of the Fermentation Modes of Lactococcus Lactis a Mutlilevel Study
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis A Mutlilevel Study Chan, Siu Hung Joshua Link to article, DOI: 10.11581/DTU:00000016 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Chan, S. H. J. (2014). Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis: A Mutlilevel Study. Technical University of Denmark. https://doi.org/10.11581/DTU:00000016 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis: A Mutlilevel Study PhD Thesis Siu Hung Joshua Chan November, 2014 Supervisors: Associate Professor Christian Solem Professor Peter Ruhdal Jensen Systems Biotechnology and Biorefining National Food Institute Technical University of Denmark Summary The long history of application to the dairy industry has established Lactococcus lactis (L.
    [Show full text]
  • On-Line Analysis and in Situ Ph Monitoring of Mixed Acid Fermentation by Escherichia Coli Using Combined FTIR and Raman Techniques
    This is a repository copy of On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/164855/ Version: Published Version Article: Metcalfe, G.D., Smith, T.W. and Hippler, M. orcid.org/0000-0002-3956-3922 (2020) On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques. Analytical and Bioanalytical Chemistry. ISSN 1618-2642 https://doi.org/10.1007/s00216-020-02865-5 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-020-02865-5 RESEARCH PAPER On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques George D. Metcalfe1 & Thomas W. Smith1,2 & Michael Hippler1 Received: 27 May 2020 /Revised: 23 July 2020 /Accepted: 5 August 2020 # The Author(s) 2020 Abstract We introduce an experimental setup allowing continuous monitoring of bacterial fermentation processes by simultaneous optical density (OD) measurements, long-path FTIR headspace monitoring of CO2, acetaldehyde and ethanol, and liquid Raman spectroscopy of acetate, formate, and phosphate anions, without sampling.
    [Show full text]
  • Metabolic Engineering of Escherichia Coli for Itaconate Production
    M e t a b o l i c Metabolic engineering of Escherichia coli e n g i n for itaconate production e e r i n g o f E . Kiira S. Vuoristo c o l i f o r i t a c o n a t e p r o d u c t i o n K i i r a S . V u o r i s t o Metabolic engineering of Escherichia coli for itaconate production Kiira S. Vuoristo Thesis committee Promotors Prof. Dr Gerrit Eggink Professor of Industrial Biotechnology Wageningen University Prof. Dr Johan P.M. Sanders Emeritus Professor of Valorisation of Plant Production Chains Wageningen University Co-promotor Dr Ruud A. Weusthuis Associate professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr Marjan De Mey, University of Gent, Belgium Prof. Dr Henk Noorman, DSM, Delft Prof. Dr Merja Penttilä, VTT Technical Research Centre of Finland, Oulu, Finland Prof. Dr Fons Stams, Wageningen University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Metabolic engineering of Escherichia coli for itaconate production Kiira S. Vuoristo Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 12 February 2016 at 4 p.m. in the Aula. Kiira S. Vuoristo Metabolic engineering of Escherichia coli for itaconate production 162 pages PhD thesis, Wageningen University, Wageningen, NL (2016)
    [Show full text]
  • FERMENTATION Differs from Respiration in Redox Considerations and Mechanism of ATP Synthesis No Exogenous Electron Accep
    FERMENTATION Differs from respiration in redox considerations and mechanism of ATP synthesis No exogenous electron acceptors In anoxic habitats, if electron acceptors like sulfate, nitrate, ferric iron are in inadequate quantities, then organic compounds are catabolized by fermentation ATP is synthesized by substrate level phosphorylation Energy-rich compounds involved in substrate-level phosphorylation Compound Free energy of hydrolysis Acetyl-CoA -35.7 Propionyl-CoA -35.6 Butyryl-CoA -35.6 Succinyl-CoA -35.1 Acetyl phosphate -44.8 1,3-bisphosphoglycerate -51.9 Phosphoenolpyruvate -51.6 Adenosine -88.0 phosphosulfate Energy of hydrolysis of ATP (ATP ADP + Pi = -31.8 kJ/mol) Anaerobic metabolism of glucose Pyruvate decarboxylase is a key enzyme of ethanol fermentation.in Zymomonas (bacteria) and yeast Ethanol is produced through different reactions in saccharolytic clostridia, heterofermentative lactic acid bacteria and enteric bacteria. These bacteria oxidize pyruvate to acetyl-CoA before reducing it to ethanol. They do not possess pyruvate decarboxylase Fermentative diversity of bacteria Lactic acid fermentation by Lactic acid bacteria (LAB) Gram positive rods and cocci Grow anaerobically, but are aerotolerant Produce lactate as a major fermentation product Some LAB produce only lactate from sugars while others produce acetate and ethanol in addition to lactate. The former are referred to as homofermentative and the latter heterofermentative LAB. Homofermentative LAB ferment sugars through the EMP pathway Heterofermentative LAB ferment sugars through the phosphoketolase pathway Homolactate fermentation Homofermentative LAB include most species of Lactobacillus, Sporolactobacillus, Pediococcus, Enterococcus and Lactococcus. They use hexoses through the EMP pathway to generate ATP. Lactate dehydrogenase reoxidizes the NADH reduced during the EMP pathway using pyruvate as the electron acceptor As fermentation proceeds, lactate accumulates lowering the intracellular pH.
    [Show full text]
  • Electron Transport Chains of Lactic Acid Bacteria
    Electron Transport Chains of Lactic Acid Bacteria Rob J.W. Brooijmans Promotor: Prof. dr. Willem M. de Vos, hoogleraar Microbiologie Co-promotor: Prof. dr. Jeroen Hugenholtz, hoogleraar Industriele Moleculaire Microbiologie (Universiteit van Amsterdam) Promotiecommissie: Prof. dr. P. Hols (Université de Catholique de Louvain) Dr. E. Johansen (Chr. Hansen, Denmark) Prof. dr. T. Abee (Wageningen University) Prof. dr. M. J. Teixeira de Mattos (University of Amsterdam) Dit onderzoek is uitgevoerd binnen “The Graduate School VLAG” Electron Transport Chains of Lactic Acid Bacteria Rob J.W. Brooijmans Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M. J. Kropff in het openbaar te verdedigen op 10 november 2008 des namiddags te vier uur in de Aula R. J. W. Brooijmans (2008) Electron Transport Chains of Lactic Acid Bacteria Thesis Wageningen University – with summary in Dutch Source cover-photo: NASA ISBN 978-90-8585-302-2 Contents Abstract 1 Chapter 1 Introduction and Outline of thesis 3 Chapter 2 Generation of a membrane potential by Lactococcus 33 lactis through aerobic electron transport Chapter 3 Heme and menaquinone induced electron transport in 57 lactic acid bacteria Chapter 4 The electron transport chains of Lactobacillus 85 plantarum WCFS1 Chapter 5 Heme and menaquinone induced aerobic response in 111 Lactobacillus plantarum WCFS1 Chapter 6 The anaerobic electron transport chain of 131 Lactobacillus plantarum is an efficient redox sink Chapter 7 The electron transport chains of anaerobic prokaryotic 149 bacteria Chapter 8 General discussion and future perspectives 197 Samenvatting Nederlands 215 Dankwoord 221 About the author 223 List of publications 225 Training and Supervision Plan (VLAG) 227 Abstract Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria.
    [Show full text]
  • The Formate Channel Foca Exports the Products of Mixed-Acid Fermentation
    The formate channel FocA exports the products of mixed-acid fermentation Wei Lü, Juan Du, Nikola J. Schwarzer, Elke Gerbig-Smentek, Oliver Einsle, and Susana L. A. Andrade1 Institute of Organic Chemistry and Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved July 10, 2012 (received for review March 11, 2012) Formate is a major metabolite in the anaerobic fermentation of and is then oxidized to CO2 by a periplasmic formate de- glucose by many enterobacteria. It is translocated across cellular hydrogenase, FDH-N or FDH-O, resulting in the generation of membranes by the pentameric ion channel/transporter FocA that, proton motive force (11–13). In addition, the complex pathway together with the nitrite channel NirC, forms the formate/nitrite of mixed-acid fermentation produces acetate, ethanol, lactate, transporter (FNT) family of membrane transport proteins. Here we and succinate as further end products (Fig. 1A). FocA acts as have carried out an electrophysiological analysis of FocA from Sal- a passive exporter for formate anions generated in the cyto- monella typhimurium to characterize the channel properties and plasm, but a remarkable functional switch of transport mode was assess its specificity toward formate and other possible permeat- found for this protein when the pH of the growth medium ing ions. Single-channel currents for formate, hypophosphite and dropped below 6.8 (14). With ample protons available in the nitrite revealed two mechanistically distinct modes of gating that periplasm, the cell switches to active import of formate and reflect different types of structural rearrangements in the trans- again uses FocA for the task.
    [Show full text]
  • Adenosine Triphosphate and Carbon Efficient Route to Second
    pubs.acs.org/synthbio Letter Adenosine Triphosphate and Carbon Efficient Route to Second Generation Biofuel Isopentanol Christopher B. Eiben, Tian Tian, Mitchell G. Thompson, Daniel Mendez-Perez, Nurgul Kaplan, Garima Goyal, Jennifer Chiniquy, Nathan J. Hillson, Taek Soon Lee, and Jay D. Keasling* Cite This: https://dx.doi.org/10.1021/acssynbio.9b00402 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Climate change necessitates the development of CO2 neutral or negative routes to chemicals currently produced from fossil carbon. In this paper we demonstrate a pathway from the renewable resource glucose to next generation biofuel isopentanol by pairing the isovaleryl-CoA biosynthesis pathway from Myxococcus xanthus and a butyryl-CoA reductase from Clostridium acetobutylicum. The best plasmid and Escherichia coli strain combination makes 80.50 ± 8.08 (SD) mg/L of isopentanol after 36 h under microaerobic conditions with an oleyl alcohol overlay. In addition, the system also shows a strong preference for isopentanol production over prenol in microaerobic conditions. Finally, the pathway requires zero adenosine triphosphate and can be paired theoretically with nonoxidative glycolysis, the combination being redox balanced from glucose thus avoiding unnecessary carbon loss as CO2. These pathway properties make the isovaleryl-CoA pathway an attractive isopentanol production route for further optimization. KEYWORDS: isopentanol, isovaleryl-CoA pathway, biofuel nthropogenic climate change represents a significant phosphate. The isopentenyl phosphate can then be dephos- A challenge for modern society, with transportation phorylated to isoprenol. activities and petrochemical production contributing about 7 Another route to a branched five-carbon alcohol is through 1 leucine biosynthesis to isopentanol (Sup.
    [Show full text]
  • Oriented Fermentation of Food Waste Towards High-Value Products: a Review
    energies Review Oriented Fermentation of Food Waste towards High-Value Products: A Review Qiao Wang 1, Huan Li 1,* , Kai Feng 1 and Jianguo Liu 1,2 1 Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; [email protected] (Q.W.); [email protected] (K.F.); [email protected] (J.L.) 2 School of Environment, Tsinghua University, Beijing 100084, China * Correspondence: [email protected]; Tel./Fax: +86-755-26036105 Received: 8 October 2020; Accepted: 27 October 2020; Published: 28 October 2020 Abstract: Food waste has a great potential for resource recovery due to its huge yield and high organic content. Oriented fermentation is a promising method with strong application prospects due to high efficiency, strong robustness, and high-value products. Different fermentation types lead to different products, which can be shifted by adjusting fermentation conditions such as inoculum, pH, oxidation-reduction potential (ORP), organic loading rate (OLR), and nutrients. Compared with other types, lactic acid fermentation has the lowest reliance on artificial intervention. Lactic acid and volatile fatty acids are the common products, and high yield and high purity are the main targets of food waste fermentation. In addition to operational parameters, reactors and processes should be paid more attention to for industrial application. Currently, continuously stirred tank reactors and one-stage processes are used principally for scale-up continuous fermentation of food waste. Electro-fermentation and iron-based or carbon-based additives can improve food waste fermentation, but their mechanisms and application need further investigation. After fermentation, the recovery of target products is a key problem due to the lack of green and economic methods.
    [Show full text]
  • Effects of Formate on Fermentative Hydrogen Production by Enterobacter Aerogenes
    Effects of Formate on Fermentative Hydrogen Production by Enterobacter aerogenes Tatsuo Kurokawa, Shigeharu Tanisho Department of Environment and Natural Sciences, Yokohama National University, Japan Received: 31 October 2003 / Accepted: 31 October 2004 / Online publication: 19 April 2005 Abstract sired. Hydrogen yield of E. aerogenes wild type is about 1.0 around pH 6.0 in the 1% glucose culture This paper describes the effects of formate on fer- (Tanisho et al., 1989; Converti and Perego, 2002). mentative hydrogen production by Enterobacter Recently it was reported that the hydrogen yield aerogenes by way of batch culture. When 20 mM and hydrogen evolution rate were improved by formate was added to pH 6.3 and pH 5.8 E. aerogenes mutants of E. aerogenes that are deficient in alco- glucose cultures (formate culture) at the beginning of hol or acids production (Rachman et al., 1997, cultivation, hydrogen evolution through both glu- 1998; Nakashimada et al., 2002). The hydrogen cose consumption and decomposition of the extrin- evolution mechanism of E. coli is based on the sic formate occurred together, while hydrogen decomposition of formate, which is a fermentative evolution occurred only through glucose consump- product from glucose consumption. E. aerogenes tion in the control cultures. The hydrogen evolution also produces formate from glucose and decom- rates in the formate cultures were faster than in the poses formate. Moreover, it was suggested that control cultures, although cell growth and glucose hydrogen could be evolved by the reoxidation of consumption rates in the formate cultures were nicotinamide adenine dinucleotide (NADH), which slower than the control culturesÕ.
    [Show full text]