Trichloroacetic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Trichloroacetic Acid EPA/635/R-09/003F www.epa.gov/iris TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID (CAS No. 76-03-9) In Support of Summary Information on the Integrated Risk Information System (IRIS) September 2011 U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii CONTENTS—TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID (CAS No. 76-03-9) LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ....................................................................................................................... ix LIST OF ABBREVIATIONS AND ACRONYMS ........................................................................x FOREWORD ................................................................................................................................ xii AUTHORS, CONTRIBUTORS, AND REVIEWERS ............................................................... xiii 1. INTRODUCTION ......................................................................................................................1 2. CHEMICAL AND PHYSICAL INFORMATION ....................................................................3 3. TOXICOKINETICS ...................................................................................................................5 3.1. ABSORPTION ..................................................................................................................5 3.2. DISTRIBUTION................................................................................................................7 3.3. METABOLISM ...............................................................................................................11 3.4. EXCRETION ...................................................................................................................17 3.5. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS .............................20 4. HAZARD IDENTIFICATION .................................................................................................21 4.1. STUDIES IN HUMANS..................................................................................................21 4.1.1. Oral Exposure ......................................................................................................21 4.1.2. Dermal Exposure .................................................................................................21 4.2. SUBCHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN ANIMALS―ORAL AND INHALATION ....................................................................22 4.2.1. Short-term and Subchronic Studies .....................................................................22 4.2.1.1. Oral .......................................................................................................22 4.2.1.2. Subchronic Inhalation Studies ..............................................................38 4.2.2. Chronic Studies and Cancer Assays ....................................................................38 4.2.2.1. Oral Studies ...........................................................................................44 4.2.2.2. Inhalation Studies..................................................................................57 4.2.2.3. Studies Using Other Routes of Exposure..............................................57 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES – ORAL AND INHALATION ...59 4.3.1. Reproductive Studies ...........................................................................................59 4.3.2. Developmental Studies ........................................................................................59 4.3.2.1. Oral Developmental Studies .................................................................59 4.3.2.2. Inhalation Developmental Studies ........................................................67 4.3.2.3. In Vitro Studies .....................................................................................67 4.4. OTHER DURATION- OR ENDPOINT-SPECIFIC STUDIES......................................68 4.4.1. Immunological Studies ........................................................................................68 4.5. MECHANISTIC DATA AND OTHER STUDIES IN SUPPORT OF THE MODE OF ACTION ...................................................................................................................69 4.5.1. Mechanistic Studies .............................................................................................69 4.5.1.1. Peroxisome Proliferation ......................................................................69 4.5.1.2. Oncogene Activation ............................................................................69 4.5.1.3. Cell Proliferation ...................................................................................71 4.5.1.4. DNA Hypomethylation .........................................................................73 4.5.1.5. Inhibition of Intercellular Communication ...........................................78 iii 4.5.1.6. Oxidative Stress ....................................................................................79 4.5.1.7. Histochemical Characteristics of TCA-Induced Tumors ......................81 4.5.2. Genotoxicity Studies ............................................................................................83 4.5.2.1. In Vitro Studies .....................................................................................83 4.5.2.2. In Vivo Studies .....................................................................................87 4.6. SYNTHESIS OF MAJOR NONCANCER EFFECTS ....................................................89 4.6.1. Oral ......................................................................................................................89 4.6.1.1. Metabolic Alterations............................................................................89 4.6.1.2. Liver Toxicity .......................................................................................90 4.6.1.3. Developmental Toxicity........................................................................91 4.6.2. Inhalation .............................................................................................................92 4.6.3. Mode-of-Action Information – Non-Cancer ........................................................92 4.6.3.1. Metabolic Alterations............................................................................92 4.6.3.2. Liver Toxicity .......................................................................................93 4.6.3.3. Developmental Toxicity........................................................................93 4.7. EVALUATION OF CARCINOGENICITY....................................................................94 4.7.1. Summary of Overall Weight of Evidence ............................................................94 4.7.2. Synthesis of Human, Animal, and Other Supporting Evidence...........................97 4.7.3. Mode-of-Action Information - Cancer.................................................................98 4.7.3.1. PPARα agonism. ...................................................................................99 4.7.3.2. Additional Proposed Hypotheses and Key Events with Limited Evidence or Inadequate Experimental Support ..................................117 4.7.3.3. Conclusions About the Hypothesized Mode of Action ......................121 4.8. SUSCEPTIBLE POPULATION AND LIFE STAGES ................................................122 4.8.1. Possible Childhood Susceptibility .....................................................................122 4.8.2. Possible Gender Differences ..............................................................................123 4.8.3. Other ..................................................................................................................123 5. DOSE-RESPONSE ASSESSMENTS ....................................................................................125 5.1. ORAL REFERENCE DOSE (RfD) ...............................................................................125 5.1.1. Choice of Principal Study and Critical Effect—Rationale and Justification .....125 5.1.2. Methods of Analysis—Including Models (e.g, PBPK and BMD) ....................130 5.1.2.1. BMD Modeling of Liver and Testicular Effects from DeAngelo et al. (2008) ............................................................................................130 5.1.2.2. BMD Modeling of Developmental Toxicity Data from Smith et al. (1989) .................................................................................................133 5.1.2.3. Selection of POD ................................................................................134 5.1.3. RfD Derivation—Including Application of Uncertainty Factors (UFs) ............134 5.1.4. RfD Comparison Information ............................................................................135 5.1.5. Previous RfD Assessment ..................................................................................136 5.2. INHALATION REFERENCE CONCENTRATION (RfC) .........................................136 5.3. UNCERTAINTIES IN THE RfD ..................................................................................137 5.4.
Recommended publications
  • Hydrolysis of Haloacetonitriles: Linear Free Energy Relationship, Kinetics and Products
    Wat. Res. Vol. 33, No. 8, pp. 1938±1948, 1999 # 1999 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0043-1354(98)00361-3 0043-1354/99/$ - see front matter HYDROLYSIS OF HALOACETONITRILES: LINEAR FREE ENERGY RELATIONSHIP, KINETICS AND PRODUCTS VICTOR GLEZER*, BATSHEVA HARRIS, NELLY TAL, BERTA IOSEFZON and OVADIA LEV{*M Division of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel (First received September 1997; accepted in revised form August 1998) AbstractÐThe hydrolysis rates of mono-, di- and trihaloacetonitriles were studied in aqueous buer sol- utions at dierent pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule: The monochloroacetonitriles are the most stable and are also less aected by pH-changes, while the trihaloacetonitriles are the least stable and most sensitive to pH changes. The stability of haloacetonitriles also increases by substitution of chlorine atoms with bromine atoms. The hydrolysis rates in dierent buer solutions follow ®rst order kinetics with a minimum hydrolysis rate at intermediate pH. Thus, haloacetonitriles have to be preserved in weakly acid solutions between sampling and analysis. The corresponding haloacetamides are formed during hydrolysis and in basic solutions they can hydrolyze further to give haloacetic acids. Linear free energy relationship can be used for prediction of degradation of haloacetonitriles
    [Show full text]
  • Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR*
    Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR* Serge David3, Michel Gourdjib, Lucien Guibéb, and Alain Péneaub a Laboratoire de Chimie Organique Multifonctionnelle, Bätiment 420. b Institut d'Electronique Fondamentale, Bätiment 220, Universite Paris-Sud, 91405 ORSAY Cedex, France. Z. Naturforsch. 51a, 611-619 (1996); received October 10, 1995 The NQR of a quadrupolar probe nucleus is often used to investigate the effect of substituent in molecules. The inductive effect, based on a partial charge migration along the molecular skeleton is the only one present in saturated aliphatics, the conjugative effect appearing in conjugated molecules, especially aromatics. As the stepwise charge migration mechanism, formerly used to explain the inductive effect, is now believed obsolete, we have wanted to reexamined the case of chlorine substituted acetic acids and salts. The data in literature was extended by observing reso- nances and determining NQR frequencies in several acids and salts. The present analysis of the salification of mono-, di- and tri-chloroacetic acids, which is equivalent to a deprotonation or the substitution of the acid hydrogen by a negative unit charge, shows that a model based on the polarization of the chlorine atom(s) by the carboxyle group is consistent with experimental results: the polarization energy appears to be proportional to the NQR frequency shifts; experimental data show a correlation between the NQR frequency shifts accompanying salification and the variations of the intrinsic acidity measured in the gas phase; this, in turn shows that there is a proportionality between the polarization energy and the variations in the acid free enthalpy of dissociation.
    [Show full text]
  • Monochloroacetic Acid, Sodium Monochloroacetate
    Monochloroacetic acid, sodium monochloroacetate MAK Value Documentation, supplement – Translation of the German version from 2019 A. Hartwig1,* MAK Commission2,* 1 Chair of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds Keywords: in the Work Area, Deutsche Forschungsgemeinschaft, Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, monochloroacetic acid, sodium 76131 Karlsruhe, Germany monochloroacetate, irritation, 2 Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work oxidative stress, peak limitation, Area, Deutsche Forschungsgemeinschaft, Kennedyallee 40, 53175 Bonn, Germany skin absorption, maximum workplace concentration, MAK * E-Mail: A. Hartwig ([email protected]), MAK Commission ([email protected]) value, prenatal toxicity, hazardous substance Abstract The German Commission for the Investigation of Health Hazards of Chemical Com- pounds in the Work Area has re-evaluated monochloroacetic acid [79-11-8] together with sodium monochloroacetate [3926-62-3] considering all toxicological endpoints. Monochloroacetic acid is a strong acid and dissociates in biological media. Therefore, also data for sodium monochloroacetate are used to evaluate the systemic toxicity. Monochloroacetic acid is corrosive to the eyes but there are no inhalation studies from which a NOAEC for local effects can be derived. Therefore, a maximum con- centration at the workplace (MAK value) of 2 mg/m3 (0.5 ml/m3), which has been set for the better investigated phosphoric acid, is also established for monochloroacetic acid.Asirritationisthecriticaleffect,monochloroaceticacidisclassifiedinPeakLim- Citation Note: itation Category I. By analogy with phosphoric acid, an excursion factor of 2 is set. Hartwig A, MAK Commission.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • Provisional Peer Reviewed Toxicity Values for Chloroacetic Acid (Casrn 79-11-8)
    EPA/690/R-04/004F l Final 11-24-2004 Provisional Peer Reviewed Toxicity Values for Chloroacetic Acid (CASRN 79-11-8) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 Acronyms bw - body weight cc - cubic centimeters CD - Caesarean Delivered CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CNS - central nervous system cu.m - cubic meter DWEL - Drinking Water Equivalent Level FEL - frank-effect level FIFRA - Federal Insecticide, Fungicide, and Rodenticide Act g - grams GI - gastrointestinal HEC - human equivalent concentration Hgb - hemoglobin i.m. - intramuscular i.p. - intraperitoneal i.v. - intravenous IRIS - Integrated Risk Information System IUR - Inhalation Unit Risk kg - kilogram L - liter LEL - lowest-effect level LOAEL - lowest-observed-adverse-effect level LOAEL(ADJ) - LOAEL adjusted to continuous exposure duration LOAEL(HEC) - LOAEL adjusted for dosimetric differences across species to a human m - meter MCL - maximum contaminant level MCLG - maximum contaminant level goal MF - modifying factor mg - milligram mg/kg - milligrams per kilogram mg/L - milligrams per liter MRL - minimal risk level MTD - maximum tolerated dose i MTL - median threshold limit NAAQS - National Ambient Air Quality Standards NOAEL - no-observed-adverse-effect level NOAEL(ADJ) - NOAEL adjusted to continuous exposure duration NOAEL(HEC) - NOAEL adjusted for dosimetric differences across
    [Show full text]
  • Study on Gas-Phase Mechanism of Chloroacetic Acid Synthesis by Catalysis and Chlorination of Acetic Acid
    Asian Journal of Chemistry; Vol. 26, No. 2 (2014), 475-480 http://dx.doi.org/10.14233/ajchem.2014.15484 Study on Gas-Phase Mechanism of Chloroacetic Acid Synthesis by Catalysis and Chlorination of Acetic Acid * JIAN-WEI XUE , JIAN-PENG ZHANG, BO WU, FU-XIANG LI and ZHI-PING LV Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R. China *Corresponding author: Fax: +86 351 6111178; Tel: +86 351 60105503; E-mail: [email protected] Received: 14 March 2013; Accepted: 17 May 2013; Published online: 15 January 2014; AJC-14570 The process of acetic acid catalysis and chlorination for synthesizing chloroacetic acid can exist in not only gas phase but also liquid phase. In this paper, the gas-phase reaction mechanism of the synthesis of chloroacetic acid was studied. Due to the high concentration of acetic acid and the better reaction mass transfer in the liquid-phase reaction, the generation amount of the dichloroacetic acid was higher than that in the gas-phase reaction. Under the solution distillation, the concentration of acetyl chloride, whose boiling point is very low, was very high in the gas phase, sometimes even up to 99 %, which would cause the acetyl chloride to escape rapidly with the hydrogen chloride exhaust, so that the reaction slowed down. Therefore, series reactions occured easily in the gas-phase reaction causing the amount of the dichloroacetic acid to increase. Keywords: Gas phase, Catalysis, Chlorination, Chloroacetic acid, Acetic acid. INTRODUCTION Martikainen et al.3 summed up the reaction mechanism that was consistent with a mechanism found by Sioli according Chloroacetic acid is not only a fine chemical product but to the system condition experiment and systematic theoretical also an important intermediate in organic synthesis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0168177 A1 Qin Et Al
    US 20100168177A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0168177 A1 Qin et al. (43) Pub. Date: Jul. 1, 2010 (54) STABLE INSECTICIDE COMPOSITIONS (22) Filed: Dec. 22, 2009 Related U.S. Application Data (75) Inventors: Kuide Qin, Westfield, IN (US); (60) Provisional application No. 61/203,689, filed on Dec. Raymond E. Boucher, JR., 26, 2008. Lebanon, IN (US) Publication Classification (51) Int. Cl. Correspondence Address: AOIN 43/40 (2006.01) DOWAGROSCIENCES, LLC AOIP3/00 (2006.01) ONE INDIANA SQUARE, SUITE 2800 AOIP 7/04 (2006.01) INDIANAPOLIS, IN 46204-2079 (US) (52) U.S. Cl. ......................................... 514/336; 514/357 (57) ABSTRACT (73) Assignee: Dow AgroSciences, LLC Insect controlling compositions including an N-Substituted (6-haloalkylpyridin-3-yl)alkylsulfoximine compoundandan (21) Appl. No.: 12/633,987 organic acid or a salt thereof exhibit increased stability. US 2010/01 681 77 A1 Jul. 1, 2010 STABLE INSECTICDE COMPOSITIONS their use in controlling insects and certain other invertebrates, particularly aphids and other Sucking insects. This invention CROSS-REFERENCE TO RELATED also includes new synthetic procedures for preparing the APPLICATIONS compositions and methods of controlling insects using the 0001. The present application claims priority to U.S. Pro compositions. visional Patent Application No. 61/203,689 filed Dec. 26, 0007. This invention concerns compositions useful for the 2008, the content of which is incorporated herein by reference control of insects, especially useful for the control of aphids in its entirety. and other sucking insects. More specifically, the invention FIELD OF THE INVENTION concerns compositions including an organic acid or a salt thereof and a compound of the formula (I) 0002.
    [Show full text]
  • Justin Pals.Pdf
    MECHANISMS OF MONOHALOGENATED ACETIC ACID INDUCED GENOMIC DNA DAMAGE BY JUSTIN A. PALS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Michael J. Plewa, Chair Professor Benito J. Mariñas Professor A. Layne Rayburn Brian K. Miller, Director of Illinois-Indiana Sea Grant ABSTRACT Disinfection of drinking water stands among the greatest public health achievements in human history. Killing or inactivation of pathogenic microbes by chemical oxidants such as chlorine, chloramine, or ozone have greatly reduced incidence of waterborne diseases. However, the disinfectant also reacts with organic and inorganic matter in the source water and generates a mixture of toxic disinfection byproducts (DBPs) as an unintended consequence. Since they were first discovered in 1974, over 600 individual DBPs have been detected in disinfected water. Exposure to DBPs is associated with increased risks for developing cancers of the colon, rectum, and bladder, and also for adverse pregnancy outcomes including small for gestational age and congenital malformations. While individual DBPs are teratogenic or carcinogenic, because they are formed at low concentrations during disinfection, it is unlikely that any one DBP can account for these increased risks. While genotoxicity and oxidative stress have been suggested, the mechanisms connecting DBP exposures to adverse health and pregnancy outcomes remain unknown. Investigating mechanisms of toxicity for individual, or classes of DBPs will provide a better understanding of how multiple DBPs interact to generate adverse health and pregnancy outcomes. Monohalogenated acetic acids (monoHAAs) iodoacetic acid (IAA), bromoacetic acid (BAA), and chloroacetic acid (CAA) are genotoxic and mutagenic with the consistent rank order of toxicity of IAA > BAA > CAA.
    [Show full text]
  • REACTIONS of HALOCYCLOPROPANES. The
    This dissertation has been microfilmed exactly as received 69-11,652 HOUSER, Charles W., 1934- REACTIONS OF HALOCYCLOPROPANES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan REACTIONS OF HALOCYCLOPROPANES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School o f The Ohio State U niversity By Charles W. Houser, B.A. ******** The Ohio State U niversity 1968 Approved hy /Adviser Department of Chemistry Dedicated to Jane and Brian i l ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Professor Harold Shechter for the inception of this problem and for his helpful discussions throughout the course of this research. His editorial guidance during preparation of this manuscript is also gratefully acknowledged. National Science Foundation and Petroleum Research Fund are thanked for their financial assistance to this research. The author owes a special debt of gratitude to his wife, Jane, for her patience and encouragement during completion of this work. i i i VITA October 20, 1934 Born - Parkersburg, West Virginia 1954-1958 U. S. Marine Corps 1962 B.A., David Lipscomb College, Nashville, Tennessee 1962-1965 Teaching Assistant, The Ohio State University, Columbus, Ohio I965-I968 Research Associate, The Ohio State University, Columbus, Ohio iv CONTENTS Page ACKNOWLEDGMENTS.......................................................................................................... i i i VITA .........................................................................
    [Show full text]
  • To Daphnia Magna
    H OH metabolites OH Article Targeted Metabolomic Assessment of the Sub-Lethal Toxicity of Halogenated Acetic Acids (HAAs) to Daphnia magna Lisa M. Labine 1,2 and Myrna J. Simpson 1,2,* 1 Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada; [email protected] 2 Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada * Correspondence: [email protected]; Tel.: +1-416-287-7234 Abstract: Halogenated acetic acids (HAAs) are amongst the most frequently detected disinfection by-products in aquatic environments. Despite this, little is known about their toxicity, especially at the molecular level. The model organism Daphnia magna, which is an indicator species for freshwater ecosystems, was exposed to sub-lethal concentrations of dichloroacetic acid (DCAA), trichloroacetic acid (TCAA) and dibromoacetic acid (DBAA) for 48 h. Polar metabolites extracted from Daphnia were analyzed using liquid chromatography hyphened to a triple quadrupole mass spectrometer (LC-MS/MS). Multivariate analyses identified shifts in the metabolic profile with exposure and pathway analysis was used to identify which metabolites and associated pathways were disrupted. Exposure to all three HAAs led to significant downregulation in the nucleosides: adenosine, guanosine and inosine. Pathway analyses identified perturbations in the citric acid cycle and the purine metabolism pathways. Interestingly, chlorinated and brominated acetic acids demonstrated similar modes of action after sub-lethal acute exposure, suggesting that HAAs cause a Citation: Labine, L.M.; Simpson, M.J. contaminant class-based response which is independent of the type or number of halogens.
    [Show full text]
  • C-Aihrlsulfonylacetic ACIDS a 1ID THEIR
    A KINETIC STUDST OP THE DECOMPOSITION OF SOME «C-AiHrLSULFONYLACETIC ACIDS A1 ID THEIR SALTS HI VARIOUS SOLVENTS DISSERTATION sented in Partial Pulfillxncnt of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Donald Joseph CJ’Connor, B.S. The Ohio State University 1952 Approved by: i J d b l Advioer ACKNOWLEDGEMENT The author would Ilka to aeknowladgs his indebtedness to Dr. Frank Varhoek for hid halpful eounsal during the eouraa of this work. -1 S 0 9 4 GO TABLE OF CONTENTS INTRODUCTION 1 EXPERIMENTAL Preparation of Solvents 3 Preparation of p-Toluenemercaptoacetic Acid 3 Preparation of p-ToluenesulfonylacetIc Acid k Preparation of Sodium p-Toluenesulfonylacetate 5 Apparatus 5 Procedure 6 RESULTS The Reaction 8 Order of the Reaction 8 Dissociation Constant of p-Toluenesulfonyl- acetic Acid 9 Reaction Rate Constants 10 Effect of Solvent 1^ Effect of Concentration 23 Effect of Added Ease 23 Energy of Activation 24- Entropy Factor 26 Decomposition of the Free Acid 23 DISCUSSION Effect of Solvent on the Activation Energy 30 Sffect of Solvent on the Sntrooy Factor 3Jl Effect of Ion Association 1u2 SUMMARY h 5 SUGGESTIONS FOR FURTHER WORK I4.6 EXPGRIHGNTAL DATA REFERENCES 61 AUTOBIOGRAPHY -ii- A KINETIC STUDY OP THE DECOMPOSITION OP SOME og-ARYLSULPONYLACETIC ACIDS AND THEIR SALTS IN VARIOUS SOLVENTS INTRODUCTION 1 2 Recent review articles * have highlighted the great Interest in decarboxylation reactions of many types of organ­ ic acids. In this paper, the major concern is for that tyne of reaction which involves first order decomposition of the anion of the acid as examplified by trinitrobenzoic acid,^*^ trihaloacetic acids^'^*?»8 and X-nitroa].Vcylcarboxylic^' ^ ! r-/ acids.
    [Show full text]
  • Mechanisms of Monohalogenated Acetic Acid Induced Genomic Dna Damage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository MECHANISMS OF MONOHALOGENATED ACETIC ACID INDUCED GENOMIC DNA DAMAGE BY JUSTIN A. PALS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Michael J. Plewa, Chair Professor Benito J. Mariñas Professor A. Layne Rayburn Brian K. Miller, Director of Illinois-Indiana Sea Grant ABSTRACT Disinfection of drinking water stands among the greatest public health achievements in human history. Killing or inactivation of pathogenic microbes by chemical oxidants such as chlorine, chloramine, or ozone have greatly reduced incidence of waterborne diseases. However, the disinfectant also reacts with organic and inorganic matter in the source water and generates a mixture of toxic disinfection byproducts (DBPs) as an unintended consequence. Since they were first discovered in 1974, over 600 individual DBPs have been detected in disinfected water. Exposure to DBPs is associated with increased risks for developing cancers of the colon, rectum, and bladder, and also for adverse pregnancy outcomes including small for gestational age and congenital malformations. While individual DBPs are teratogenic or carcinogenic, because they are formed at low concentrations during disinfection, it is unlikely that any one DBP can account for these increased risks. While genotoxicity and oxidative stress have been suggested, the mechanisms connecting DBP exposures to adverse health and pregnancy outcomes remain unknown. Investigating mechanisms of toxicity for individual, or classes of DBPs will provide a better understanding of how multiple DBPs interact to generate adverse health and pregnancy outcomes.
    [Show full text]