Institute of Astronomy University of Cambridge Natural Sciences Tripos

Total Page:16

File Type:pdf, Size:1020Kb

Institute of Astronomy University of Cambridge Natural Sciences Tripos Institute of Astronomy University of Cambridge Natural Sciences Tripos Part III/MASt Astrophysics Project Booklet Version date: 13th Oct 2014 2014-2015 Editors: Ian Parry and Judith Moss Project List Supervisor(s) Associated UTO Project Title 1 William Alston and Andy Fabian The high-frequency rms-flux relation in accreting black holes Matt Middleton 2 Matt Auger Andy Fabian Active galactic nuclei and their host galaxies: connecting star formation, mass, and AGN activity 3 Mederic Boquien Rob Kennicutt One ring to rule them all: star formation and feedback in the collision debris around NGC 5291 4 Mederic Boquien Rob Kennicutt Star formation in galaxies: observation and modelling of fine structure lines 5 Heather Campbell Gerry Gilmore Searching for progenitors of type Ia Supernovae 6 Thomas de Boer Vasily Belokurov The extended surroundings of the Carina dwarf spheroidal galaxy 7 Ilse De Looze Rob Kennicutt The non--locality of dust heating in galaxies 8 Ilse De Looze Rob Kennicutt Variation in dust properties along the disk of M51 9 Giullio Del-Zanna Giullio Del-Zanna Coronal bright points in the solar atmosphere and Helen Mason and Helen Mason 10 Denis Erkal Vasily Belokurov Using tidal debris to understand galaxy formation 11 Morgan Fraser Gerry Gilmore A survey in between the clouds 12 Morgan Fraser Gerry Gilmore SN 1987A with the Hubble Space Telescope 13 Gerry Gilmore, Gerry Gilmore Local group cosmology with Gaia Floor van Leeuwen and Nic Walton 14 Paula Jofre Gerry Gilmore Gaia benchmark stars: improving stellar physics 15 Paula Jofre Chris Tout Stellar evolution with blue stragglers 16 Grant Kennedy Mark Wyatt Signatures of a multi-planet system around HD 107146 17 Grant Kennedy Mark Wyatt Dynamics of extra-Solar circumplanetary disks 18 Henrik Latter and Henrik Latter Dust dynamics in a turbulent protoplanetary disk Gordon Ogilvie 19 Anne Lohfink and Andy Fabian Exploring the close family of the active galaxy Fairall 9 William Alston 20 Nikku Nikku Effect of solid accretion on atmospheric compositions of giant Madhusudhan and Madhusudhan exoplanets Mark Wyatt 21 Thomas Masseron Gerry Gilmore Constraining the chemistry of the first stars of the Galaxy 22 Thomas Masseron Gerry Gilmore Inferring TiO molecular data for applications to stellar astrophysics and Andy Casey and exoplanets 23 Richard McMahon Richard McMahon Host galaxy properties of active galaxies and quasars in the Dark and Manda Banerji Energy Survey 24 Ben Moster Debora Sijacki The time-scale of galaxy mergers and satellite stripping 25 Ben Moster Debora Sijacki Origin of fast and slow rotators in elliptical galaxies 26 Adam Muzzin Richard McMahon Searching for gravitationally-lensed massive galaxies at high redshift 27 Adam Muzzin Richard McMahon The mass growth and structural evolution of massive galaxies over cosmic time 28 Olja Panic Cathie Clarke Density structure of planet-forming regions 29 Ewald Puchwein Martin Haehnelt The cosmic ultraviolet background and the thermal history of the Universe 30 Giovanni Rosotti Cathie Clarke The effect of stellar encounters on disc size 31 Helen Russell and Andy Fabian The impact of quasar feedback on a host galaxy cluster Stephen Walker 32 Chris Tout and Chris Tout Nucleosynthesis during proton ingestion Anna Zytkow 33 Ranjan Vasudevan Andy Fabian The power output from accretion onto supermassive black holes in and Anne Lohfink active galaxies 34 Nic Walton Mike Irwin Distributions of planetary nebulae in Centaurus A 35 Clare Worley Gerry Gilmore Tracing chemical signatures in asymptotic giant branch stars 36 Mark Wyatt and Mark Wyatt Modelling the accretion of dust onto extrasolar planets Andrew Shannon 37 Anna Zytkow Chris Tout Stars with neutron cores and possible metal enhancement in early galaxies 38 Priscilla Canizares Anthony Lazenby Testing Chern-Simons modified gravity with gravitational-wave and Jonathan Gair detections of relativistic binaries. 39 Chris Tout and Chris Tout Tidal dissipation in stars with deep convective envelopes Anna Zytkow Part-III/MASt Astrophysics Projects 2014-2015 Version date: 13th Oct 2014 Introduction This booklet contains descriptions of the individual projects available in the academic year 2014-2015. Each entry contains a brief description of the background to the project along with a summary of the type of work involved and several references where more information can be obtained. The booklet is made available just before the start of the Michaelmas term to give students about 2 weeks to choose which projects they are interested in. Ian Parry, Part III/MASt Astrophysics Course Coordinator, Michaelmas term 2014 Page 3 of 73 Part-III/MASt Astrophysics Projects 2014-2015 Version date: 13th Oct 2014 The high-frequency rms-flux relation in accreting black holes Supervisors: Will Alston; Office: H56; [email protected] Matt Middleton; Office: H52; [email protected] Andy Fabian; Office: H49; [email protected] Background Active Galactic Nuclei (AGN) are powered by accretion of matter through a disc which extends deep into the gravitational well of a supermassive black hole (SMBH). Accreting black holes show variations over a broad range of timescales, with the X-rays exhibiting the most rapid and large amplitude variability. As the characteristic time scales of variability scale inversely with distance from the black hole, the variations on the shortest time scales are expected to originate from the most inner regions. With an origin in the strongly-curved spacetime close to a black hole, these variations should therefore carry vital information about the two fundamental properties of black holes: mass and spin. The exact origin of the variability processes and the characteristic frequencies remain elusive. We can, however, begin to understand these processes using signal processing techniques. Figure 1a shows a 120 ks example X-ray light curve from a accreting SMBH, where large amplitude and rapid variations can be seen. The variability can be quantified in several ways and a common approach is to compute the power spectral density (PSD) as shown in Figure 1b. This shows the magnitude of the variations as a function of Fourier frequency (1/timescale). The PSD is modelled with two components: a broadband power-law and a Lorentzian. These two components indicate that there is more than one source of variations contributing to the observed light curve; broadband noise and a quasi-periodic oscillation. Another observed variability pattern is the linear rms-flux relation as shown in Fig. 1c. This says that the amplitude of variations increases as the flux (intensity) of the X-ray emission increases. The relation is observed to hold for a range of time scales, indicating that the variations on different timescales are coupled, as would be expected from variations produced at different radii in an accretion disc. However, deviations from the linear rms-flux relation have been reported in one accreting stellar mass black hole (see Fig. 1d). The gradient of the rms-flux relation of the QPO flattens and turns negative as the QPO increases in frequency. Observing this change in the rms-flux relation in an AGN will allow us to understand the variable emission coming from the direct vicinity of a black hole. The project aims are to study the X-ray PSD and rms-flux relation in a small sample (∼ 10 objects) of nearby and highly variable AGN. We will search the high-frequency part of the PSD for QPOs and look for deviations from the expected linear rms-flux relation. These can then be compared to other system properties such as spectral hardness and time-delays. Nature of the project work This is an observational data analysis project involving the use of archival XMM-Newton X-ray data. IDL will the be the main programming language used, as well as the standard Project number 1 Page 4 of 73 Part-III/MASt Astrophysics Projects 2014-2015 Version date: 13th Oct 2014 Figure 1: a (TL): X-ray light curve of an accreting black hole. b (TR): The PSD for the light curve in a, where two variability components are present. c (BL): The linear rms- flux relation observed in accreting compact objects. d (BR): The change in gradient of the rms-flux relation with QPO frequency in an X-ray binary (Heil et al. 2011). X-ray analysis software, XSPEC. This software is easy to use, and example scripts will be provided. An outline of the project is as follows: • Reduction of archival XMM-Newton data to produce spectra and light curves • Using signal processing methods to compute the PSD and rms-flux in different X-ray energy bands • Modelling the PSD in a Bayesian framework and search for QPOs and measure the gradient of the rms-flux relation Useful texts Articles can be found online by searching for author and year at http://adsabs.harvard. edu/abstract_service.html or by following the link to arXiv. • For an overview of the X-ray variability see the review by McHardy (2010, http:// arxiv.org/abs/0909.2579) and Vaughan (2013, http://arxiv.org/abs/1309.6435) • For an overview of the X-ray spectral components in AGN see Fabian (2006, http:// arxiv.org/abs/astro-ph/0511537) and Fabian (2013, http://arxiv.org/abs/1211. 2146). • For a detailed look at the work involved in this project see Alston et al., (2014, http://arxiv.org/abs/1407.7657) or Heil et al., (2011, http://arxiv.org/abs/ 1011.6321) and references therein. Project number 1 Page 5 of 73 Part-III/MASt Astrophysics Projects 2014-2015 Version date: 13th Oct 2014 Active Galactic Nuclei and Their Host Galaxies: Connecting Star Formation, Mass, and AGN Activity Supervisor: Matt Auger, H40, [email protected] Background: The masses of super-massive black holes are tightly correlated with the central stellar velocity dispersions and stellar masses of their host galaxies, possibly signalling a close connection between the growth of these black holes and the galaxies in which they reside.
Recommended publications
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Multi-Wavelength Modeling of the Spatially Resolved Debris Disk of HD 107146
    A&A 533, A132 (2011) Astronomy DOI: 10.1051/0004-6361/201015910 & c ESO 2011 Astrophysics Multi-wavelength modeling of the spatially resolved debris disk of HD 107146 S. Ertel1,S.Wolf1, S. Metchev2,G.Schneider3,J.M.Carpenter4,M.R.Meyer5, L. A. Hillenbrand4, and M. D. Silverstone6 1 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany e-mail: [email protected] 2 Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA 3 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 4 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 5 Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, 8093 Zürich, Switzerland 6 Department of Physics & Astronomy, University of Alabama, 326 Gallalee, Tuscaloosa, AL 35487-0324, USA Received 12 October 2010 / Accepted 1 July 2011 ABSTRACT Aims. We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2 V) star HD 107146. Methods. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the Hubble Space Telescope (HST) in broad V (λc ≈ 0.6 μm) and broad I (λc ≈ 0.8 μm) filters, a resolved 1.3 mm map obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), Spitzer/IRS low resolution spectra in the range of 7.6 μm to 37.0 μm, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5 μmto3.1 mm.
    [Show full text]
  • Chapter 2 Spatially Resolved Spitzer Spectroscopy of the Starburst Nucleus in NGC 5253
    Interstellar medium conditions in starburst galaxies Beirão, M.P.L. Citation Beirão, M. P. L. (2010, January 13). Interstellar medium conditions in starburst galaxies. Retrieved from https://hdl.handle.net/1887/14559 Version: Not Applicable (or Unknown) License: Leiden University Non-exclusive license Downloaded from: https://hdl.handle.net/1887/14559 Note: To cite this publication please use the final published version (if applicable). Chapter 2 Spatially Resolved Spitzer Spectroscopy of the Starburst Nucleus in NGC 5253 Chapter enhanced from P. Beir˜ao, B. R. Brandl, D. Devost, J. D. Smith, L. Hao & J. R. Houck, Astrophysical Journal Letters, 643, L1 (2006) We present new Spitzer Space Telescope data on the nearby, low-metallicity star- burst galaxy NGC 5253, from the Infrared Array Camera IRAC and the Infrared Spectrograph IRS1. The mid-IR luminosity profile of NGC 5253 is clearly domi- nated by an unresolved cluster near the center, which outshines the rest of the galaxy at longer wavelengths. We find that the [NeIII]/[NeII] ratio decreases from ∼ 8.5 at the center to ∼ 2.5 at a distance of ∼ 250 pc. The [S IV]/[S III] fol- lows the [Ne III]/[Ne II] ratio remarkably well, being about 4 − 5 times lower at all distances. Our spectra reveal for the first time PAH emission features at 11.3µm; their equivalent widths increase significantly with distance from the center. The good anti-correlation between the PAH strength and the product between hard- ness and luminosity of the UV radiation field suggests photo-destruction of the PAH molecules in the central region.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Arxiv:0705.4290V2 [Astro-Ph] 23 Aug 2007
    DRAFT VERSION NOVEMBER 11, 2018 Preprint typeset using LATEX style emulateapj v. 08/13/06 THE GEMINI DEEP PLANET SURVEY – GDPS∗ DAVID LAFRENIÈREA,RENÉ DOYONA , CHRISTIAN MAROISB ,DANIEL NADEAUA, BEN R. OPPENHEIMERC,PATRICK F. ROCHED , FRANÇOIS RIGAUTE, JAMES R. GRAHAMF ,RAY JAYAWARDHANAG,DOUG JOHNSTONEH,PAUL G. KALASF ,BRUCE MACINTOSHB, RENÉ RACINEA Draft version November 11, 2018 ABSTRACT We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5′′ with 5σ contrast sensitivities in magnitude difference at 1.6 µm of 9.5 at 0.5′′, 12.9 at 1′′, 15.0 at 2′′, and 16.5 at 5′′. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 MJup with a projected separation in the range 40–200 AU. Depending on the age, spectral type, and distance of the target stars, the detection limit can be as low as 1 MJup. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are∼ unrelated background stars. A detailed statistical analysis of the survey results, yielding upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented.
    [Show full text]
  • Bright Star Double Variable Globular Open Cluster Planetary Bright Neb Dark Neb Reflection Neb Galaxy Int:Pec Compact Galaxy Gr
    bright star double variable globular open cluster planetary bright neb dark neb reflection neb galaxy int:pec compact galaxy group quasar ALL AND ANT APS AQL AQR ARA ARI AUR BOO CAE CAM CAP CAR CAS CEN CEP CET CHA CIR CMA CMI CNC COL COM CRA CRB CRT CRU CRV CVN CYG DEL DOR DRA EQU ERI FOR GEM GRU HER HOR HYA HYI IND LAC LEO LEP LIB LMI LUP LYN LYR MEN MIC MON MUS NOR OCT OPH ORI PAV PEG PER PHE PIC PSA PSC PUP PYX RET SCL SCO SCT SER1 SER2 SEX SGE SGR TAU TEL TRA TRI TUC UMA UMI VEL VIR VOL VUL Object ConRA Dec Mag z AbsMag Type Spect Filter Other names CFHQS J23291-0301 PSC 23h 29 8.3 - 3° 1 59.2 21.6 6.430 -29.5 Q ULAS J1319+0950 VIR 13h 19 11.3 + 9° 50 51.0 22.8 6.127 -24.4 Q I CFHQS J15096-1749 LIB 15h 9 41.8 -17° 49 27.1 23.1 6.120 -24.1 Q I FIRST J14276+3312 BOO 14h 27 38.5 +33° 12 41.0 22.1 6.120 -25.1 Q I SDSS J03035-0019 CET 3h 3 31.4 - 0° 19 12.0 23.9 6.070 -23.3 Q I SDSS J20541-0005 AQR 20h 54 6.4 - 0° 5 13.9 23.3 6.062 -23.9 Q I CFHQS J16413+3755 HER 16h 41 21.7 +37° 55 19.9 23.7 6.040 -23.3 Q I SDSS J11309+1824 LEO 11h 30 56.5 +18° 24 13.0 21.6 5.995 -28.2 Q SDSS J20567-0059 AQR 20h 56 44.5 - 0° 59 3.8 21.7 5.989 -27.9 Q SDSS J14102+1019 CET 14h 10 15.5 +10° 19 27.1 19.9 5.971 -30.6 Q SDSS J12497+0806 VIR 12h 49 42.9 + 8° 6 13.0 19.3 5.959 -31.3 Q SDSS J14111+1217 BOO 14h 11 11.3 +12° 17 37.0 23.8 5.930 -26.1 Q SDSS J13358+3533 CVN 13h 35 50.8 +35° 33 15.8 22.2 5.930 -27.6 Q SDSS J12485+2846 COM 12h 48 33.6 +28° 46 8.0 19.6 5.906 -30.7 Q SDSS J13199+1922 COM 13h 19 57.8 +19° 22 37.9 21.8 5.903 -27.5 Q SDSS J14484+1031 BOO
    [Show full text]
  • Download This Article in PDF Format
    A&A 374, 454–464 (2001) Astronomy DOI: 10.1051/0004-6361:20010750 & c ESO 2001 Astrophysics ROSAT -HRI observations of six southern galaxy pairs G. Trinchieri and R. Rampazzo Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy Received 3 April 2001 / Accepted 25 May 2001 Abstract. We present the detailed analysis of the X–ray data for 6 pairs, isolated or in poor groups, observed at high resolution with the ROSAT HRI . In all cases, the stronger X–ray source is associated with the brighter early-type member and is extended. The extent varies from galactic to group scale, from 3 (RR 210b) to 182 kpc( RR 22a). The fainter members are detected only in two pairs, RR 210 and RR 259. Except for one case, no significant substructures have been detected in the X–ray maps, possibly also as a consequence of the poor statistics. The core radii of the X–ray surface brightness profiles are in the range 1–3 kpc. The distribution of the luminosities of galaxies in pairs encompasses a very wide range of both luminosities and LX/LB ratios, in spite of the very small number of objects studied so far. Our data provide no evidence that pair membership affects the X–ray properties of galaxies. Observation are discussed in the context of the pair/group evolution. Key words. galaxies: individual: general – galaxies: interactions – X–rays: galaxies 1. Introduction Since the number of poor groups studied is increas- ing, attempts at classifying them into an evolutionary se- Pairs of galaxies with elliptical members and isolated el- quence combining their X–ray properties to galaxy pop- lipticals in the field could represent different phases in the ulation (presence of satellite galaxies, ratio between early coalescence process of groups (e.g.
    [Show full text]
  • Polychromatic View of Intergalactic Star Formation in NGC 5291
    A&A 467, 93–106 (2007) Astronomy DOI: 10.1051/0004-6361:20066692 & c ESO 2007 Astrophysics Polychromatic view of intergalactic star formation in NGC 5291 M. Boquien1,2, P.-A. Duc1, J. Braine3, E. Brinks4, U. Lisenfeld5, and V. Charmandaris6,7,8 1 Laboratoire AIM, CEA, CNRS et Université Paris Diderot 2 CEA-Saclay, DSM/DAPNIA/Service d’Astrophysique, 91191 Gif-sur-Yvette Cedex, France e-mail: [email protected] 3 Observatoire de Bordeaux, UMR 5804, CNRS/INSU, BP 89, 33270 Floirac, France 4 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 5 Dept. de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 IESL/Foundation for Research and Technology, Hellas, 71110 Heraklion, Greece 8 Chercheur Associé, Observatoire de Paris, 75014 Paris, France Received 3 November 2006 / Accepted 18 February 2007 ABSTRACT Context. Star formation (SF) takes place in unusual places such as way out in the intergalactic medium out of material expelled from parent galaxies. Aims. Whether SF proceeds in this specific environment in a similar way than in galactic disks is the question we wish to answer. Particularly, we address the reliability of ultraviolet, Hα and mid-infrared as tracers of SF in the intergalactic medium. Methods. We have carried out a multiwavelength analysis of the interacting system NGC 5291, which is remarkable for its extended HI ring hosting numerous intergalactic HII regions. We combined new ultraviolet (GALEX) observations with archival Hα,8µm (Spitzer Space Telescope) and HI (VLA B-array) images of the system.
    [Show full text]
  • Optical Counterparts of ROSAT X-Ray Sources in Two Selected Fields at Low
    Astronomy & Astrophysics manuscript no. sbg˙comsge˙ed c ESO 2018 October 16, 2018 Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes J. Greiner1, G.A. Richter2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, 85740 Garching, Germany 2 Sternwarte Sonneberg, 96515 Sonneberg, Germany Received 14 October 2013 / Accepted 12 August 2014 ABSTRACT Context. The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. Aims. We investigate two ROSAT All-Sky Survey fields of size 10◦× 10◦ each, one at galactic latitude b = 83◦ (26 Com), the other at b = –5◦ (γ Sge), in order to optically identify the majority of sources. Methods. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All- Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. Results. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In partic- ular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula.
    [Show full text]
  • Spitzer's Perspective of Polycyclic Aromatic Hydrocarbons in Galaxies
    REVIEW ARTICLE https://doi.org/10.1038/s41550-020-1051-1 Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies Aigen Li Polycyclic aromatic hydrocarbon (PAH) molecules are abundant and widespread throughout the Universe, as revealed by their distinctive set of emission bands at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 μm, which are characteristic of their vibrational modes. They are ubiquitously seen in a wide variety of astrophysical regions, ranging from planet-forming disks around young stars to the interstellar medium of the Milky Way and other galaxies out to high redshifts at z ≳ 4. PAHs profoundly influence the thermal budget and chemistry of the interstellar medium by dominating the photoelectric heating of the gas and controlling the ionization balance. Here I review the current state of knowledge of the astrophysics of PAHs, focusing on their observational characteristics obtained from the Spitzer Space Telescope and their diagnostic power for probing the local physical and chemi- cal conditions and processes. Special attention is paid to the spectral properties of PAHs and their variations revealed by the Infrared Spectrograph onboard Spitzer across a much broader range of extragalactic environments (for example, distant galax- ies, early-type galaxies, galactic halos, active galactic nuclei and low-metallicity galaxies) than was previously possible with the Infrared Space Observatory or any other telescope facilities. Also highlighted is the relation between the PAH abundance and the galaxy metallicity established for the first time by Spitzer. n the early 1970s, a new chapter in astrochemistry was opened by some of the longstanding unexplained interstellar phenomena (for Gillett et al.1 who, on the basis of ground observations, detected example, the 2,175 Å extinction bump9,16,19, the diffuse interstellar three prominent emission bands peaking at 8.6, 11.3 and 12.7 μm bands20, the blue and extended red photoluminescence emission21 I 22,23 in the 8–14 μm spectra of two planetary nebulae, NGC 7027 and and the ‘anomalous microwave emission’ ).
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Correlations Between the Stellar, Planetary and Debris Components Of
    Astronomy & Astrophysics manuscript no. dunes˙debris˙exoplanets˙v18 c ESO 2018 September 3, 2018 Correlations between the stellar, planetary and debris components of exoplanet systems observed by Herschel Jonathan P. Marshall1,2,⋆, A. Moro-Mart´ın3,4, C. Eiroa1, G. Kennedy5, A. Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10, M.C. Wyatt5, B. Matthews11,12, J. Horner2,13,14, B. Montesinos10, G. Bryden15, C. del Burgo16, J.S. Greaves17, R.J. Ivison18,19, G. Meeus1, G. Olofsson20, G.L. Pilbratt21, and G.J. White22,23 (Affiliations can be found after the references) Received —; accepted — ABSTRACT Context. Stars form surrounded by gas and dust rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own Solar system, with its eight planets and two debris belts is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100 and 160 µm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the Solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]