Telmatobius Macrostomus - Reserva Nacional De Junin

Total Page:16

File Type:pdf, Size:1020Kb

Telmatobius Macrostomus - Reserva Nacional De Junin Universidad Nacional del Centro del Perú Facultad de Ciencias Forestales y del Ambiente Calidad del hábitat de Telmatobius macrostomus - Reserva Nacional de Junin Palacios Zamudio, Walter Jesus Huancayo 2020 Esta obra está bajo licencia https://creativecommons.org/licenses/by/4.0/ Repositorio Institucional - UNCP UNIVERSIDAD NACIONAL DEL CENTRO DEL PERÚ FACULTAD DE CIENCIAS FORESTALES Y DEL AMBIENTE TESIS “CALIDAD DEL HABITAT DE Telmatobius macrostomus - RESERVA NACIONAL DE JUNIN” PRESENTADA POR EL BACHILLER: WALTER JESUS PALACIOS ZAMUDIO PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO FORESTAL Y AMBIENTAL HUANCAYO - PERU 2020 Dr. Ricardo, MENACHO LIMAYMANTA CIP 28403 ASESOR: II DEDICACIÓN A Dios, por guiar mis pasos en mi vida. A María Zamudio, Luis Bonilla, mis padres por todas las enseñanzas, amor y apoyo incondicional del día a día. A Sandra de la O y José Mateo por el impulso de mi vida III AGRADECIMIENTOS Al Dr. Ricardo Menacho Limaymanta, por el acompañamiento ofrecido durante la ejecución de la tesis. Al Biólogo. Alan Chamorro Cuestas, por el coasesoramiento categórico y la amistad sincera. Al Ing. Cesar García Rondinel, por el ánimo y soporte en la ejecución de la tesis. A la Reserva Nacional de Junín, por las facilidades brindadas durante la ejecución del tesis, a través de sus funcionarios Ronald Medrano Yanqui, Rolando Uribe de la Cruz, Melecio winy Arias Lopez. A todos mis amigos, colegas, y de igual manera a cada una de ustedes por el apoyo, para poder cristalizar la investigación presente. IV ÍNDICE RESUMEN ................................................................................................................................................ IX I. INTRODUCCION ............................................................................................................................. 1 II. REVISIÓN BIBLIOGRÁFICA ........................................................................................................ 3 2.1 ANTECEDENTES .......................................................................................................................... 3 2.2 MARCO LEGAL. ........................................................................................................................... 9 2.3 ANTECEDENTES GENERALES DE LOS ANFIBIOS. .......................................................... 11 2.4 CARACTERISTICAS GENERALES DE Telmatobius macrostomus (Peters, 1973) ............. 29 2.5 Definición: ..................................................................................................................................... 40 2.6 Calidad de Hábitat. ....................................................................................................................... 41 2.7 Factores que definen la calidad de hábitat. ................................................................................ 42 III. MATERIALES Y METODOS ....................................................................................................... 45 3.1 LUGAR DE EJECUCIÓN ........................................................................................................... 45 3.2 DESCRIPCIÓN DEL LUGAR DE ESTUDIO .......................................................................... 45 3.3 MATERIALES, EQUIPOS E INSUMOS. ................................................................................. 50 3.4 CARACTERISTICA METODOLÓGICA ................................................................................. 51 3.5 PROCEDIMIENTO. .................................................................................................................... 53 IV. RESULTADOS ................................................................................................................................ 58 4.1 Descripción del Hábitat de Telmatobius macrostomus. .............................................................. 58 4.2 Agrupamiento de los puntos evaluados mediante similitudes de factores ambientales, utilizando distancias euclinianas. .................................................................................................................. 60 4.3 Análisis de Componentes principales. ......................................................................................... 61 4.4 Cuantificación de la disponibilidad de la población de Taphius sp, Orestia sp. y Chlorophyta.64 4.5 Características fisicoquímicas que presenta el agua. ................................................................. 65 4.6 Cuantificación del porcentaje de cobertura vegetal superficial. ............................................... 66 4.7 Área de los transectos acuáticos evaluados................................................................................. 67 4.8 Censo de los individuos de Telmatobius macrostomus. .............................................................. 68 V. DISCUSION ..................................................................................................................................... 69 5.1 Hábitat de Telmatobius macrostomus. ....................................................................................... 69 5.2 Cobertura vegetal del Hábitat de Telmatobius macrostomus. ................................................... 70 5.3 Calidad de agua del Hábitat de Telmatobius macrostomus. ...................................................... 70 5.4 Espacio disponible del Hábitat de Telmatobius macrostomus.................................................. 71 5.5 Descripción de calidad de hábitat de Telmatobius macrostomus a través de ACP. ............... 71 VI. CONCLUSIONES ........................................................................................................................... 72 V VII. RECOMENDACIONES ................................................................................................................. 74 VIII. REFERENCIAS BIBLIOGRÁFICAS ........................................................................................... 75 IX. Anexos. .............................................................................................................................................. 80 Índice de Figuras Figura 1 Proceso de metamorfosis y anatomía interna de un anfibio (Denti, 1988). ............................................ 15 Figura 2 Estado actual de los anfibios en el mundo. ............................................................................................. 18 Figura 3 Distribución global de las especies de anfibios ...................................................................................... 19 Figura 4 Mapas de Diversidad de anfibios y Distribución de Especies Amenazadas en Perú. (Conservación Internacional et al, 2008). ........................................................................................................................................... 21 Figura 5 cabeza de T. macrostomus, Ninacaca - Pasco diciembre 2012 .............................................................. 30 Figura 6 ojos de T. macrostomus, Ninacaca - Pasco diciembre 2012………………………………………………...31 Figura 7 piel e T. macrostomus, Ninacaca - Pasco diciembre 2012…………………………………………………..33 Figura 8 Extremidades de T. macrostomus, Ninacaca Pasco diciembre 2012......................................................34 Figura 9 Fotografías del aparato reproductor de T. macrostomus, Ninacaca - Pasco diciembre 2012. .............. 35 Figura 10 Primeros estadios de desarrollo metamórfico de T. macrostomus ....................................................... 39 Figura 11 ciclo biológico de T. macrostomus (tomado de centro de rescate y producción de renacuajos de “rana gigante de Junín” – Huayre - Junin), noviembre 2012. .............................................................................................. 40 Figura 12 Similitud de puntos evaluados mediante distancias euclinianas ........................................................... 60 Figura 13 Componentes principales en relación al porcentaje de varianza ......................................................... 61 Figura 14: Dispersión de los puntos monitoreados según componente 1 y 2 ........................................................ 62 Figura 15: Correlación de variables en relación al componente 2 ....................................................................... 63 Figura 16 población disponible de alimentos ........................................................................................................ 64 Figura 17 Parámetros físico – Químicos del agua ................................................................................................ 65 Figura 18 Cobertura Superficial .......................................................................................................................... 66 Figura 19 Area disponible ......................................... ……………………………………………………………………67 Figura 20 Numero de individuos por punto ............... ……………………………………………………………………68 VI Figura 21 Calibracion de equipo multiparametrico .............................................................................................. 80 Figura 22 Punto Chacachimpa de muestreo de agua ............................................................................................ 80 Figura 23 Tomando datos del Punto Chacachimpa de muestreo de agua ............................................................ 81 Figura 24 Recolección de moluscos mediante proporción de masa de materia extraida ...................................... 81 Figura 25 Recolección de de algas
Recommended publications
  • Amphibiaweb's Illustrated Amphibians of the Earth
    AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? .............................................................................
    [Show full text]
  • (Sachatamia Ilex) Order: Anura Family: Centronelidae the Ghost Glass Frog Is One of the Most Common F
    Ghost Glass Frog (Sachatamia ilex) Photo and edited by Ronald Vargas C. Order: Anura Family: Centronelidae The ghost glass frog is one of the most common frogs in the Centronelidae family at the Soltis Center and would be likely to be found on a night walk. Its unmatched eyes, in addition to being larger than most glass frogs, easily separate it from this group. It lays its eggs of black color, as the picture shows, covered by a gelatinous substance that adheres them to leaves over the water of the medium size streams, once the tadpoles hatch they fall into the water to continue their development and finish their metamorphosis. Its geographical distribution ranges from Nicaragua, Costa Rica and Panama in Central America to Colombia and Ecuador in South America. Sachatamia ilex has nocturnal habits and is arboreal, during the day it sleeps attached to leaves, being difficult to see as they sometimes take on the green hue of their surroundings. Rana de Vidrio Fantasma (Sachatamia ilex) Foto y edicion por Ronald Vargas C. Orden: Anura Familia: Centronelidae La rana de vidrio fantasma es una de las ranas de la familia Centronelidae más comunes en el Centro Soltis y es muy probable encontrársela en una caminata nocturna. Sus inigualables ojos, además de ser de mayor tamaño que la mayoría de las ranas de vidrio, la separan fácilmente de este grupo. Pone sus huevos de color negro, como muestra la imagen, cubiertos por una sustancia gelatinosa que los adhiere a hojas sobre el cauce de quebradas riachuelos de tamaño medio, una vez que los renacuajos eclosionan se dejan caer al agua para seguir su desarrollo y finalizar su metamorfosis.
    [Show full text]
  • Neotropical Diversification Seen Through Glassfrogs
    Journal of Biogeography (J. Biogeogr.) (2014) 41, 66–80 SYNTHESIS Neotropical diversification seen through glassfrogs Santiago Castroviejo-Fisher1,2*, Juan M. Guayasamin3, Alejandro Gonzalez-Voyer4 and Carles Vila4 1Department of Herpetology, American ABSTRACT Museum of Natural History, New York, NY, Aim We used frogs of the clade Allocentroleniae (Centrolenidae + Allophryni- USA, 2Laboratorio de Sistematica de dae; c. 170 species endemic to Neotropical rain forests) as a model system to Vertebrados, Pontifıcia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS, address the historical biogeography and diversification of Neotropical rain for- Brazil, 3Universidad Tecnologica Indoamerica, est biotas. Centro de Investigacion de la Biodiversidad Location Neotropical rain forests. y el Cambio Climatico, Quito, Ecuador, 4Conservation and Evolutionary Genetics Methods We used an extensive taxon (109 species) and gene (seven nuclear Group, Estacion Biologica de Donana~ and three mitochondrial genes) sampling to estimate phylogenetic relation- (EBD-CSIC), Seville, Spain ships, divergence times, ancestral area distributions, dispersal–vicariance events, and the temporal pattern of diversification rate. Results The Allocentroleniae started to diversify in the Eocene in South Amer- ica and by the early Miocene were present in all major Neotropical rain forests except in Central America, which was colonized through 11 late range expan- sions. The initial uplifts of the Andes during the Oligocene and early Miocene, as well as marine incursions in the lowlands, are coincidental with our esti- mates of the divergence times of most clades of Allocentroleniae. Clades with broad elevational distributions occupy more biogeographical areas. Most dis- persals involve the Andes as a source area but the majority were between the Central and the Northern Andes, suggesting that the Andes did not play a major role as a species pump for the lowlands.
    [Show full text]
  • List of Amphibian Species Lista De Especies De Anfibios
    List of Amphibian Species Lista de Especies de Anfibios Updated January 2018 / Actualizado enero del 2018. Despite several surveys throughout the history of the Reserve the species list represents only roughly half of the expected species. This may be due to declining populations of those species or a lack of more systematic sampling during peak periods of activity. A pesar de varios estudios durante la historia de la Reserva, la lista actual de anfibios sola representa la mitad de las especies esperadas. Unas explicaciones incluyen la disminución de las poblaciones de estas especies y una falta de investigaciones coordinadas con periodos de actividad alta. Gymnophiona Dermophiidae Caecilians Gymnopis multiplicata Peters, 1874 Anura Hyloides Meridianura Eleutherodactylidae Dink Frogs Diasporus diastema (Cope, 1875) Craugastoridae Craugastorinae Rain Frogs Craugastor bransfordii (Cope, 1886) Craugastor crassidigitus (Taylor, 1952) Craugastor fitzingeri (Schmidt, 1857) Craugastor mimus (Taylor, 1955) Craugastor noblei (Barbour and Dunn, 1921) Ceuthomantinae Robber Frogs Pristimantis cerasinus (Cope, 1875) Pristimantis cruentus (Peters, 1873) Pristimantis ridens (Cope, 1866) Tinctanura Hylidae Treefrogs Hylinae Hypsiboas rufitelus (Fouquette, 1961) Scinax boulengeri (Cope, 1887) Scinax elaeochrous (Cope, 1875) Smilisca phaeota (Cope, 1862) Smilisca sordida (Peters, 1863) Phyllomedusinae Agalychnis callidryas (Cope, 1862) Agalychnis saltator Taylor, 1955 Centrolenidae Glass Frogs Centroleninae Cochranella granulosa (Taylor, 1949) Espadarana
    [Show full text]
  • Hindlimb Malformation in the Endemic Colombian Glass Frog, Sachatamia Punctulata (Ruiz-Carranza and Lynch, 1995) (Anura, Centrolenidae)
    Herpetology Notes, volume 12: 919-921 (2019) (published online on 23 September 2019) An alarming case? Hindlimb malformation in the endemic Colombian glass frog, Sachatamia punctulata (Ruiz-Carranza and Lynch, 1995) (Anura, Centrolenidae) Mateo Marín-Martínez1,* and Vanessa Serna-Botero2 Amphibian malformations in Colombia have rarely the partial or total loss of the limb, the emergence of an reported in literature, despite consisting environmental additional limb, the emergence or loss of the digits, and change conditions indicator and results of natural the alterations in bone shape and size (Meteyer, 2000; mutations. The lack of corporal symmetry is correlated Lannoo, 2008). with a decline in amphibian populations (Meteyer, 2000; During a nocturnal survey (18:41 h) on 21 October Lannoo, 2008; Whittaker et al., 2013) and an increasing 2016, we found a juvenile Sachatamia punctulata frequency of these abnormalities may be a symptom (Ruíz-Carranza and Lynch 1995; snouth-vent length = of ecosystem health deterioration (Taylor et al., 2005; 11.9 mm; Figure 1) at “Quebrada Soto 2”, Montebello Rothschild et al., 2012; Bacon et al., 2013; Smith and village, municipality of Norcasia, department of Caldas, Sutherland, 2014). Due to their physiological and Colombia, (5.5754°N, -74.9406°W; WGS84; elevation ecological characteristics, amphibians are considered as 608 m a.s.l.) perched on a bush 0.56 m above the ground good bio-indicators of environmental stress, especially and 0.4 m from the stream. This individual presented those related to the toxic contamination that could a distinguishing hindlimb malformation, and a detailed possibly affect human health (Blaustein et al., 2003; examination of this limb revealed that the frog had a Smith and Sutherland, 2014; Santori and McManus, shortened right tibia-fibula (hemimelia sensu Meteyer, 2014).
    [Show full text]
  • Explaining Andean Megadiversity: the Evolutionary and Ecological Causes of Glassfrog Elevational Richness Patterns
    Ecology Letters, (2013) 16: 1135–1144 doi: 10.1111/ele.12148 LETTER Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns Abstract Carl R. Hutter,1* Juan M. The Tropical Andes are an important global biodiversity hotspot, harbouring extraordinarily high richness Guayasamin2 and John J. Wiens1 and endemism. Although elevational richness and speciation have been studied independently in some Andean groups, the evolutionary and ecological processes that explain elevational richness patterns in the Andes have not been analysed together. Herein, we elucidate the processes underlying Andean richness patterns using glassfrogs (Centrolenidae) as a model system. Glassfrogs show the widespread mid-elevation diversity peak for both local and regional richness. Remarkably, these patterns are explained by greater time (montane museum) rather than faster speciation at mid-elevations (montane species pump), despite the recency of the major Andean uplift. We also show for the first time that rates of climatic-niche evolution and elevational change are related, supporting the hypothesis that climatic-niche conservatism decelerates species’ shifts in elevational distributions and underlies the mid-elevation richness peak. These results may be relevant to other Andean clades and montane systems globally. Keywords Centrolenidae, climatic-niche evolution, montane museum, montane species pump, niche conservatism, time-for-speciation effect. Ecology Letters (2013) 16: 1135–1144 leaving more time for speciation and species accumulation in these INTRODUCTION habitats, relative to those in other elevational zones (similar to the Explaining species richness patterns in montane regions is a critical tropical museum hypothesis, which typically focuses on lineage ages issue for ecologists and conservationists.
    [Show full text]
  • ABSTRACTS 29 Reptile Ecology I, Highland A, Sunday 15 July 2018
    THE JOINT MEETING OF ASIH SSAR HL lcHTHYOLOGISTS & HERPETOLOGISTS ROCHESTER, NEW YORK 2018 ABSTRACTS 29 Reptile Ecology I, Highland A, Sunday 15 July 2018 Curtis Abney, Glenn Tattersall and Anne Yagi Brock University, St. Catharines, Ontario, Canada Thermal Preference and Habitat Selection of Thamnophis sirtalis sirtalis in a Southern Ontario Peatland Gartersnakes represent the most widespread reptile in North America. Despite occupying vastly different biogeoclimatic zones across their range, evidence suggests that the thermal preferenda (Tset) of gartersnakes has not diverged significantly between populations or different Thamnophis species. The reason behind gartersnake success could lie in their flexible thermoregulatory behaviours and habitat selection. We aimed to investigate this relationship by first identifying the Tset of a common gartersnake species (Thamnophis sirtalis sirtalis) via a thermal gradient. We then used this Tset parameter as a baseline for calculating the thermal quality of an open, mixed, and forested habitat all used by the species. We measured the thermal profiles of these habitats by installing a series of temperature-recording analogues that mimicked the reflectance and morphology of living gartersnakes and recorded environmental temperatures as living snakes experience them. Lastly, we used coverboards to survey the current habitat usage of T. s. sirtalis. Of the three habitats, we found that the open habitat offered the highest thermal quality throughout the snake’s active season. In contrast, we recorded the greatest number of snakes using the mixed habitat which had considerably lower thermal quality. Although the open habitat offered the greatest thermal quality, we regularly recorded temperatures exceeding the upper range of the animals’ thermal preference.
    [Show full text]
  • Zootaxa, Phylogenetic Systematics of Glassfrogs (Amphibia: Centrolenidae)
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni by Juan M. Guayasamin, Santiago Castroviejo-Fisher, Linda Trueb, José Ayarzagüena, Marco Rada & Carles Vilà 2009 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Guayasamin, J.M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., and Vilà, C. 2009. Phylogenetic Systematics of Glassfrogs (Amphibia: Centrolenidae) and Their Sister Taxon Allophryne ruthveni. Zootaxa 2100: 1-97. Published version: http://www.mapress.com/zootaxa/ Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. ZOOTAXA 2100 Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni JUAN M. GUAYASAMIN, SANTIAGO CASTROVIEJO-FISHER, LINDA TRUEB, JOSÉ AYARZAGÜENA, MARCO RADA & CARLES VILÀ Magnolia Press Auckland, New Zealand JUAN M. GUAYASAMIN, SANTIAGO CASTROVIEJO-FISHER, LINDA TRUEB, JOSÉ AYARZAGÜENA, MARCO RADA & CARLES VILÀ Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni (Zootaxa 2100) 97 pp.; 30 cm. 11 May 2009 ISBN 978-1-86977-353-3 (paperback) ISBN 978-1-86977-354-0 (Online edition) FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • (Hylidae: Hyloscirtus Bogotensis Group), with a New Species from the Andes of Ecuador
    Neotropical Biodiversity ISSN: (Print) 2376-6808 (Online) Journal homepage: http://www.tandfonline.com/loi/tneo20 Molecular phylogeny of stream treefrogs (Hylidae: Hyloscirtus bogotensis Group), with a new species from the Andes of Ecuador Juan M. Guayasamin, Mauricio Rivera-Correa, Alejandro Arteaga, Jaime Culebras, Lucas Bustamante, R. Alexander Pyron, Nicolás Peñafiel, Carlos Morochz & Carl R. Hutter To cite this article: Juan M. Guayasamin, Mauricio Rivera-Correa, Alejandro Arteaga, Jaime Culebras, Lucas Bustamante, R. Alexander Pyron, Nicolás Peñafiel, Carlos Morochz & Carl R. Hutter (2015) Molecular phylogeny of stream treefrogs (Hylidae: Hyloscirtus bogotensis Group), with a new species from the Andes of Ecuador, Neotropical Biodiversity, 1:1, 2-21, DOI: 10.1080/23766808.2015.1074407 To link to this article: http://dx.doi.org/10.1080/23766808.2015.1074407 © 2015 The Author(s). Published by Taylor & Published online: 28 Aug 2015. Francis Submit your article to this journal Article views: 2577 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tneo20 Download by: [190.10.205.25] Date: 30 June 2016, At: 09:47 Neotropical Biodiversity, 2015 Vol. 1, No. 1, 2–21, http://dx.doi.org/10.1080/23766808.2015.1074407 RESEARCH ARTICLE Molecular phylogeny of stream treefrogs (Hylidae: Hyloscirtus bogotensis Group), with a new species from the Andes of Ecuador Juan M. Guayasamina*, Mauricio Rivera-Correab, Alejandro Arteagaa,c, Jaime
    [Show full text]
  • Comments/Reflections Nocturnal Visual Displays and Call Description
    Behaviour 157 (2020) 1257–1268 brill.com/beh Comments/Reflections Nocturnal visual displays and call description of the cascade specialist glassfrog Sachatamia orejuela Rebecca M. Brunner a,b,∗ and Juan M. Guayasamin c a Department of Environmental Science, Policy, and Management, University of California, Berkeley, 140 Mulford Hall, Berkeley, CA 94720, USA b Third Millennium Alliance, Guanguiltagua N37-152 y Carlos Arosemena Tola, Edificio Lemarie, Officina 500, Quito 170516, Ecuador c Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Campus Cumbayá, Diego de Robles s/n y Pampite, Quito 170901, Ecuador *Corresponding author’s e-mail address: [email protected] Received 11 May 2020; initial decision 20 July 2020; revised 27 October 2020; accepted 28 October 2020; published online 12 November 2020 Abstract Although most male frogs call to attract females, vocalizations alone can be ineffective long-range signals in certain environments. To increase conspicuousness and counter the background noise generated by rushing water, a few frog species around the world have evolved visual communi- cation modalities in addition to advertisement calls. These species belong to different families on different continents: a clear example of behavioural convergent evolution. Until now, long-distance visual signalling has not been recorded for any species in the glassfrog family (Centrolenidae). Sachatamia orejuela, an exceptionally camouflaged glassfrog species found within the spray zone of waterfalls, has remained poorly studied. Here, we document its advertisement call for the first time — the frequency of which is higher than perhaps any other glassfrog species, likely an evolu- tionary response to its disruptive acoustic space — as well as a sequence of non-antagonistic visual signals (foot-flagging, hand-waving, and head-bobbing) that we observed at night.
    [Show full text]
  • Zootaxa, Phylogenetic Systematics of Glassfrogs (Amphibia: Centrolenidae)
    ZOOTAXA 2100 Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni JUAN M. GUAYASAMIN, SANTIAGO CASTROVIEJO-FISHER, LINDA TRUEB, JOSÉ AYARZAGÜENA, MARCO RADA & CARLES VILÀ Magnolia Press Auckland, New Zealand JUAN M. GUAYASAMIN, SANTIAGO CASTROVIEJO-FISHER, LINDA TRUEB, JOSÉ AYARZAGÜENA, MARCO RADA & CARLES VILÀ Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni (Zootaxa 2100) 97 pp.; 30 cm. 11 May 2009 ISBN 978-1-86977-353-3 (paperback) ISBN 978-1-86977-354-0 (Online edition) FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2100 © 2009 Magnolia Press GUAYASAMIN ET AL. Zootaxa 2100: 1–97 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni JUAN M. GUAYASAMIN†1,2, SANTIAGO CASTROVIEJO-FISHER†3, LINDA TRUEB2, JOSÉ AYARZAGÜENA4,5, MARCO RADA6 & CARLES VILÀ3,7 †These authors contributed equally to this work.
    [Show full text]
  • Efecto Conjunto De Los Factores Ambientales Y Espaciales En La Determinación De La Riqueza De Especies De Anuros En La Cordillera De Los Andes
    INSTITUTO LATINOAMERICANO DE CIENCIAS DE LA VIDA Y LA NATURALEZA (ILACVN) CIENCIAS BIOLÓGICAS – ECOLOGIA Y BIODIVERSIDAD EFECTO CONJUNTO DE LOS FACTORES AMBIENTALES Y ESPACIALES EN LA DETERMINACIÓN DE LA RIQUEZA DE ESPECIES DE ANUROS EN LA CORDILLERA DE LOS ANDES LICET FERNANDA CALAMBÁS TROCHEZ Foz do Iguaçu-PR 2017 INSTITUTO LATINOAMERICANO DE CIENCIAS DE LA VIDA Y LA NATURALEZA (ILACVN) CIENCIAS BIOLÓGICAS – ECOLOGIA Y BIODIVERSIDAD EFECTO CONJUNTO DE LOS FACTORES AMBIENTALES Y ESPACIALES EN LA DETERMINACIÓN DE LA RIQUEZA DE ESPECIES DE ANUROS EN LA CORDILLERA DE LOS ANDES LICET FERNANDA CALAMBÁS TROCHEZ Trabajo de Conclusión de Curso presentado al Instituto Latinoamericano de Ciencias de la Vida y la Naturaleza (ILACVN) de la Universidad Federal de Integración Latinoamericana, como requisito, parcial para la obtención del título de Licenciada en Ciencias Biológicas con enfásis en Ecología y Biodiversidad. Orientador: Prof. Dr. Michel Varajão Garey Coorientador: Prof. Dr Peter Löwenberg Neto. Foz do Iguaçu-PR 2017 LICET FERNANDA CALAMBÁS TROCHEZ EFECTO CONJUNTO DE LOS FACTORES AMBIENTALES Y ESPACIALES EN LA DETERMINACIÓN DE LA RIQUEZA DE ESPECIES DE ANUROS EN LA CORDILLERA DE LOS ANDES Trabajo de Conclusión de Curso presentado al Instituto Latinoamericano de Ciencias de la Vida y la Naturaleza (ILACVN) de la Universidad Federal de Integración Latinoamericana, como requisito, parcial para la obtención del título de Licenciada en Ciencias Biológicas con enfásis en Ecología y Biodiversidad. BANCA EXAMINADORA ________________________________________ Orientador: Prof. Dr. Michel Varajão Garey (UNILA) ________________________________________ Prof. Dr. Luiz Roberto Ribeiro Faria Junior (UNILA) ________________________________________ Prof. Dr. Fernando Cesar Vieira Zanella (UNILA) Foz do Iguaçu, _____ de ___________ de ______.
    [Show full text]