The Diffusion of Scientific Innovations: a Role Typology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analog of the Minimax Theorem for Vector Payoffs
Pacific Journal of Mathematics AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL Vol. 6, No. 1 November 1956 AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL 1. Introduction* The von Neumann minimax theorem [2] for finite games asserts that for every rxs matrix M=\\m(i, j)\\ with real elements there exist a number v and vectors P=(Pi, •••, Pr)f Q={QU •••> Qs)f Pi, Qj>β, such that i> 3) for all i, j. Thus in the (two-person, zero-sum) game with matrix Λf, player I has a strategy insuring an expected gain of at least v, and player II has a strategy insuring an expected loss of at most v. An alternative statement, which follows from the von Neumann theorem and an appropriate law of large numbers is that, for any ε>0, I can, in a long series of plays of the game with matrix M, guarantee, with probability approaching 1 as the number of plays becomes infinite, that his average actual gain per play exceeds v — ε and that II can similarly restrict his average actual loss to v-he. These facts are assertions about the extent to which each player can control the center of gravity of the actual payoffs in a long series of plays. In this paper we investigate the extent to which this center of gravity can be controlled by the players for the case of matrices M whose elements m(i9 j) are points of ΛΓ-space. Roughly, we seek to answer the following question. -
Blackwell, David; Diaconis, Persi a Non-Measurable Tail Set
Blackwell, David; Diaconis, Persi A non-measurable tail set. Statistics, probability and game theory, 1--5, IMS Lecture Notes Monogr. Ser., 30, Inst. Math. Statist., Hayward, CA, 1996. Blackwell, David Operator solution of infinite $G\sb \delta$ games of imperfect information. Probability, statistics, and mathematics, 83--87, Academic Press, Boston, MA, 1989. 60040 Blackwell, David; Mauldin, R. Daniel Ulam's redistribution of energy problem: collision transformations. Lett. Math. Phys. 10 (1985), no. 2-3, 149--153. Blackwell, David; Dubins, Lester E. An extension of Skorohod's almost sure representation theorem. Proc. Amer. Math. Soc. 89 (1983), no. 4, 691--692. 60B10 Blackwell, David; Maitra, Ashok Factorization of probability measures and absolutely measurable sets. Proc. Amer. Math. Soc. 92 (1984), no. 2, 251--254. Blackwell, David; Girshick, M. A. Theory of games and statistical decisions. Reprint of the 1954 edition. Dover Publications, Inc., New York, 1979. xi+355 pp. ISBN: 0-486-63831-6 90D35 (62Cxx) Blackwell, David On stationary policies. With discussion. J. Roy. Statist. Soc. Ser. 133 (1970), no. 1, 33--37. 90C40 Blackwell, David The stochastic processes of Borel gambling and dynamic programming. Ann. Statist. 4 (1976), no. 2, 370--374. Blackwell, David; Dubins, Lester E. On existence and non-existence of proper, regular, conditional distributions. Ann. Probability 3 (1975), no. 5, 741--752. Blackwell, David; MacQueen, James B. Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 (1973), 353--355. Blackwell, David; Freedman, David On the amount of variance needed to escape from a strip. Ann. Probability 1 (1973), 772--787. Blackwell, David Discreteness of Ferguson selections. -
Introduction to Computational Social Choice
1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures. -
Stable Matching: Theory, Evidence, and Practical Design
THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of. -
The Portfolio Optimization Performance During Malaysia's
Modern Applied Science; Vol. 14, No. 4; 2020 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Portfolio Optimization Performance during Malaysia’s 2018 General Election by Using Noncooperative and Cooperative Game Theory Approach Muhammad Akram Ramadhan bin Ibrahim1, Pah Chin Hee1, Mohd Aminul Islam1 & Hafizah Bahaludin1 1Department of Computational and Theoretical Sciences Kulliyyah of Science International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia Correspondence: Pah Chin Hee, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. Received: February 10, 2020 Accepted: February 28, 2020 Online Published: March 4, 2020 doi:10.5539/mas.v14n4p1 URL: https://doi.org/10.5539/mas.v14n4p1 Abstract Game theory approach is used in this study that involves two types of games which are noncooperative and cooperative. Noncooperative game is used to get the equilibrium solutions from each payoff matrix. From the solutions, the values then be used as characteristic functions of Shapley value solution concept in cooperative game. In this paper, the sectors are divided into three groups where each sector will have three different stocks for the game. This study used the companies that listed in Bursa Malaysia and the prices of each stock listed in this research obtained from Datastream. The rate of return of stocks are considered as an input to get the payoff from each stock and its coalition sectors. The value of game for each sector is obtained using Shapley value solution concepts formula to find the optimal increase of the returns. The Shapley optimal portfolio, naive diversification portfolio and market portfolio performances have been calculated by using Sharpe ratio. -
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. -
1947–1967 a Conversation with Howard Raiffa
Statistical Science 2008, Vol. 23, No. 1, 136–149 DOI: 10.1214/088342307000000104 c Institute of Mathematical Statistics, 2008 The Early Statistical Years: 1947–1967 A Conversation with Howard Raiffa Stephen E. Fienberg Abstract. Howard Raiffa earned his bachelor’s degree in mathematics, his master’s degree in statistics and his Ph.D. in mathematics at the University of Michigan. Since 1957, Raiffa has been a member of the faculty at Harvard University, where he is now the Frank P. Ramsey Chair in Managerial Economics (Emeritus) in the Graduate School of Business Administration and the Kennedy School of Government. A pioneer in the creation of the field known as decision analysis, his re- search interests span statistical decision theory, game theory, behavioral decision theory, risk analysis and negotiation analysis. Raiffa has su- pervised more than 90 doctoral dissertations and written 11 books. His new book is Negotiation Analysis: The Science and Art of Collaborative Decision Making. Another book, Smart Choices, co-authored with his former doctoral students John Hammond and Ralph Keeney, was the CPR (formerly known as the Center for Public Resources) Institute for Dispute Resolution Book of the Year in 1998. Raiffa helped to create the International Institute for Applied Systems Analysis and he later became its first Director, serving in that capacity from 1972 to 1975. His many honors and awards include the Distinguished Contribution Award from the Society of Risk Analysis; the Frank P. Ramsey Medal for outstanding contributions to the field of decision analysis from the Operations Research Society of America; and the Melamed Prize from the University of Chicago Business School for The Art and Science of Negotiation. -
Rational Inattention with Sequential Information Sampling∗
Rational Inattention with Sequential Information Sampling∗ Benjamin Hébert y Michael Woodford z Stanford University Columbia University July 1, 2016 Preliminary and Incomplete. WARNING: Some results in this draft are not corrected as stated. Please contact the authors before citing. Comments welcome. Abstract We generalize the rationalize inattention framework proposed by Sims [2010] to allow for cost functions other than Shannon’s mutual information. We study a prob- lem in which a large number of successive samples of information about the decision situation, each only minimally informative by itself, can be taken before a decision must be made. We assume that the cost required for each individual increment of in- formation satisfies standard assumptions about continuity, differentiability, convexity, and monotonicity with respect to the Blackwell ordering of experiments, but need not correspond to mutual information. We show that any information cost function sat- isfying these axioms exhibits an invariance property which allows us to approximate it by a particular form of Taylor expansion, which is accurate whenever the signals acquired by an agent are not very informative. We give particular attention to the case in which the cost function for an individual increment to information satisfies the ad- ditional condition of “prior invariance,” so that it depends only on the way in which the probabilities of different observations depend on the state of the world, and not on the prior probabilities of different states. This case leads to a cost function for the overall quantity of information gathered that is not prior-invariant, but “sequentially prior-invariant.” We offer a complete characterization of the family of sequentially prior-invariant cost functions in the continuous-time limit of our dynamic model of in- formation sampling, and show how the resulting theory of rationally inattentive choice differs from both static and dynamic versions of a theory based on mutual information. -
An Annotated Bibliography on the Foundations of Statistical Inference
• AN ANNOTATED BIBLIOGRAPHY ON THE FOUNDATIONS OF STATISTICAL INFERENCE • by Stephen L. George A cooperative effort between the Department of Experimental • Statistics and the Southeastern Forest Experiment Station Forest Service U.S.D.A. Institute of Statistics Mimeograph Series No. 572 March 1968 The Foundations of Statistical Inference--A Bibliography During the past two hundred years there have been many differences of opinion on the validity of certain statistical methods and no evidence that ,. there will be any general agreement in the near future. Also, despite attempts at classification of particular approaches, there appears to be a spectrum of ideas rather than the existence of any clear-cut "schools of thought. " The following bibliography is concerned with the continuing discussion in the statistical literature on what may be loosely termed ''the foundations of statistical inference." A major emphasis is placed on the more recent works in this area and in particular on recent developments in Bayesian analysis. Invariably, a discussion on the foundations of statistical inference leads one to the more general area of scientific inference and eventually to the much more general question of inductive inference. Since this bibliography is intended mainly for those statisticians interested in the philosophical foundations of their chosen field, and not for practicing philosophers, the more general discussion of inductive inference was deliberately de-emphasized with the exception of several distinctive works of particular relevance to the statistical problem. Throughout, the temptation to gather papers in the sense of a collector was resisted and most of the papers listed are of immediate relevance to the problem at hand. -
3 Nobel Laureates to Honor UCI's Duncan Luce
3 Nobel laureates to honor UCI’s Duncan Luce January 25th, 2008 by grobbins Three recent winners of the Nobel Prize in economics will visit UC Irvine today and Saturday to honor mathematician-psychologist Duncan Luce, who shook the economics world 50 years ago with a landmark book on game theory. Game theory is the mathematical study of conflict and interaction among people. Luce and his co-author, Howard Raiffa, laid out some of the most basic principles and insights about the field in their book, “Games and Decisions: Introductions and Critical Survey.” That book, and seminal equations Luce later wrote that helped explain and predict a wide range of human behavior, including decision-making involving risk, earned him the National Medal of Science, which he received from President Bush in 2005. (See photo.) UCI mathematican Don Saari put together a celebratory conference to honor both Luce and Raiffa, and he recruited some of the world’s best-known economic scientists. It’s one of the largest such gatherings since UCI hosted 17 Nobel laureates in October 1996. “Luce and Raiffa’s book has been tremendously influential and we wanted to honor them,” said Saari, a member of the National Academy of Sciences. Luce said Thursday night, “This is obviously very flattering, and it’s amazing that the book is sufficiently alive that people would want to honor it.” The visitors scheduled to attended the celebratory conference include: Thomas Schelling, who won the 2005 Nobel in economics for his research on game theory Roger Myerson and Eric Maskin, who shared the 2007 Nobel in economics for their work in design theory. -
Chemical Game Theory
Chemical Game Theory Jacob Kautzky Group Meeting February 26th, 2020 What is game theory? Game theory is the study of the ways in which interacting choices of rational agents produce outcomes with respect to the utilities of those agents Why do we care about game theory? 11 nobel prizes in economics 1994 – “for their pioneering analysis of equilibria in the thoery of non-cooperative games” John Nash Reinhard Selten John Harsanyi 2005 – “for having enhanced our understanding of conflict and cooperation through game-theory” Robert Aumann Thomas Schelling Why do we care about game theory? 2007 – “for having laid the foundatiouns of mechanism design theory” Leonid Hurwicz Eric Maskin Roger Myerson 2012 – “for the theory of stable allocations and the practice of market design” Alvin Roth Lloyd Shapley 2014 – “for his analysis of market power and regulation” Jean Tirole Why do we care about game theory? Mathematics Business Biology Engineering Sociology Philosophy Computer Science Political Science Chemistry Why do we care about game theory? Plato, 5th Century BCE Initial insights into game theory can be seen in Plato’s work Theories on prisoner desertions Cortez, 1517 Shakespeare’s Henry V, 1599 Hobbes’ Leviathan, 1651 Henry orders the French prisoners “burn the ships” executed infront of the French army First mathematical theory of games was published in 1944 by John von Neumann and Oskar Morgenstern Chemical Game Theory Basics of Game Theory Prisoners Dilemma Battle of the Sexes Rock Paper Scissors Centipede Game Iterated Prisoners Dilemma -
David Blackwell Instance for Activities That Could Run Sometime Between Now and the End of June 2012
Volume 39 • Issue 8 IMS1935–2010 Bulletin October 2010 IMS Short Courses Proposal New IMS President Peter Hall outlines a proposed IMS program of short courses and Contents short meetings: 1 IMS Short Courses The IMS is considering developing a program of short courses and short meetings, reflecting all of the research areas encompassed by our journals. The motivation is at 2–3 Members’ News: Marta Sanz- Solé; David Brillinger; PK Sen; Elizaveta least two-fold. Firstly, we are not very widely involved in specialist meetings, and from Levina; Jerry Friedman; Samuel Kou; this point of view our scientific leadership can probably be enhanced. Secondly, in the Emily Berg; Wayne Fuller; Xuming He; area of short courses, there is an opportunity for both the IMS and its members to earn Jun Liu; Yajun Mei, Nicoleta Serban, a little extra income, by sharing the profits earned by delivering those courses. Roshan Joseph Vengazihiyil, Ming Yuan The best way in which to operate our short courses and short meetings will prob- ably be learned over time, but a few principles can be predicted in advance. In particu- 4 IMS 2010 Gothenburg meeting report & photos lar, the short courses and meetings should be held in places not in direct competition with relevant, major existing conferences, for example the Joint Statistical Meetings. Of 6 Peking University’s Center course, there are many opportunities for avoiding clashes such as these. The concept of for Statistical Science “IMS Winter Workshops” in North America, perhaps held in early January in southern 7 Conference in memory of US, is only one suggestion.