Volcan Nevado Del Tolima

Total Page:16

File Type:pdf, Size:1020Kb

Volcan Nevado Del Tolima INSTITUTO DE INVESTIGACIONESREPUBLICAEN DE GEOCIENCIAS, COLOMBIA MINERIA Y QUIMICA MINISTERIOINGEOMINAS DE MINAS Y ENERGIA UNIDAD OPERATIVA MANIZALES VOLCAN NEVADO DEL TOLIMA: GENERALIDADES Y CONSIDERACIONES GLACIOLOGICAS Por: p HECTOR MORA AEZ LUISFERNANDO GUARNIZO ALVAREZ ARMANDO MURCIA LEAL (t) Manizales, Noviembre 30 de 1994 60 Héctor Mora P., Luis Fernando GuanrizoA. y Amando Murcia L. Descúbrese un sitio pintoresco a laentrada de la montaña de Quindío,en las cercaníasde !bagué y junto a un punto que se llamaPie de la Cuesta.Aparece porencima de una gran masade rocasgraníticas el cono truncado del Tolima cubierto de perpetuanieve, y recordando, en su forma,el Cotopaxi y el Cayambe; el pequeño riachuelo del Combeima,que mezcla sus aguas a las del río Coello, serpentea por un estrecho valle abriéndose camino al través de un bosque de palmeras,y alláen el fondose divisa una parte de la ciudad de !bagué, el gran valle del Magdalenay la cadena oriental de los Andes. Alejandrovon Humboldt VOLCAN NEVADO DEL TOLIMA (CARA NORTE) Panorámica tomada desde la cima del Paramillo del Cisne. (Luis F. Guarnizo A,,1987). 2 BOL. GEOL., VOL. 35 No. -3,INGEOMINAS - Volcán Nerxido del Tolimo Generalidadesy consideraciones glaciológicas. 61 INMEMORIAN Al Geólogo Armando Murcia L., quien participó activamente en las tareas de campo efectuadas en diciembre de 1991, y quien después de soportar penosa enfermedad durante varios meses, falleció cuando seestaba en el procesode elaboración del informe final de este estudio. Sabemos que su aporte técnico-científico hubiera enriquecido aún mas este texto. Sea este nuestro postrer homenaje, como compañeros y arrúgos que fuimos y somos es­ piritualmente, en esa tarea de acercarnos al conocirrúento del mundo que nos rodea. Paz en su tumba 2-3 , BOL. GEOL., VOL. 35 No. INGEOMINAS 62 Héctor Mora P., Luis Fernando GuarnizoA. y Amando Murcia L. CONTENIDO � RESUMEN..................... .................................................................................................... 65 l. IN1RODUCCION.. ................................................................................................... 65 2. OBJETIVOS.. ............................................................................................................... 66 3. METOOOLOCIA....................................................................................................... 66 4. ASPECTOSGENERALES . ........................................................................................ 66 5. ASPECTOSGLACIOLOCICOS ............................................................................... 75 5.1. CONCEPTOSGENERALES ............................................................................ 75 5.2. EXPLORACIONES Y ESTUDIOS ANTERIORES. ........................................ 78 5.3. CALCULOS ANTERIORES RELACIONADOSCON EL CASQUETE GLACIAR EFECTUADOSPOR OTROS AUTORES ............. 81 5.4. EL CASQUETE DE HIELO ACTUALDEL VOLCAN NEVAOO DEL TOLIMA. ................................................................................. 83 5.4.1. Observacionesgenerales y de campo ................................................... 83 5.4.2. Mediciones de campo . ............................................................................ 85 5.4.2.1. Mediciones topográficas ............................................................ 85 5.4.2.2. Mediciones directas en grietas y bordes de glaciares ............ 85 5.4.3. Observacionesfot ográficas .................................................................... 85 5.4.4. Estado actual de los glaciares del Volcán Nevado del Tolima ......... 96 5.4.4.1. Aspectos de conformación física .............................................. 98 5.4.4.2. Aspectos físico-químicos ......................................................... 115 6. AREAS Y VOLUMENES DE HIELO DEL VOLCAN NEVAOO DEL TO LIMA ........................................................................................ 118 6.1. CONSIDERACIONES GENERALES Y PROCEDIMIENTOS................... 118 6.2. ARE AS GLACIARES ....................................................................................... 119 6.3. CALCULO DE VOLUMENES DE HIELO ACTUALES ............................ 123 7. DISCUSION Y CONCLUSIONES ......................................................................... 128 7.1. FORMULACION MATEMATICA DE LAGAREC Y CAILLEUX ........... 128 7.2. FORMULACION DE NYE ............................................................................. 131 7.3. ESTIMACIONES DE ESTE TRABAJ0 .......................................................... 132 7.4. CONSIDERACIONES GENERALES ............................................................ 134 8. RECOMENDACIONES .......................................................................................... 136 9. GLOSARIO ............................................................................................................... 137 10. AGRADECIMIENTOS ............................................................................................ 139 11. REFERENCIAS BIBLIOCRAFICASFIGURAS...................................................................... 140 l. Localización del Volcán Nevado del Tolima ......................................................... 67 2. Localización Volcán Nevado del Tolima dentro del Complejo Ruiz-Tolima ... 68 BOL.3. Parque GEOL., VOL.Nacional 35 No. Natural2 -3, INGEOMJNAS de los Nevados .............................................................. 70 Volcán Nerxldo del Tolima - Generalidades y consideraciones glaciológicas. 63 4. Mapa Geomorfológico del Nevado del Tolima ······················"····························· 74 5. Mapa Hidrográfico y delimitación de cuencas del Volcán Nevado del Tolirna............................................... ............................................................. ,...... 76 6. Localización de la estación sismológica telemétrica y señalessísmicas registradas ................................................................................................................... 77 7. Mapa esquemáticodel Volcán Nevado del Tolirna.............................................. 84 8. Base de medición topográfica y campamento en el sector norte del Glaciar Krauss ............................................................................................................. 86 9. Panorámicas del cráter en julio y noviembre de 1988 .......................................... 88 10. Vista del fondo del cráter en mayo de 1991 y panorámica general en julio de 1988 ............................................................................................... , .... : ........... 89 11. Pared noroestedel cráter en diciembre de 1991 .................................................... 90 12. Panorámica del area circundante al oído en agosto de 1990 y detalle del campo fumarólico en diciembre de 1991 ......................................................... 91 13. Cara norte con el límite de los glaciares en marzo de 1943 (E. Krauss), y diciembre de 1991 ...................................................................................................... 92 14. Esquema del retroceso glaciaren diferentes épocas (Tomada de foto- . grafía de diciembre de 1991) .................................................................................... 93 15. Cara oriental superior en julio de 1988 ................................................................... 94 16. Glaciar Krauss cara noroeste (Stübel y Wolf 1906) ............................................... 94 17. Glaciar Krauss en marzo de 1943 (E. Krauss) y diciembre de 1991 .................... 95 18. Cara suroeste tomada en 1873 desde el sitio conocido como Pie de la Cuesta, hoy Boquerón ...................................................................................... 96 19. Retroceso glaciar - cara sur ....................................................................................... 97 20. Panorámica de la cara occidental en julio de 1988 ................................................ 98 21. Límite Glaciar Volcán Nevado del Tolima en 1987 .............................................. 99 22. Delimitación del casquete glaciar para efecto de descripción y cálculo de áreas ........................................................................................................ 101 23. Glaciares Dulima y Ambalá en 1991 ..................................................................... 102 · 24. Glaciar Krauss en diciembre de 1991 .................................................................... 103 25. Glaciar Totaré en septiembre de 1994 ................................................................... 105 26. Detalle de bloques de hielo caidos en "La Pista de Bolos" y estereo- grama del frente del Glaciar Totaré en diciembre de 1991 ................................ 106 27. Panorámica del campo de hielo fósil y detalle con escalade dicho afloramiento .............................................................................................................. 108 28. Panorámica del Glaciar Pijao en septiembrede 1994 ......................................... 109 29. Panorámica del Glaciar Schimmer ........................................................................ 110 30. Espesortipo en el frente noroeste del Glaciar Schimmer en octubre de 1992 ........................................................................................................ 111 31. Zona inferior (zona de ablación) del Glaciar Combeima................................... 112 BOL. GEOL.,
Recommended publications
  • Threatened Birds of the Americas
    GOLDEN-PLUMED PARAKEET Leptosittaca branickii V/R10 This poorly known parrot is found very locally in temperate Andean forests in Colombia, Ecuador and Peru, in the first two of which it has suffered from much habitat loss; its nomadism, which may be related to a heavy dependence on Podocarpus cones, renders it highly problematic to conserve. DISTRIBUTION The Golden-plumed Parakeet is known from at least 70 specimens, and has been recorded from at least 30 localities scattered through the Andes in Colombia, Ecuador and Peru. Colombia The species is known from two regions on the west slope of the Central Andes (all coordinates, unless otherwise stated, are from Paynter and Traylor 1981), as follows: the Nevado del Ruiz–Nevado del Tolima region on the borders of Tolima, Risaralda, Quindío and Caldas departments (in and around Los Nevados National Park), localities being Hacienda Jaramillo, over 3,000 m, at 4°47’N 75°26’W, September 1918 (Carriker 1955a; nine specimens in CM, all labelled “Santa Ignacia”); above Santa Rosa de Cabal, recently (Hilty and Brown 1986); Laguneta, 3,050 m, at 4°35’N 75°30’W, April 1942 (specimen in ANSP); Alto Quindío Acaime Natural Reserve, 4°37’N 75°28’W, and the nearby Cañon del Quindío Natural Reserve, on the west slope of the Central Andes in Quindío, ranging into adjacent forest on the east slope in Tolima, and present throughout the year (E. Murgueitio R. in litt. 1987; also Renjifo 1991, L. M. Renjifo in litt. 1992, whence coordinates; see Ecology); Rincón Santo, Salento, 2,800 m, December 1989 (J.
    [Show full text]
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Tungurahua Volcano, Ecuador: Structure, Eruptive History and Hazards
    Journal of Volcanology and Geothermal Research 91Ž. 1999 1±21 www.elsevier.comrlocaterjvolgeores Tungurahua Volcano, Ecuador: structure, eruptive history and hazards Minard L. Hall a,1, Claude Robin b,), Bernardo Beate c, Patricia Mothes a,1, Michel Monzier a,d,2 a Instituto Geofõsico,ÂÂ Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador b Institut de Recherches Pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, OPGC, 5 Rue Kessler, 63038, Clermont-Ferrand, France c Departamento de Geologõa,ÂÂÂ Facultad de Geologõa, Minas y Petroleos, Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador d Institut de Recherches pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, A.P. 17-11-6596, Quito, Ecuador Accepted 25 March 1999 Abstract Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955"90 years ago, which left a large amphitheater and produced a ;8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ;15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ;10-km-long lake, which was subsequently breached, generating another catastrophic debris flow.
    [Show full text]
  • Knut Hjalmar Stolpe's Works in Peru (1884) Ellen F
    Andean Past Volume 8 Article 13 2007 Bringing Ethnography Home: Knut Hjalmar Stolpe's Works in Peru (1884) Ellen F. Steinberg [email protected] Jack H. Prost University of Illinois, Chicago, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/andean_past Part of the Archaeological Anthropology Commons Recommended Citation Steinberg, Ellen F. and Prost, Jack H. (2007) "Bringing Ethnography Home: Knut Hjalmar Stolpe's Works in Peru (1884)," Andean Past: Vol. 8 , Article 13. Available at: https://digitalcommons.library.umaine.edu/andean_past/vol8/iss1/13 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Andean Past by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. BRINGING ETHNOGRAPHY HOME: KNUT HJALMAR STOLPE’S WORK IN PERU (1884) Ellen FitzSimmons Steinberg Jack H. Prost University of Illinois at Chicago INTRODUCTION Stübel. Their intent was to document the tombs before the Necropolis was totally destroyed. The Ancón, on Peru’s central coast, is one of the results of their 1875 excavation were originally most explored, excavated, and plundered sites published between 1880 and 1887 in 15 volumes in that country. Located approximately 32 km titled Das Todtenfeld von Ancon in Peru, repub- north of Lima, the small fishing village has been lished in English as The Necropolis of Ancon in a seaside resort for more than one hundred years Peru . The next large scientific excavation at (Figure 1). Its real fame does not reside in its the site was performed by George Amos Dorsey sandy beaches but rather in its huge graveyard.
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]
  • Determinación Del Volumen Del Casquete De Hielo Del Volcán Cotopaxi
    DETERMINACIÓN DEL VOLUMEN DEL CASQUETE DE HIELO DEL VOLCÁN COTOPAXI M. Hall – P. Mothes INAMHI Instituto Nacional de Meteorología e Hidrología IRD Institut de Recherche pour le Développement IG-EPN Instituto de Geofísica de la Escuela Politécnica Nacional INGEOMINAS Instituto Colombiano de Geología y Minería Por Bolívar Cáceres, Jair Ramírez, Bernard Francou, Jean-Philippe Eissen, Jean-Denis Taupin, Ekkehard Jordan, Lars Ungerechts, Luis Maisincho, Diego Barba, Eric Cadier, Rodolphe Bucher, Arturo Peñafiel, Pablo Samaniego, Patricia Mothes 2 “Un nevado de los alrededores, que se llama Cotopaxi, se había despertado después de 200 años, después de tantos años de silencio, para recomenzar a echar fuego y llamas y una gran cantidad de polvo sulfuroso que se iba disipando hasta perderse en las inmediaciones: la hierba y las praderas se ahogaron. La mayor parte del ganado, que no encontró nada que pastar en los campos, murió de hambre y necesidad, y este polvo se extendió más de 60 leguas a la redonda. El año pasado, desde el mes de noviembre hasta ahora, hubo los daños más terribles; el fuego interno, que fundió la nieve de la cual estaba cubierta la cima de la montaña, formó un torrente tan terrible que se llevó consigo casas, terrenos, hombres, mujeres, manufacturas de textiles de las comarcas, echó abajo la mayoría de los puentes que desde las calles del poblado cruzan las diferentes corrientes de agua que descienden de esta montaña y nos causaron además, por infección del aire, una enfermedad también llamada Cotopaxi, que no era otra cosa que la parodititis conglomerada”. Joseph de Jussieu, 16 de marzo, 1745, Lettre à son frère.
    [Show full text]
  • 349660405003.Pdf
    Boletin de Geología ISSN: 0120-0283 Universidad Industrial de Santander Piedrahita, Daniel Alberto; Aguilar-Casallas, Camila; Arango- Palacio, Eliana; Murcia, Hugo; Gómez-Arango, Johana Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia Boletin de Geología, vol. 40, núm. 3, 2018, Septiembre-Diciembre, pp. 29-48 Universidad Industrial de Santander DOI: 10.18273/revbol.v40n3-2018002 Disponible en: http://www.redalyc.org/articulo.oa?id=349660405003 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto vol. 40, n.° 3, septiembre-diciembre de 2018 ISSN impreso: 0120-0283 ISSN en línea: 2145-8553 Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia Daniel Alberto Piedrahita1,2*; Camila Aguilar-Casallas3; Eliana Arango-Palacio4; Hugo Murcia2,5; Johana Gómez-Arango6 DOI: http://dx.doi.org/10.18273/revbol.v40n3-2018002 Forma de citar: Piedrahita, D.A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., y Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. DOI: 10.18273/revbol.v40n3-2018002. RESUMEN El Volcán Cerro Machín (VCM) se localiza en el flanco oriental de la Cordillera Central de Colombia a 17 km al occidente de la ciudad de Ibagué (Tolima). El VCM es un volcán Holocénico de composición dacítica, con evidencia de grandes erupciones (VEI 5). Estratigráficamente, en las paredes internas del cráter es posible observar una secuencia de depósitos de Corrientes de Densidad Piroclástica (CDPs) diluida con características de depósitos de oleadas basales.
    [Show full text]
  • ECUADOR's FORGOTTEN VOLCANO the Eruption
    Desastes en la Región ECUADOR’S FORGOTTEN VOLCANO The Eruption of Reventador Ecuador, one of the countries with the largest number of active volcanoes in the world, awoke on Sunday 3 November to a volcanic emergency. Since not enough funds are available to monitor all volcanoes, the Geophysical Institute of the National Polytechnic School— the body in charge of such surveillance— had not been paying too much attention to Reventador volcano, located 95 Km East of Quito, in the province of Napo, which had lain dormant for 26 years. Such was not the case that morning, though, as violent explosions flung gases, pyroclastic flows and large amounts of ash that reached an altitude of 16 Km. Residents of nearby communities in Napo and Sucumbíos provinces, frightened by the magnitude of the eruption, fled the area. “On Sunday we left in a hurry as soon as we saw that the mountain was starting to spit fire,” said a cattleman from the Chaco, the area nearest the volcano. The lava flows followed the course of Maker River, on the volcano’s slopes, and caused several landslides that cut off the main highway between Quito and Lago Agrio, the capital of Sucumbíos. Easterly winds blowing in the direction of Quito covered everything in their path—fields, rivers, houses, cattle, reservoirs—with dense ash. The population of Oyacachi, one of the most severely affected towns, reported that by 11 in the morning darkness was almost total. The ash reached Quito by 1:30 in the afternoon, wrapping the city in a grey cloud that made it almost impossible to breathe.
    [Show full text]
  • La Catástrofe Del Nevado Del Ruiz, ¿Una Enseñanza Para El Ecuador? El Caso Del Cotopaxi
    La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi. Robert d’Ercole To cite this version: Robert d’Ercole. La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi.. Estudios de Geograf’ia, Corporación Editora Nacional, 1989, Riesgos Naturales en Quito, 2, pp.5-32. hal-01184809 HAL Id: hal-01184809 https://hal.archives-ouvertes.fr/hal-01184809 Submitted on 25 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LA CATASTROFE DEL NEVADO DEL RUIZ l UNA ENSENANZA- PARA EL ECUADOR ? EL CASO DEL COTOPAXI Robert D'Ercole* El 13 de noviembre de 1985, el volcân colombiano, el Nevado deI Ruiz, erupciono provocando la muerte de unas 25.000 personas. Esta es la mayor catâstrofe causada por un volcan desde la que produjo 29.000 victimas, en 1902 en la isla Martinica, luego de la erupci6n de la Montafla Pelée. La magnitud de las consecuencias y el hecho de que el Ruiz haya dado signos de reactivaci6n mucho tiempo antes, plantean el problema deI fenomeno natural pero también de los factores humanos que originaron la tragedia.
    [Show full text]
  • Bildnachweis
    Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u;
    [Show full text]
  • Cayambeantisana Skills Expedition
    The Spirit of Alpinism www.AlpineInstitute.com [email protected] Administrative Office: 360-671-1505 Equipment Shop: 360-671-1570 Cayambe­Antisana Skills Expedition Program Itinerary Copyright 2015, American Alpine Institute Day 1: Arrive ­Quito (9500 ft / 2895 m) – Start of Part 1 This is the first scheduled day of the program. Arrive in Quito and meet your guide and other members of the expedition at Hotel Reina Isabel. The first day is designated for travel to Ecuador and becoming situated in country. For those who arrive early, we will provide you with a variety of sight seeing options including a tour of the historic colonial sector of Quito and El Panecillo overlooking the city. We will spend the night at Hotel Reina Isabel. Day 2: Acclimatize ­ Otavalo Market After meeting the rest of your group for breakfast, we will drive north, crossing the line of the Equator on our way to the Otavalo market. We begin our acclimatization by exploring the market which is filled with indigenous crafts and food. For lunch, we will take a leisurely walk to Lago de San Pablo and dine on the lake shore across from the dormant Imbabura Volcano (15,255ft). We will return to Hotel Reina Isabel for the evening. Day 3: Acclimatize ­ Cerro Pasochoa (13,776 ft / 4199 m) Today we will go on our first acclimatization hike on Cerro Pasochoa. The Pasochoa Wildlife Refuge has been protected since 1982, and exists as it did in pre­Colombian times. In the forest below Cerro Pasochoa we will hike among stands of pumamaqui, polyapis, podocarpus, and sandlewood trees as we watch for some of the more than one hundred species of native birds.
    [Show full text]