Depleted Uranium

Total Page:16

File Type:pdf, Size:1020Kb

Depleted Uranium WHO/SDE/PHE/01.1 English only Limited Depleted uranium Sources, Exposure and Health Effects Department of Protection of the Human Environment World Health Organization Geneva April 2001 The illustration of the cover page is extracted from Rescue Mission: Planet Earth, ã Peace Child International 1994; used by permission. ã World Health Organization 2001 This document is not issued to the general public and all rights are reserved by the World Health Organization. The document may not be reviewed, abstracted, quoted, reproduced or translated, in part or in whole, without the prior written permission of WHO. No part of this document may be stored in a retrieval system or transmitted in any form or by any means – electronic, mechanical or other without the prior written permission of WHO. The views expressed in documents by named authors are solely the responsibility of those authors. Preface Depleted uranium (DU) has been used in medical and industrial applications for decades but only since its use in military conflicts in the Gulf and the Balkans has public concern been raised about potential health consequences from exposure to it. Concerns have been particularly for peacekeeping forces, humanitarian workers and local populations living and working in areas contaminated by DU following conflict. There has been a large amount of research on the health consequences to workers in the mining and milling of uranium, and on its use in nuclear power, that enables a reasonable assessment of its impact on human health1. Since DU acts chemically in the same way as uranium, and the radiological toxicity is somewhat less than uranium, this research can be used to evaluate health risks from ingestion, inhalation and contact with DU. In late 1999, the WHO Department on the Protection of the Human Environment (PHE) recognized the need for an independent review of the scientific literature from which health risks could be assessed from various DU exposure situations. Professor Barry Smith from the British Geological Survey, UK, was contracted to prepare the draft from the literature that would be subject to rigorous scientific review. The format of the review was to be modelled on monographs in the WHO environmental health criteria series. An ad hoc review and oversight group of WHO staff members was formed and coordinated by Dr Michael Repacholi. Participants and contributors to the review included: Drs Ala Alwan, Antero Aitio, Jamie Bartram, Keith Baverstock, Elisabeth Cardis, Carlos Corvalan, Marilyn Fingerhut, Yoshikazu Hayashi, Richard Helmer, Jenny Pronczuk, Colin Roy, Dieter Schwela, Gennadi Souchkevich and Maged Younes. The National Radiological Protection Board (NRPB) in the United Kingdom, a WHO Collaborating Centre on ionizing and non-ionizing radiation, provided many contributions relating to the radiological toxicity of DU. These contributions were provided by Dr Neil Stradling and other staff identified below. The National Institute of Occupational Safety and Health (NIOSH) of the Center for Disease Control (CDC) in the USA, a WHO Collaborating Centre on occupational health, provided contributions mainly related to DU occupational health and safety requirements, protective measures and health monitoring. These contributions were provided by Dr Jim Neton and other staff identified below. The Centre for Health Promotion and Preventative Medicine (CHPPM) in the USA, provided contributions relating mainly to DU applications, radiological toxicity and medical care of people exposed to DU. These contributions were provided by Dr Mark Melanson and other staff identified below. The International Atomic Energy Agency (IAEA) provided contributions on the effects of ionizing radiation and internationally recognized standards. These contributions were provided by Dr Carol Robinson and Dr Tiberio Cabianca. Included in these reviewers and contributors are members of the International Commission on Radiological Protection (ICRP) an NGO in formal relations with WHO. 1 The Government of Iraq has reported increases in cancers, congenital abnormalities and other diseases following the Gulf war in 1991, but there are no published results for review. WHO is working with the Government of Iraq to prepare studies to investigate this situation. i There have been a large number of contributors to this monograph, and it has been reviewed widely. In addition to the internal WHO review group, contributors and reviewers are listed below in alphabetical order: · AC-Laboratorium Spiez, Switzerland: Dr Ernst Schmid · ATSDR, USA: Dr Sam Keith · Batelle Pacific Northwest Laboratoies, USA: Dr Tom Tenforde · CHPPM, USA: Drs Dave Alberth, Marianne Cloeren, Richard Kramp, Gordon Lodde, Mark Melanson, Laurie Roszell, Colleen Weese · Electric Power Research Institute, USA: Dr Leeka Kheifets · Hopital Cantonal Universitaire, Division de médecine nucléaire, Geneva: Dr Albert Donath · IAEA: Drs Tiberio Cabianca, Carol Robinson · Karolinska Institute, Sweden: Dr Lennart Dock · NIOSH, USA: Drs Heinz Ahlers, Bonnie Malit, Jim Neton, Michael Ottlinger, Paul Schulte, Rosemary Sokas · NRPB, UK: Drs Mike Bailey, George Etherington, Alan Hodgson, Colin Muirhead, Alan Phipps, Ed Rance, Jennifer Smith, Neil Stradling · SCK·CEN Studiecentrum voor Kernenergie Centre d'étude de l'Energie Nucléaire, Belgian Nuclear Research Centre : Dr Christian Hurtgen · Swedish Radiation Protection Institute, Stockholm: Drs Gustav Akerblom, Jan Olof Snihs · UNEP, Balkans Unit: Mr Henrik Slotte The monograph was technically edited by Professor Barry Smith and language edited by Audrey Jackson, both from the British Geological Survey, UK. WHO acknowledges, with sincere gratitude, the contributions of all the authors and reviewers of this important monograph. In addition, WHO also acknowledges with thanks the photographs related to DU provided by IAEA, NIOSH and ATSDR. WHO has and will continue to work with the United Nations Environment Programme (UNEP), the International Atomic Energy Agency (IAEA) and other UN agencies, Collaborating Centres and NGOs to advance our knowledge about exposure to DU and other environmental risk factors that could have consequences for health. Such programmes are aimed at providing essential information to member states and assisting national health services to deal with chemical, physical and biological risk factors in their environment. ii Executive Summary This scientific review on depleted uranium is part of the World Health Organization's (WHO's) ongoing process of assessment of possible health effects of exposure to chemical, physical and biological agents. Concerns about possible health consequences to populations residing in conflict areas where depleted uranium munitions were used have raised many important environmental health questions that are addressed in this monograph. Purpose and scope The main purpose of the monograph is to examine health risks that could arise from exposure to depleted uranium. The monograph is intended to be a desk reference providing useful information and recommendations to WHO Member States so that they may deal appropriately with the issue of depleted uranium and human health. Information is given on sources of depleted uranium exposure, the likely routes of acute and chronic intake, the potential health risks from both the radiological and chemical toxicity standpoints and future research needs. Several ways of uptake of compounds with widely different solubility characteristics are also considered. Information about uranium is used extensively because it behaves in the body the same way as depleted uranium. Uranium and depleted uranium Uranium is a naturally occurring, ubiquitous, heavy metal found in various chemical forms in all soils, rocks, seas and oceans. It is also present in drinking water and food. On average, approximately 90 µg (micrograms) of uranium exist in the human body from normal intakes of water, food and air; approximately 66% is found in the skeleton, 16% in the liver, 8% in the kidneys and 10% in other tissues. Natural uranium consists of a mixture of three radioactive isotopes which are identified by the mass numbers 238U(99.27% by mass), 235U(0.72%) and 234U(0.0054%). Uranium is used primarily in nuclear power plants; most reactors require uranium in which the 235U content is enriched from 0.72% to about 3%. The uranium remaining after removal of the enriched fraction is referred to as depleted uranium. Depleted uranium typically contains about 99.8% 238U, 0.2% 235U and 0.0006% 234U by mass. For the same mass, depleted uranium has about 60% of the radioactivity of uranium. Depleted uranium may also result from the reprocessing of spent nuclear reactor fuel. Under these conditions another uranium isotope, 236U may be present together with very small amounts of the transuranic elements plutonium, americium and neptunium and the fission product technetium-99. The increase in the radiation dose from the trace amounts of these additional elements is less than 1%. This is insignificant with respect to both chemical and radiological toxicity. iii Uses of depleted uranium Depleted uranium has a number of peaceful applications: counterweights or ballast in aircraft, radiation shields in medical equipment used for radiation therapy and containers for the transport of radioactive materials. Due to its high density, which is about twice that of lead, and other physical properties, depleted uranium is used in munitions designed to penetrate armour plate. It also reinforces military vehicles, such as tanks. Exposure
Recommended publications
  • Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life
    Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life Understanding Radioactivity and Radiation in our Everyday Lives Radioactivity is part of our earth – it has existed all along. Naturally occurring radio- active materials are present in the earth’s crust, the floors and walls of our homes, schools, and offices and in the food we eat and drink. Our own bodies- muscles, bones and tissues, contain naturally occurring radioactive elements. Man has always been exposed to natural radiation arising from earth as well as from outside. Most people, upon hearing the word radioactivity, think only about some- thing harmful or even deadly; especially events such as the atomic bombs that were dropped on Hiroshima and Nagasaki in 1945, or the Chernobyl Disaster of 1986. However, upon understanding radiation, people will learn to appreciate that radia- tion has peaceful and beneficial applications to our everyday lives. What are atoms? Knowledge of atoms is essential to understanding the origins of radiation, and the impact it could have on the human body and the environment around us. All materi- als in the universe are composed of combination of basic substances called chemical elements. There are 92 different chemical elements in nature. The smallest particles, into which an element can be divided without losing its properties, are called atoms, which are unique to a particular element. An atom consists of two main parts namely a nu- cleus with a circling electron cloud. The nucleus consists of subatomic particles called protons and neutrons. Atoms vary in size from the simple hydro- gen atom, which has one proton and one electron, to large atoms such as uranium, which has 92 pro- tons, 92 electrons.
    [Show full text]
  • EHC 238 Front Pages Final.Fm
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Prospects for Nuclear Energy in Asia Hooman Peimani
    2012 Summit Papers Prospects for Nuclear Energy in Asia Hooman Peimani All 2012 Summit Papers are available for download from www.nbr.org. HOOMAN PEIMANI is Head of the Energy Security Division and Principal Fellow at the Energy Studies Institute at the National University of Singapore. He can be reached at <[email protected]>. Pacific Energy Summit • 2012 Summit Papers • Peimani EXECUTIVE SUMMARY This paper outlines the reasons for Asia’s interest in nuclear power and argues that despite the 2011 disaster at Fukushima, the region will continue to be the main arena for expanding the use of nuclear power. Main Argument Asia has established itself as the world’s largest energy consumer, accounting for 45.2% of the global energy consumption in 2010. Today, fossil energy accounts for the bulk of regional energy requirements, but many factors have demanded diversification of the region’s energy mix to include non-fossil energy—particularly nuclear power, which can provide clean energy on a large scale and in a reliable manner. While concerns about the safety of nuclear reactors are legitimate, they are not a strong argument for dismissing nuclear energy. Consequently, safety concerns have not resulted in serious plans in Asia to reverse or downsize nuclear energy programs in its countries with active programs or serious existing plans. Policy Implications The Asia-Pacific region has been growing at a significant rate, which ensures a high and increasing demand for goods and services. In turn, such economic momentum has unsurprisingly ensured a large and growing demand for energy in the region.
    [Show full text]
  • Health Risk Assessment of Electromagnetic Fields
    ! ! ! Attachment!1! Electromagnetic Biology and Medicine, 25: 197–200, 2006 Copyright © Informa Healthcare ISSN 1536-8378 print DOI: 10.1080/15368370601034003 Benevento Resolution 2006 The International Commission for Electromagnetic Safety (ICEMS) held an international conference entitled. The Precautionary EMF Approach: Rationale, Legislation and Implementation, hosted by the City of Benevento, Italy, on February 22–24, 2006. The meeting was dedicated to W. Ross Adey, M.D. (1922–2004). The scientists at the conference endorsed and extended the 2002 Catania Resolution and resolved that: 1. More evidence has accumulated suggesting that there are adverse health effects from occupational and public exposures to electric, magnetic, and electromagnetic fields, or EMF1, at current exposure levels. What is needed, but not yet realized, is a comprehensive, independent, and transparent examination of the evidence pointing to this emerging, potential public health issue. 2. Resources for such an assessment are grossly inadequate despite the explosive growth of technologies for wireless communications as well as the huge For personal use only. ongoing investment in power transmission. 3. There is evidence that present sources of funding bias the analysis and interpretation of research findings towards rejection of evidence of possible public health risks. 4. Arguments that weak (low intensity) EMF cannot affect biological systems do not represent the current spectrum of scientific opinion. 5. Based on our review of the science, biological effects can occur from exposures to both extremely low frequency fields (ELF EMF) and radiation Electromagn Biol Med Downloaded from informahealthcare.com by Gazi Univ. on 04/25/13 frequency fields (RF EMF). Epidemiological and in vivo as well as in vitro experimental evidence demonstrates that exposure to some ELF EMF can increase cancer risk in children and induce other health problems in both children and adults.
    [Show full text]
  • Sources, Effects and Risks of Ionizing Radiation
    SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website.
    [Show full text]
  • Positron Emission Tomography
    Positron emission tomography A.M.J. Paans Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, The Netherlands Abstract Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology. 1 Introduction The idea of in vivo measurement of biological and/or biochemical processes was already envisaged in the 1930s when the first artificially produced radionuclides of the biological important elements carbon, nitrogen and oxygen, which decay under emission of externally detectable radiation, were discovered with help of the then recently developed cyclotron. These radionuclides decay by pure positron emission and the annihilation of positron and electron results in two 511 keV γ-quanta under a relative angle of 180o which are measured in coincidence. This idea of Positron Emission Tomography (PET) could only be realized when the inorganic scintillation detectors for the detection of γ-radiation, the electronics for coincidence measurements, and the computer capacity for data acquisition and image reconstruction became available. For this reason the technical development of PET as a functional in vivo imaging discipline started approximately 30 years ago.
    [Show full text]
  • Radiation and Your Patient: a Guide for Medical Practitioners
    RADIATION AND YOUR PATIENT: A GUIDE FOR MEDICAL PRACTITIONERS A web module produced by Committee 3 of the International Commission on Radiological Protection (ICRP) What is the purpose of this document ? In the past 100 years, diagnostic radiology, nuclear medicine and radiation therapy have evolved from the original crude practices to advanced techniques that form an essential tool for all branches and specialties of medicine. The inherent properties of ionising radiation provide many benefits but also may cause potential harm. In the practice of medicine, there must be a judgement made concerning the benefit/risk ratio. This requires not only knowledge of medicine but also of the radiation risks. This document is designed to provide basic information on radiation mechanisms, the dose from various medical radiation sources, the magnitude and type of risk, as well as answers to commonly asked questions (e.g radiation and pregnancy). As a matter of ease in reading, the text is in a question and answer format. Interventional cardiologists, radiologists, orthopaedic and vascular surgeons and others, who actually operate medical x-ray equipment or use radiation sources, should possess more information on proper technique and dose management than is contained here. However, this text may provide a useful starting point. The most common ionising radiations used in medicine are X, gamma, beta rays and electrons. Ionising radiation is only one part of the electromagnetic spectrum. There are numerous other radiations (e.g. visible light, infrared waves, high frequency and radiofrequency electromagnetic waves) that do not posses the ability to ionize atoms of the absorbing matter.
    [Show full text]
  • New Discoveries in Radiation Science
    cancers Editorial New Discoveries in Radiation Science Géza Sáfrány 1,*, Katalin Lumniczky 1 and Lorenzo Manti 2 1 Department Radiobiology and Radiohygiene, National Public Health Center, 1221 Budapest, Hungary; [email protected] 2 Department of Physics, University of Naples Federico II, 80126 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +36-309199218 This series of 16 articles (8 original articles and 8 reviews) was written by internation- ally recognized scientists attending the 44th Congress of the European Radiation Research Society (Pécs, Hungary). Ionizing radiation is an interesting agent because it is used to cure cancers and can also induce cancer. The effects of ionizing radiation at the organism level depend on the response of the cells. When radiation hits a cell, it might damage any cellular organelles and macromolecules. Unrepairable damage leads to cell death, while misrepaired alterations leave mutations in surviving cells. If the repair is errorless, normal cells will survive. However, in a small percentage of the seemingly healthy cells the number of spontaneous mutations will increase, which is a sign of radiation-induced genomic instability. Radiation-induced cell death is behind the development of acute radiation syndromes and the killing of tumorous and normal cells during radiation therapy. Radiation-induced mutations in surviving cells might lead to the induction of tumors. According to the central paradigm of radiation biology, the genetic material, that is the DNA, is the main cellular target of ionizing radiation. Many different types of damage are induced by radiation in the DNA, but the most deleterious effects arise from double strand breaks (DSBs).
    [Show full text]
  • Toxicological Profile for Plutonium
    PLUTONIUM A-1 APPENDIX A. ATSDR MINIMAL RISK LEVELS AND WORKSHEETS The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological profiles for each substance included on the priority list of hazardous substances; and assure the initiation of a research program to fill identified data needs associated with the substances. The toxicological profiles include an examination, summary, and interpretation of available toxicological information and epidemiologic evaluations of a hazardous substance. During the development of toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of cancer effects. These substance-specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors to identify contaminants and potential health effects that may be of concern at hazardous waste sites.
    [Show full text]
  • World Health Organization, Extremely Low Frequency Fields, 2007
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • This File Was Downloaded From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Poole, Christopher, Trapp, Jamie, Kenny, John, Kairn, Tanya, Williams, Kerry, Taylor, Michael, Franich, Rick, & Langton, Christian M. (2011) A hybrid radiation detector for simultaneous spatial and temporal dosimetry. Australasian Physical and Engineering Sciences in Medicine, 34(3), pp. 327-332. This file was downloaded from: http://eprints.qut.edu.au/42062/ c Copyright 2011 Australasian College of Physical Scientists and Engineers in Medicine Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: http://dx.doi.org/10.1007/s13246-011-0081-5 A hybrid radiation detector for simultaneous spatial and temporal dosimetry C. Poole1 , J.V. Trapp1*, J. Kenny2 ,T. Kairn2 , K. Williams3, M. Taylor3, R. Franich3, C.M. Langton1 1. Physics, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane Qld 4001, Australia 2. Premion, The Wesley Medical Centre, Suite 1 40 Chasely Street, Auchenflower Queensland 4066, Australia 3. School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia *Corresponding Author: Email: [email protected], Phone +61 7 31381386, Fax +61 7 1389079 Keywords: Radiotherapy, Dosimetry, Gel Dosimetry, Radiation Measurement, 4D dosimetry 1 Abstract In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field.
    [Show full text]
  • What Is "Ionizing Radiation"? XA9745669
    IAEA-CN-67/153 i What is "ionizing radiation"? XA9745669 Manfred Tschurlovits, Atominstitut der Osterreichischen Universitaten Stadionallee 2, A-1020 Wien, Austria Abstract The scientific background of radiation protection and hence "ionizing radiation" is undergoing substantial progress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term "ionizing radiation" in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as "ionizing " is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of,, ionizing radiation ". 1. Introduction and background Ionizing radiation as we are concerned with is from the beginning defined upon the causation of certain effects rather that on their physical properties of the sources. In the very beginning, standards were concerned with either x-rays or radiation- (rather radium) sources /NB 31/, and there was little need to coin a common term for the effects of these sources. Later a more consistent approach was required as the standards were dealing with both x-ray and radioactive radiation sources.
    [Show full text]