Contents of This Issue: QA of the Xlogp Descriptor

Total Page:16

File Type:pdf, Size:1020Kb

Contents of This Issue: QA of the Xlogp Descriptor News The Newsletter of the CDK Project Volume 3/1, March 2006 Contents of this issue: QA of the XlogP Descriptor . 12 Development Tools. 2. Java Documentation . 14 Editorial . 2 Literature . 18 A Protocol for Descriptor QA . 3 Validation of the CDK Surface Area Routine . 5 iBabel . 19 Improving the CDK implementation of the An Applet Release of JChemPaint . 21 XlogP Descriptor . 10 Frequently Asked Questions . 23 Vol. 3/1, March 2006 2 Editorial by Egon Willighagen time a distinct (small) molecular structure is given. The InChI’s are normally given in the bibliography, allowing authors to just use names or IDs in the Editorial article itself. To help authors, the CDK News stylesheet now contains a new inchi command Welcome to the sixth issue of CDK News, the first which will also create a link to search for more issue of the third volume. This issue focuses on information about the compound using Google.com. validation of the QSAR descriptors implemented For example, a BibTex entry may look like: in the CDK. Fechner and Guha propose a scheme @MISC{methane, to validate QSAR descriptors in the CDK, which title = "Methane", Fechner and Grabowski use to validate the LogP note = "\inchi{1/CH4/h1H4}" descriptors in the CDK. Additionally, Hoppe } analyzes the algorithm in the CDK used to calculate the LogP descriptor, and Guha studies the behavior The next issue is scheduled for June/July 2006. of the TPSA descriptor. This issue also features two Given the large number of papers in each issue, we applications of the CDK: one article discusses the will try to start releasing four issues a year, instead of iBabel program developed by Swain, while a second every four months in the past. This will likely make discusses the JChemPaint applet. Finally, a tutorial the issues smaller, but, more importantly, reduce the explains what JavaDoc is and how it should be used time to publication. This also means that we can in the CDK. no longer promise that an article will be published Very recently, a wiki for the CDK has gone live, in the next issue; the sooner you submit, the larger at http://cdk.sf.net/wiki/. I would welcome the chance it has gone through the review process. all readers to discuss articles on this wiki. This As always, submissions may include comments on might especially prove useful for articles that discuss current code, discuss certain algorithms in general, source code. As the CDK code base is not static, and or just describe a piece of work related to the CDK neither are other libraries, the source code example library. might need to be updated now and then. The wiki is a good place to aggregate those updates. Egon Willighagen As I explained previously, the CDK News now Radboud University Nijmegen, The Netherlands requires InChI’s to be stated in the article each [email protected] Front Page The front page shows the JChemPaint applet in action on the NMRShiftDB website (http://www. nmrshiftdb.org/), as discussed in the An Applet Release of JChemPaint article, by Kuhn, elsewhere in this issue. CDK News ISSN 1614-7553 Vol. 3/1, March 2006 3 A Protocol for Descriptor QA We discuss a quality assurance (QA) protocol was computed for all compounds [4]. We employed that has been established to validate the standard parameters for computation of the CATS CDK descriptors implementations against descriptor: the considered topological distance of corresponding implementations in commercially atom-pairs ranged from 0 to 9 bonds, each of the available packages. In particular, we compiled 15 possible pairs of potential pharmacophore points two datasets that we recommend for descriptor (PPPs) was divided by the added occurrences of the validation tasks. two respective PPPs. Please refer to Ref. [5] for a more detailed explanation of the applied scaling scheme. by Uli Fechner and Rajarshi Guha The CATS descriptors were then used to carry out selection of a diverse subset of 1,100 compounds. A Currently, the CDK provides implementations of 52 Java implementation of the MaxMin algorithm was descriptors. These are subdivided into two groups: used for this purpose [6]. Though our goal was 20 descriptors that calculate values for single atoms to create a QA dataset containing 1,000 structures, (org.openscience.cdk.qsar.descriptors.atomic), we initially selected 1,100 structures so as to have and 32 that provide descriptor values for whole a number of backup structures in case any of the molecules (org.openscience.cdk.qsar.descrip- following tasks were unable to successfully deal with tors.molecular). Though the descriptor all structures. implementations have unit tests associated with After obtaining a diverse subset we modified it them, these are usually few in number. As a to yield two descriptor QA datasets that differed result, a comprehensive validation of the CDK in terms of hydrogens (present and non-present). descriptors has not been performed. This may Again, Cliff was used to add hydrogens. not be very important for simplistic descriptors Next, three-dimensional coordinates (one such as one that counts the number of atoms conformer per compound) were generated for (AtomCountDescriptor) or computes the molecular the two datasets using Corina (version 3.20) [3]. weight (WeightDescriptor). However for more Corina was unable to generate three-dimensional complex descriptor classes that encompass several coordinates for six of the 1,100 structures. Visual hundred lines of code and performs non-trivial tasks, inspection revealed that these structures contained a validation is necessary for users to be able to rely on significant number of atoms that were not part of a the CDK implementation. For example, the XlogP ring system. As Corina starts conformer generation descriptor (XLogPDescriptor) comprises over 1,400 using ring templates and then minimizes non-ring lines of code and carries out the recognition of nearly atoms, it may fail on structures with a lot of non- 100 different atom types. ring atoms. We removed the six structures without three-dimensional coordinates and 94 more from To encourage confidence in the CDK descriptor both datasets to finally yield two datasets of 1,000 implementations we decided to start a quality structures. These datasets are publicly available assurance (QA) project for validation purposes. We in SDF format and are deposited in CDK’s CVS developed a protocol that lays out the general repository at sourceforge (module cdk-qa). procedure for a descriptor QA task. Another article Validation of a CDK descriptor is then performed in this issue makes use of our descriptor QA protocol by computing this particular descriptor using CDK and validates the CDK XlogP descriptor. and another software - the comparison software - Our first task was the compilation of a suitable such as MOE [6] or Dragon [8], for one of the dataset that can be used for all descriptor QAs. two descriptor QA datasets. A detailed comparison We downloaded the drug-like subset (subset 3, last between the descriptor values of CDK and the updated on 03/03/2005, 2,066,905 compounds) of comparison software includes the ZINC database [1] in SMILES format. This subset includes all compounds of the ZINC database • a plot of the CDK descriptor values versus the that do not violate any rule of the rule-of-five [2], values obtained from the comparison software i.e., compounds having a predicted logP value smaller than or equal to 5, a molecular weight • root mean square error (RMSE) of at most 500, not more than 5 hydrogen bond • the median, maximum and minimum donors, and at most 10 hydrogen bond acceptors. differences The SMILES file was then converted to an SD file using the commercially available program, Cliff • the percentage of compounds for which the (version 1.14) [3]. All hydrogens were stripped descriptor values differ significantly (e.g., by at from the SD file and nitrogens were uniformly most 10 percent) written in the penta style. Then, the topological pharmacophore-based atom-pair descriptor CATS • noticeably outlying compounds CDK News ISSN 1614-7553 Vol. 3/1, March 2006 4 In addition to the points listed above, it might [email protected] be worthwhile to derive a linear regression between CDK descriptor values and those computed by comparison software. Such a linear regression Bibliography yields a straight line. Examination of its intercept and slope adds another aspect to the results of a [1] Brian K. Shoichet John J. Irwin. ZINC - descriptor validation task. An intercept different A Free Database of Commercially Available than zero denotes that the validated CDK descriptor Compounds for Virtual Screening. J. Chem. Inf. exhibits systematically higher or lower values than Model., 45:177–182, 2005. the ones calculated by comparison software. A slope different than 1.0 (corresponding to 45 degrees) [2] C.A. Lipinski et al. Experimental and states proportionality but inequality between values Computational Approaches to Estimate of a descriptor computed by CDK and a comparison Solubility and Permeability in Drug Discovery software. and Development Settings. Adv. Drug. Del. Rev., Scrutinizing compounds that yield noticeably 23:3–25, 1997. different descriptor values may lead to the [3] Molecular Networks GmbH - Computerchemie. detection of possible causes. Mistakes in the CDK http://www.mol-net.com/, January 2006. implementations may be revealed and fixed in the QA process. In addition, differences in descriptor [4] G. Schneider et al. "Scaffold-Hopping" values may arise due to aspects of the CDK not by topological pharmacophore search: A directly related to the descriptor implementation. contribution to virtual screening. Angew. Chemie For instance, a limitation in the aromaticity detection Int. Ed., 38:2894–2896, 1999. routine in the CDK would lead to an error in the perception of one or more TPSA atom environments [5] G.
Recommended publications
  • Practical Chemoinformatics Muthukumarasamy Karthikeyan • Renu Vyas
    Practical Chemoinformatics Muthukumarasamy Karthikeyan • Renu Vyas Practical Chemoinformatics 1 3 Muthukumarasamy Karthikeyan Renu Vyas Digital Information Resource Centre Scientist (DST) National Chemical Laboratory Division of Chemical Engineering and Pune Process Development India National Chemical Laboratory Pune India ISBN 978-81-322-1779-4 ISBN 978-81-322-1780-0 (eBook) DOI 10.1007/978-81-322-1780-0 Springer New Delhi Dordrecht Heidelberg London New York Library of Congress Control Number: 2014931501 © Springer India 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita- tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or infor- mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar meth- odology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplica- tion of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica- tion does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Open Data, Open Source, and Open Standards in Chemistry: the Blue Obelisk Five Years On" Journal of Cheminformatics Vol
    Oral Roberts University Digital Showcase College of Science and Engineering Faculty College of Science and Engineering Research and Scholarship 10-14-2011 Open Data, Open Source, and Open Standards in Chemistry: The lueB Obelisk five years on Andrew Lang Noel M. O'Boyle Rajarshi Guha National Institutes of Health Egon Willighagen Maastricht University Samuel Adams See next page for additional authors Follow this and additional works at: http://digitalshowcase.oru.edu/cose_pub Part of the Chemistry Commons Recommended Citation Andrew Lang, Noel M O'Boyle, Rajarshi Guha, Egon Willighagen, et al.. "Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on" Journal of Cheminformatics Vol. 3 Iss. 37 (2011) Available at: http://works.bepress.com/andrew-sid-lang/ 19/ This Article is brought to you for free and open access by the College of Science and Engineering at Digital Showcase. It has been accepted for inclusion in College of Science and Engineering Faculty Research and Scholarship by an authorized administrator of Digital Showcase. For more information, please contact [email protected]. Authors Andrew Lang, Noel M. O'Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean- Claude Bradley, Igor Filippov, Robert M. Hanson, Marcus D. Hanwell, Geoffrey R. Hutchison, Craig A. James, Nina Jeliazkova, Karol M. Langner, David C. Lonie, Daniel M. Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck, Adam L. Tenderholt, Kevin J. Theisen, and Peter Murray-Rust This article is available at Digital Showcase: http://digitalshowcase.oru.edu/cose_pub/34 Oral Roberts University From the SelectedWorks of Andrew Lang October 14, 2011 Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on Andrew Lang Noel M O'Boyle Rajarshi Guha, National Institutes of Health Egon Willighagen, Maastricht University Samuel Adams, et al.
    [Show full text]
  • A Study on Cheminformatics and Its Applications on Modern Drug Discovery
    Available online at www.sciencedirect.com Procedia Engineering 38 ( 2012 ) 1264 – 1275 Internatio na l Conference on Modeling Optimisatio n and Computing (ICMOC 2012) A Study on Cheminformatics and its Applications on Modern Drug Discovery B.Firdaus Begama and Dr. J.Satheesh Kumarb aResearch Scholar, Bharathiar University, Coimbatore, India, [email protected] bAssistant Professor, Bharathiar University, Coimbatore, India, [email protected] Abstract Discovering drugs to a disease is still a challenging task for medical researchers due to the complex structures of biomolecules which are responsible for disease such as AIDS, Cancer, Autism, Alzimear etc. Design and development of new efficient anti-drugs for the disease without any side effects are becoming mandatory in the recent history of human life cycle due to changes in various factors which includes food habit, environmental and migration in human life style. Cheminformaticds deals with discovering drugs based in modern drug discovery techniques which in turn rectifies complex issues in traditional drug discovery system. Cheminformatics tools, helps medical chemist for better understanding of complex structures of chemical compounds. Cheminformatics is a new emerging interdisciplinary field which primarily aims to discover Novel Chemical Entities [NCE] which ultimately results in design of new molecule [chemical data]. It also plays an important role for collecting, storing and analysing the chemical data. This paper focuses on cheminformatics and its applications on drug discovery and modern drug discovery techniques which helps chemist and medical researchers for finding solution to the complex disease. © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Noorul Islam Centre for Higher Education.
    [Show full text]
  • Molecular Structure Input on the Web Peter Ertl
    Ertl Journal of Cheminformatics 2010, 2:1 http://www.jcheminf.com/content/2/1/1 REVIEW Open Access Molecular structure input on the web Peter Ertl Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminfor- matics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on tech- nologies like JavaScript and Flash, is discussed. Introduction this trend and input of molecular structures directly A program for the input and editing of molecules is an within a web browser is therefore of utmost importance. indispensable part of every cheminformatics or molecu- In this overview a history of entering molecules into lar processing system. Such a program is known as a web applications will be covered, starting from simple molecule editor, molecular editor or structure sketcher.
    [Show full text]
  • A Web-Based 3D Molecular Structure Editor and Visualizer Platform
    Mohebifar and Sajadi J Cheminform (2015) 7:56 DOI 10.1186/s13321-015-0101-7 SOFTWARE Open Access Chemozart: a web‑based 3D molecular structure editor and visualizer platform Mohamad Mohebifar* and Fatemehsadat Sajadi Abstract Background: Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimen- sional structures of molecules. Results: With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user- friendly interface is composed. More than 30 packages are used to compose this application which adds enough flex- ibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Conclusions: Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (applica- tion programming interface). JavaScript libraries which allow creation of web pages containing interactive three- dimensional molecular structures has also been made available.
    [Show full text]
  • Getting Started in Jmol
    Getting Started in Jmol Part of the Jmol Training Guide from the MSOE Center for BioMolecular Modeling Interactive version available at http://cbm.msoe.edu/teachingResources/jmol/jmolTraining/started.html Introduction Physical models of proteins are powerful tools that can be used synergistically with computer visualizations to explore protein structure and function. Although it is interesting to explore models and visualizations created by others, it is much more engaging to create your own! At the MSOE Center for BioMolecular Modeling we use the molecular visualization program Jmol to explore protein and molecular structures in fully interactive 3-dimensional displays. Jmol a free, open source molecular visualization program used by students, educators and researchers internationally. The Jmol Training Guide from the MSOE Center for BioMolecular Modeling will provide the tools needed to create molecular renderings, physical models using 3-D printing technologies, as well as Jmol animations for online tutorials or electronic posters. Examples of Proteins in Jmol Jmol allows users to rotate proteins and molecular structures in a fully interactive 3-dimensional display. Some sample proteins designed with Jmol are shown to the right. Hemoglobin Proteins Insulin Proteins Green Fluorescent safely carry oxygen in the help regulate sugar in Proteins create blood. the bloodstream. bioluminescence in animals like jellyfish. Downloading Jmol Jmol Can be Used in Two Ways: 1. As an independent program on a desktop - Jmol can be downloaded to run on your desktop like any other program. It uses a Java platform and therefore functions equally well in a PC or Mac environment. 2. As a web application - Jmol has a web-based version (oftern refered to as "JSmol") that runs on a JavaScript platform and therefore functions equally well on all HTML5 compatible browsers such as Firefox, Internet Explorer, Safari and Chrome.
    [Show full text]
  • Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department
    Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department Name of FOSS Applications Employability GChemPaint GChemPaint is an editor for 2Dchem- GChemPaint is currently being developed ical structures with a multiple docu- as part of The Chemistry Development ment interface. Kit, and a Standard Widget Tool kit- based GChemPaint application is being developed, as part of Bioclipse. Jmol Jmol applet is used to explore the Jmol is a free, open source molecule viewer structure of molecules. Jmol applet is for students, educators, and researchers used to depict X-ray structures in chemistry and biochemistry. It is cross- platform, running on Windows, Mac OS X, and Linux/Unix systems. For PG Students LaTeX Document markup language and Value addition to academic Skills set. preparation system for Tex typesetting Essential for International paper presentation and scientific journals. For PG student for their project work Scilab Scientific Computation package for Value addition in technical problem numerical computations solving via use of computational methods for engineering problems, Applicable in Chemical, ECE, Electrical, Electronics, Civil, Mechanical, Mathematics etc. For PG student who are taking Physical Chemistry Avogadro Avogadro is a free and open source, Research and Development in Chemistry, advanced molecule editor and Pharmacist and University lecturers. visualizer designed for cross-platform use in computational chemistry, molecular modeling, material science, bioinformatics, etc. Spoken Tutorial Project, IIT Bombay Brochure for Commerce and Commerce IT Name of FOSS Applications / Employability LibreOffice – Writer, Calc, Writing letters, documents, creating spreadsheets, tables, Impress making presentations, desktop publishing LibreOffice – Base, Draw, Managing databases, Drawing, doing simple Mathematical Math operations For Commerce IT Students Drupal Drupal is a free and open source content management system (CMS).
    [Show full text]
  • Mannhold Methods and Principles in Medicinal Chemistry
    Molecular Drug Properties Edited by Raimund Mannhold Methods and Principles in Medicinal Chemistry Edited by R. Mannhold, H. Kubinyi, G. Folkers Editorial Board H. Timmerman, J. Vacca, H. van de Waterbeemd, T. Wieland Previous Volumes of this Series: G. Cruciani (ed.) T. Langer, R. D. Hofmann (eds.) Molecular Interaction Fields Pharmacophores and Vol. 27 Pharmacophore Searches 2006, ISBN 978-3-527-31087-6 Vol. 32 2006, ISBN 978-3-527-31250-4 M. Hamacher, K. Marcus, K. Stühler, A. van Hall, B. Warscheid, H. E. Meyer (eds.) E. Francotte, W. Lindner (eds.) Proteomics in Drug Research Chirality in Drug Research Vol. 28 Vol. 33 2006, ISBN 978-3-527-31226-9 2006, ISBN 978-3-527-31076-0 D. J. Triggle, M. Gopalakrishnan, W. Jahnke, D. A. Erlanson (eds.) D. Rampe, W. Zheng (eds.) Fragment-based Approaches Voltage-Gated Ion Channels in Drug Discovery as Drug Targets Vol. 34 Vol. 29 2006, ISBN 978-3-527-31291-7 2006, ISBN 978-3-527-31258-0 D. Rognan (ed.) J. Hüser (ed.) Ligand Design for G High-Throughput Screening Protein-coupled Receptors in Drug Discovery Vol. 30 Vol. 35 2006, ISBN 978-3-527-31284-9 2006, ISBN 978-3-527-31283-2 D. A. Smith, H. van de Waterbeemd, K. Wanner, G. Höfner (eds.) D. K. Walker Mass Spectrometry in Pharmacokinetics and Medicinal Chemistry Metabolism in Drug Design, Vol. 36 2nd Ed. 2007, ISBN 978-3-527-31456-0 Vol. 31 2006, ISBN 978-3-527-31368-6 Molecular Drug Properties Measurement and Prediction Edited by Raimund Mannhold Series Editors All books published by Wiley-VCH are carefully produced.
    [Show full text]
  • Designing Universal Chemical Markup (UCM) Through the Reusable Methodology Based on Analyzing Existing Related Formats
    Designing Universal Chemical Markup (UCM) through the reusable methodology based on analyzing existing related formats Background: In order to design concepts for a new general-purpose chemical format we analyzed the strengths and weaknesses of current formats for common chemical data. While the new format is discussed more in the next article, here we describe our software s t tools and two stage analysis procedure that supplied the necessary information for the n i r development. The chemical formats analyzed in both stages were: CDX, CDXML, CML, P CTfile and XDfile. In addition the following formats were included in the first stage only: e r P CIF, InChI, NCBI ASN.1, NCBI XML, PDB, PDBx/mmCIF, PDBML, SMILES, SLN and Mol2. Results: A two stage analysis process devised for both XML (Extensible Markup Language) and non-XML formats enabled us to verify if and how potential advantages of XML are utilized in the widely used general-purpose chemical formats. In the first stage we accumulated information about analyzed formats and selected the formats with the most general-purpose chemical functionality for the second stage. During the second stage our set of software quality requirements was used to assess the benefits and issues of selected formats. Additionally, the detailed analysis of XML formats structure in the second stage helped us to identify concepts in those formats. Using these concepts we came up with the concise structure for a new chemical format, which is designed to provide precise built-in validation capabilities and aims to avoid the potential issues of analyzed formats.
    [Show full text]
  • Visualizing 3D Molecular Structures Using an Augmented Reality App
    Visualizing 3D molecular structures using an augmented reality app Kristina Eriksen, Bjarne E. Nielsen, Michael Pittelkow 5 Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark. E-mail: [email protected] ABSTRACT 10 We present a simple procedure to make an augmented reality app to visualize any 3D chemical model. The molecular structure may be based on data from crystallographic data or from computer modelling. This guide is made in such a way, that no programming skills are needed and the procedure uses free software and is a way to visualize 3D structures that are normally difficult to comprehend in the 2D 15 space of paper. The process can be applied to make 3D representation of any 2D object, and we envisage the app to be useful when visualizing simple stereochemical problems, when presenting a complex 3D structure on a poster presentation or even in audio-visual presentations. The method works for all molecules including small molecules, supramolecular structures, MOFs and biomacromolecules. GRAPHICAL ABSTRACT 20 KEYWORDS Augmented reality, Unity, Vuforia, Application, 3D models. 25 Journal 5/18/21 Page 1 of 14 INTRODUCTION Conveying information about three-dimensional (3D) structures in two-dimensional (2D) space, such as on paper or a screen can be difficult. Augmented reality (AR) provides an opportunity to visualize 2D 30 structures in 3D. Software to make simple AR apps is becoming common and ranges of free software now exist to make customized apps. AR has transformed visualization in computer games and films, but the technique is distinctly under-used in (chemical) science.1 In chemical science the challenge of visualizing in 3D exists at several levels ranging from teaching of stereo chemistry problems at freshman university level to visualizing complex molecular structures at 35 the forefront of chemical research.
    [Show full text]
  • Open Data, Open Source and Open Standards in Chemistry: the Blue Obelisk five Years On
    Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk ¯ve years on Noel M O'Boyle¤1 , Rajarshi Guha2 , Egon L Willighagen3 , Samuel E Adams4 , Jonathan Alvarsson5 , Richard L Apodaca6 , Jean-Claude Bradley7 , Igor V Filippov8 , Robert M Hanson9 , Marcus D Hanwell10 , Geo®rey R Hutchison11 , Craig A James12 , Nina Jeliazkova13 , Andrew SID Lang14 , Karol M Langner15 , David C Lonie16 , Daniel M Lowe4 , J¶er^omePansanel17 , Dmitry Pavlov18 , Ola Spjuth5 , Christoph Steinbeck19 , Adam L Tenderholt20 , Kevin J Theisen21 , Peter Murray-Rust4 1Analytical and Biological Chemistry Research Facility, Cavanagh Pharmacy Building, University College Cork, College Road, Cork, Co. Cork, Ireland 2NIH Center for Translational Therapeutics, 9800 Medical Center Drive, Rockville, MD 20878, USA 3Division of Molecular Toxicology, Institute of Environmental Medicine, Nobels vaeg 13, Karolinska Institutet, 171 77 Stockholm, Sweden 4Unilever Centre for Molecular Sciences Informatics, Department of Chemistry, University of Cambridge, Lens¯eld Road, CB2 1EW, UK 5Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden 6Metamolecular, LLC, 8070 La Jolla Shores Drive #464, La Jolla, CA 92037, USA 7Department of Chemistry, Drexel University, 32nd and Chestnut streets, Philadelphia, PA 19104, USA 8Chemical Biology Laboratory, Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA 9St. Olaf College, 1520 St. Olaf Ave., North¯eld, MN 55057, USA 10Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA 11Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA 12eMolecules Inc., 380 Stevens Ave., Solana Beach, California 92075, USA 13Ideaconsult Ltd., 4.A.Kanchev str., So¯a 1000, Bulgaria 14Department of Engineering, Computer Science, Physics, and Mathematics, Oral Roberts University, 7777 S.
    [Show full text]
  • 3D-Printing Models for Chemistry
    3D-Printing Models for Chemistry: A Step-by-Step Open-Source Guide for Hobbyists, Corporate ProfessionAls, and Educators and Student in K-12 and Higher Education Poster Elisabeth Grace Billman-Benveniste+, Jacob Franz++, Loredana Valenzano-Slough+* +Department of Chemistry, Michigan Technological University, ++Department of Mechanical Engineering, Michigan Technological University *Corresponding Author References 1. “LulzBot TAZ 5.” LulzBot, 14 Aug. 2018, www.lulzbot.com/store/printers/lulzbot-taz-5 2. Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; ZakrzeWski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; HasegaWa, J.; Ishida, M.; NakaJima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016. 3.
    [Show full text]