On the Taxonomic Recognition of Skinks from the Guadeloupe Archipelago (Squamata, Mabuyidae, Mabuya)

Total Page:16

File Type:pdf, Size:1020Kb

On the Taxonomic Recognition of Skinks from the Guadeloupe Archipelago (Squamata, Mabuyidae, Mabuya) caribbean herpetology article On the taxonomic recognition of skinks from the Guadeloupe Archipelago (Squamata, Mabuyidae, Mabuya) S. Blair Hedges1,*, Olivier Lorvelec2, 3, Nicolas Barré3, Nicolas Vidal4, and Claudie Pavis3 1Center for Biodiversity, Temple University (502 SERC), 1925 N. 12th Street, Philadelphia, PA 19122, USA. 2INRA, UMR0985 Écologie et Santé des Écosystèmes, Agrocampus ouest, 35042 Rennes Cedex, France. 3AEVA, Association pour l’Étude et la protection des Vertébrés et végétaux des petites Antilles, 97170 Petit Bourg, Guadeloupe, France. 4ISYEB, UMR7205 MNHN-CNRS-UPMC-EPHE, Muséum National d’Histoire Naturelle, Département Systématique et Evolution, CP30 25 rue Cu- vier 75005 Paris, France. *Corresponding author ([email protected]) Edited by: Robert W. Henderson. Date of publication: 6 March 2019. Citation: Hedges SB, Lorvelec O, Barré N, Vidal N, Pavis C. 2019. On the taxonomic recognition of skinks from the Guadeloupe Archipelago (Squamata Mabuyidae, Mabuya). Caribbean Herpetology 64:1–7. DOI: 10.31611/ch.64 Abstract The six species of mabuyid lizards (skinks) of the Guadeloupe Archipelago are Capitellum mariagalantae, Mabuya cochonae, M. desiradae, M. grandisterrae, M. guadeloupae, and M. parviterrae. All are critically en- dangered and four may be extinct, primarily from predation by introduced mammals. These six species were described in recent years from molecular and morphological analyses. Miralles et al. (2017, Bulletin de la Société Herpétologique de France, 163, 67–84) has challenged the taxonomy, claiming that the six species cannot be diagnosed from each other, and recognized only a single species, Mabuya desiradae. We find that their study contains errors that led them to that incorrect conclusion, including a probable data handling error in the molecular analysis and the use of non-diagnostic morphological characters. Keywords: Caribbean, island, lizard, phylogeny, Mabuya, conservation, systematics. Introduction Skinks of the lizard family Mabuyidae occur throughout the Caribbean region and are especially diverse in the Guadeloupe Archipelago, where six named species occur, all endemic to individual islands: Capitellum mariaga- lantae, Mabuya cochonae, M. desiradae, M. grandisterrae, M. guadeloupae, and M. parviterrae (Hedges & Conn 2012; Hedges et al. 2016). They are critically endangered species primarily because of predation by introduced mam- mals, especially the Small Indian Mongoose, Urva auropunctata. Only two of the species, M. desiradae (from La Désirade) and M. parviterrae (from Terre de Bas, Îles de la Petite Terre), have been observed in recent years. The species M. parviterrae is particularly threatened, with an estimated 50 individuals surviving primarily in a single stone wall (Hedges et al. 2016). Additional surviving populations of skinks in the Guadeloupe Archipelago, not yet assigned to a species, occur on the small islets of Les Saintes, specifically from Terre-de-Haut and Terre-de-Bas (Angin & Gomès 2015; Barré et al. 2016). Before 2012, there was little concern for these lizards from Guadeloupe because they were thought to belong to a single, wide-ranging species, Mabuya mabouya, as concluded by studies of morphological and molec- ular data (Miralles 2005; Miralles et al. 2009). However, Hedges & Conn (2012) came to a different conclusion after conducting a comprehensive study utilizing new molecular data, together with a greatly-expanded morpholog- ical data set (30 characters) scored from 750 specimens, compared with 311 specimens in the previous work. The Hedges & Conn (2012) study revealed a hidden diversity of skink species in the Western Hemisphere and especially 1 Caribbean Herpetology, 64,1–7 ISSN 2333-2468 www.caribbeanherpetology.org caribbean herpetology article on Caribbean islands. As part of that work, they described five of the six known species in the Guadeloupe Archi- pelago, with M. parviterrae described later (Hedges et al. 2016). Recently, Miralles et al. (2017) revisited the taxonomy of skinks in the Guadeloupe Archipelago with new sequence data from seven specimens representing two of the six named species (M. desiradae and M. parviterrae), including three individuals from Les Saintes (two from Terre-de-Haut and one from Terre-de-Bas) that are unas- signed to a species. They combined those data with published sequence data (Hedges et al. 2016) from 12 speci- mens of those species (two from La Désirade and ten from Îles de la Petite Terre), concluding that the molecular ev- idence supports the recognition of a single species (Mabuya desiradae) from the Guadeloupe Archipelago instead of six species. Oddly, their resulting tree of relevance (Miralles et al. 2017: Fig. 2D) supported the opposite conclu- sion, showing that the two species formed strongly-supported genetic groups, except for a single individual from La Désirade that was genetically identical to M. parviterrae. We consider the latter to be a data-handling error made by those authors (see below). The new morphological data taken by Miralles et al. (2017) were irrelevant because they failed to score characters determined to be diagnostic in previous studies (see below). Here, we examine the study of Miralles et al. (2017), showing that it contains errors and inconsistencies and draws conclusions that are unsupported by their own data. Most (seven) of the 11 new sequences contributed by Miralles et al. (2017) (their Table 1, in bold) were from a conserved gene, 12S rRNA, with only four new cytochrome b sequences. Because our data (Hedges et al. 2016) were from the more relevant cytochrome b gene, we corrected this imbalance by adding new 12S rRNA sequences for our 12 samples in order to have an alignment of 17 individuals for both genes. Methods All methods followed Hedges & Conn (2012) and Hedges et al. (2016), including the tree analysis methods (max- imum likelihood GTR + gamma model and 2000 bootstrap replications, and Bayesian analysis with MCMC chain- length of 50,000,000. The 11 new sequences of 12S rRNA were deposited in Genbank (MK423217–MK423227, MK432848) and added to cytochrome b sequences from Hedges et al. (2016) (Genbank KU587588–KU587599) and 8 sequences contributed by Miralles et al. (2017): Genbank KT351073–074, KT351076–077, KT351079–82. We did not use sequences from several individuals (PT6–PT7, TdB1) in Miralles et al. (2017) for our phylogenetic analysis because they were from the conserved 12S rRNA gene; the relevant variable gene, cytochrome b, was not sequenced by those authors in those individuals. Most of the new sequences are of Mabuya parviterrae (SBH 274694–695, 274765–772) from Îles de la Petite Terre, Terre de Bas (16.169, -61.121). One (SBH 274696) is from La Désirade, Baie Mahault (16.331, -61.017) and another (SBH 274777) is from La Désirade; Beausejour (16.304, -61.072). See Genbank numbers (Genbank 2019) for complete localities and coordinates. Museum and laboratory voucher abbreviations are KU (University of Kansas, Natural History Museum), MNHN (Muséum National d’Histoire Naturelle, Paris), and SBH (Laboratory of S. Blair Hedges, Temple University); some Genbank accession numbers, coincidentally, begin with “KU” but are so indicated. Results and Discussion The molecular evidence. The only relevant molecular analysis in Miralles et al. (2017) was that of cytochrome b sequences in Guadeloupe skinks, rooted with the closest relative M. dominicana, which was done by those au- thors (Miralles et al.: Fig. 2D). This is because cytochrome b, and other protein-coding mitochondrial genes, evolve several times faster than 12S rRNA, providing the needed variation for closely related species, and sequences of that gene are available for most (16 of the 19) sampled individuals from Guadeloupe, compared with only seven sequenced individuals for 12S rRNA. The most relevant analysis of Miralles et al. (2017) shows strong support for the monophyly of skinks from different islets of Guadeloupe, justification for recognition of the species diagnosed by Hedges & Conn (2012) and Hedges et al. (2016), pertinent here: M. desiradae and M. parviterrae. This is not sur- 2 Caribbean Herpetology, 64,1–7 ISSN 2333-2468 www.caribbeanherpetology.org caribbean herpetology article prising because most of the sequences of those two species, used by Miralles et al. (2017), were produced and an- alyzed in those two earlier studies. Our new tree (Fig. 1) fills in the missing 12S rRNA data and confirms that result. In particular, it shows again the differentiation of skinks from three islets of the Guadeloupe Archipelago and the anomalous specimen “Des2” from the study of Miralles et al. (2017). This brings us to the conundrum: why Miralles et al. (2017) concluded the opposite of what they demon- strated (their Fig. 2D). They claimed that they were “unable to find any differentiation between the different pop- ulations of the islands of Guadeloupe.” As noted above, the 12S rRNA data they presented (e.g., their Fig. 2C) are not relevant because they are too slow-evolving and there are too few sequences. Although not stated by them, the answer must lie in that one problematic specimen, their “Des2” = “Désirade (a)” in Fig. 2 of Miralles et al. (2017) from La Désirade, which does not group with the other three individuals from that island but instead is genetically identical to the 10 individuals of M. parviterrae. Their hypothesis, apparently, is that the two islands are occupied by a single species and therefore the mixing of haplotypes on multiple islands supports that hypothesis. However,
Recommended publications
  • Reproductive Traits of Two Sympatric Viviparous Skinks (Mabuya Macrorhyncha and Mabuya Ag/Lis) in a Brazilian Restinga Habitat
    HERPETOLOGICAL JOURNAL, Vol. 9, pp. 43-53 (1999) REPRODUCTIVE TRAITS OF TWO SYMPATRIC VIVIPAROUS SKINKS (MABUYA MACRORHYNCHA AND MABUYA AG/LIS) IN A BRAZILIAN RESTINGA HABITAT CARLOS FREDERICO DUARTE ROCHA AND DAVOR VRCIBRADIC Setor de Ecologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Brazil The reproductive cycles, fat body cycles and some life-history traits of the sympatric viviparous skinks Mabuya macrorhyncha and M. agilis were compared in a seasonal "restinga" habitat of south-eastern Brazil. Both male and female reproductive and fatbody cycles are very similar between species, with gestation lasting 9-12 months and parturition occurring during the early wet season. Clutch size of M. macrorhyncha was smaller than that of M. ag ilis. Females mature at a larger size in M. macrorhyncha than in M. agilis, but males of both species appear to mature at similar sizes. In both species, females are larger than males, but the latter have proportionately larger heads. Reproductive traits ofM. ag ilis are typical ofNeotropical Mabuya, but those of M. macrorhyncha have some peculiarities, one of which (small clutch size) is believed to result from constraints imposed by its morphological adaptation (i.e. relatively flattened body plan) to bromelicolous habits. Key words: Reproduction, life history, Mabuya, Brazilian skink INTRODUCTION which present differences may highlight those histori­ The genus Mabuya is one of the most speciose and cal forces that may select for certain reproductive widely distributed genera of the Scincidae, with about characteristics. Indeed, differences in reproductive 90 species found over most of tropical Africa,Asia , and characteristics among sympatric and allopatric populations of congeners have been reported for this America (Shine, 1985; Nussbaum & Rax worthy, 1994).
    [Show full text]
  • (2007) a Photographic Field Guide to the Reptiles and Amphibians Of
    A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
    A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement.
    [Show full text]
  • Malawi Trip Report 12Th to 28Th September 2014
    Malawi Trip Report 12th to 28th September 2014 Bohm’s Bee-eater by Keith Valentine Trip Report compiled by Tour Leader: Keith Valentine RBT Malawi Trip Report September 2014 2 Top 10 Birds: 1. Scarlet-tufted Sunbird 2. Pel’s Fishing Owl 3. Lesser Seedcracker 4. Thyolo Alethe 5. White-winged Apalis 6. Racket-tailed Roller 7. Blue Swallow 8. Bohm’s Flycatcher 9. Babbling Starling 10. Bohm’s Bee-eater/Yellow-throated Apalis Top 5 Mammals: 1. African Civet 2. Four-toed Elephant Shrew 3. Sable Antelope 4. Bush Pig 5. Side-striped Jackal/Greater Galago/Roan Antelope/Blotched Genet Trip Summary This was our first ever fully comprehensive tour to Malawi and was quite simply a fantastic experience in all respects. For starters, many of the accommodations are of excellent quality and are also situated in prime birding locations with a large number of the area’s major birding targets found in close proximity. The food is generally very good and the stores and lodges are for the most part stocked with decent beer and a fair selection of South African wine. However, it is the habitat diversity that is largely what makes Malawi so good from a birding point of view. Even though it is a small country, this good variety of habitat, and infrastructure that allows access to these key zones, insures that the list of specials is long and attractive. Our tour was extremely successful in locating the vast majority of the region’s most wanted birds and highlights included Red-winged Francolin, White-backed Night Heron, African Cuckoo-Hawk, Western Banded Snake
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Copeoglossum Aurae (Greater Windward Skink) Family: Scincidae (Skinks) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Copeoglossum aurae (Greater Windward Skink) Family: Scincidae (Skinks) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Greater windward skink, Copeoglossum aurae. [http://www.trinidad-tobagoherps.org/Mabuyanigropunctata.htm, downloaded 16 October 2016] TRAITS. Copeoglossum aurae is a newly discovered skink in Trinidad and Tobago (Hedges and Conn, 2012). It has a dark lateral solid stripe that extends from under its oval shaped ear past its hind legs onto the tail (Fig. 1). C. aurae male and female specimens can reach a maximum of 98.5mm and 109mm snout-vent length, respectively, and tails can reach up to 65mm. They are heavily scaled lizards with scales being smaller on the limbs in comparison to other body parts. Their tails, like some other reptiles, can be broken off and regenerated. The dorsal colour of most specimens are greyish-green with small to medium deep brown spots evenly spread on the body, limbs and tail. The dorsal colours are different shades of brown, grey and green, and green-white lateral stripes are found from the ear to the hind limbs (Hedges and Conn, 2012). DISTRIBUTION. Copeoglossum aurae species is distributed in some islands of the Caribbean including southern Windward Islands like St. Vincent and the Grenadines, Grenada, Trinidad and Tobago, and it was postulated that some may have migrated to parts of South America (Venezuela) (Murphy et al., 2013). HABITAT AND ECOLOGY. C. aurae exhibit both arboreal and non-arboreal characteristics, since they are found either on trees or on the ground (Murphy et al., 2013).
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 27 (April 2017), 201–216 Herpetological Journal FULL PAPER Published by the British Predation of Jamaican rock iguana Cyclura( collei) nests Herpetological Society by the invasive small Asian mongoose (Herpestes auropunctatus) and the conservation value of predator control Rick van Veen & Byron S. Wilson Department of Life Sciences, University of the West Indies, Mona 7, Kingston, Jamaica The introduced small Asian mongoose (Herpestes auropunctatus) has been widely implicated in extirpations and extinctions of island taxa. Recent studies and anecdotal observations suggest that the nests of terrestrial island species are particularly vulnerable to mongoose predation, yet quantitative data have remained scarce, even for species long assumed to be at risk from the mongoose. We monitored nests of the Critically Endangered Jamaican Rock Iguana (Cyclura collei) to determine nest fate, and augmented these observations with motion-activated camera trap images to document the predatory behaviour of the mongoose. Our data provide direct, quantitative evidence of high nest predation pressure attributable to the mongoose, and together with reported high rates of predation on hatchling and juvenile iguanas (also by the mongoose), support the original conclusion that the mongoose was responsible for the apparent lack of recruitment and the aging structure of the small population that was ‘re-discovered’ in 1990. Encouragingly however, our data also demonstrate a significant reduction in nest predation pressure within an experimental mongoose-removal area. Thus, our results indicate that otherwise catastrophic levels of nest loss (at or near 100%) can be ameliorated or even eliminated by removal trapping of the mongoose. We suggest that such targeted control efforts could also prove useful in safeguarding other threatened insular species with reproductive strategies that are notably vulnerable to mongoose predation (e.g., the incubation of eggs on or underground).
    [Show full text]
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSIRCF REPTILES • VOL15, &NO AMPHIBIANS 4 • DEC 2008 189 • 26(1):47–48 • APR 2019 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Additional. Chasing Bullsnakes (Pituophis Evidence catenifer sayi) in Wisconsin: of Arboreality of the On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 Greater. The SharedWindward History of Treeboas (Corallus grenadensis Skink,) and Humans on Grenada: Copeoglossum aurae A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 RESEARCH(Reptilia: ARTICLES Squamata: Mabuyidae), . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida on ............................................. CarriacouBrian J. Camposano, (Grenada Kenneth L. Krysko, Kevin M. Enge, Ellen Grenadines) M. Donlan, and Michael Granatosky 212 CONSERVATIONBillie C. Harrison, ALERT1 Richard A. Sajdak,2 Robert W. Henderson,1 and Robert Powell3 . World’s Mammals in Crisis ............................................................................................................................................................. 220 1 . More Than Mammals ...............................................................................................................................Milwaukee
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]