Number 3 March 2011

Total Page:16

File Type:pdf, Size:1020Kb

Number 3 March 2011 VolumeVolume 15 1 -- NumberNumber 31 May March- Sept ember2011 1997 Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It presents structured review articles ("cards") on genes, leukaemias, solid tumours, cancer-prone diseases, more traditional review articles on these and also on surrounding topics ("deep insights"), case reports in hematology, and educational items in the various related topics for students in Medicine and in Sciences. Editorial correspondance Jean-Loup Huret Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France tel +33 5 49 44 45 46 or +33 5 49 45 47 67 [email protected] or [email protected] Staff Mohammad Ahmad, Mélanie Arsaban, Houa Delabrousse, Marie-Christine Jacquemot-Perbal, Maureen Labarussias, Vanessa Le Berre, Anne Malo, Catherine Morel-Pair, Laurent Rassinoux, Sylvie Yau Chun Wan - Senon, Alain Zasadzinski. Philippe Dessen is the Database Director, and Alain Bernheim the Chairman of the on-line version (Gustave Roussy Institute – Villejuif – France). The Atlas of Genetics and Cytogenetics in Oncology and Haematology (ISSN 1768-3262) is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French National Center for Scientific Research (INIST-CNRS) since 2008. The Atlas is hosted by INIST-CNRS (http://www.inist.fr) http://AtlasGeneticsOncology.org © ATLAS - ISSN 1768-3262 The PDF version of the Atlas of Genetics and Cytogenetics in Oncology and Haematology is a reissue of the original articles published in collaboration with the Institute for Scientific and Technical Information (INstitut de l’Information Scientifique et Technique - INIST) of the French National Center for Scientific Research (CNRS) on its electronic publishing platform I-Revues. Online and PDF versions of the Atlas of Genetics and Cytogenetics in Oncology and Haematology are hosted by INIST-CNRS. Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Editor Jean-Loup Huret (Poitiers, France) Editorial Board Sreeparna Banerjee (Ankara, Turkey) Solid Tumours Section Alessandro Beghini (Milan, Italy) Genes Section Anne von Bergh (Rotterdam, The Netherlands) Genes / Leukaemia Sections Judith Bovée (Leiden, The Netherlands) Solid Tumours Section Vasantha Brito-Babapulle (London, UK) Leukaemia Section Charles Buys (Groningen, The Netherlands) Deep Insights Section Anne Marie Capodano (Marseille, France) Solid Tumours Section Fei Chen (Morgantown, West Virginia) Genes / Deep Insights Sections Antonio Cuneo (Ferrara, Italy) Leukaemia Section Paola Dal Cin (Boston, Massachussetts) Genes / Solid Tumours Section Louis Dallaire (Montreal, Canada) Education Section Brigitte Debuire (Villejuif, France) Deep Insights Section François Desangles (Paris, France) Leukaemia / Solid Tumours Sections Enric Domingo-Villanueva (London, UK) Solid Tumours Section Ayse Erson (Ankara, Turkey) Solid Tumours Section Richard Gatti (Los Angeles, California) Cancer-Prone Diseases / Deep Insights Sections Ad Geurts van Kessel (Nijmegen, The Netherlands) Cancer-Prone Diseases Section Oskar Haas (Vienna, Austria) Genes / Leukaemia Sections Anne Hagemeijer (Leuven, Belgium) Deep Insights Section Nyla Heerema (Colombus, Ohio) Leukaemia Section Jim Heighway (Liverpool, UK) Genes / Deep Insights Sections Sakari Knuutila (Helsinki, Finland) Deep Insights Section Lidia Larizza (Milano, Italy) Solid Tumours Section Lisa Lee-Jones (Newcastle, UK) Solid Tumours Section Edmond Ma (Hong Kong, China) Leukaemia Section Roderick McLeod (Braunschweig, Germany) Deep Insights / Education Sections Cristina Mecucci (Perugia, Italy) Genes / Leukaemia Sections Yasmin Mehraein (Homburg, Germany) Cancer-Prone Diseases Section Fredrik Mertens (Lund, Sweden) Solid Tumours Section Konstantin Miller (Hannover, Germany) Education Section Felix Mitelman (Lund, Sweden) Deep Insights Section Hossain Mossafa (Cergy Pontoise, France) Leukaemia Section Stefan Nagel (Braunschweig, Germany) Deep Insights / Education Sections Florence Pedeutour (Nice, France) Genes / Solid Tumours Sections Elizabeth Petty (Ann Harbor, Michigan) Deep Insights Section Susana Raimondi (Memphis, Tennesse) Genes / Leukaemia Section Mariano Rocchi (Bari, Italy) Genes Section Alain Sarasin (Villejuif, France) Cancer-Prone Diseases Section Albert Schinzel (Schwerzenbach, Switzerland) Education Section Clelia Storlazzi (Bari, Italy) Genes Section Sabine Strehl (Vienna, Austria) Genes / Leukaemia Sections Nancy Uhrhammer (Clermont Ferrand, France) Genes / Cancer-Prone Diseases Sections Dan Van Dyke (Rochester, Minnesota) Education Section Roberta Vanni (Montserrato, Italy) Solid Tumours Section Franck Viguié (Paris, France) Leukaemia Section José Luis Vizmanos (Pamplona, Spain) Leukaemia Section Thomas Wan (Hong Kong, China) Genes / Leukaemia Sections Atlas Genet Cytogenet Oncol Haematol. 2011; 15(3) Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Volume 15, Number 3, March 2011 Table of contents Gene Section AGER (advanced glycosylation end product-specific receptor) 239 Geetha Srikrishna, Barry Hudson ANG (angiogenin, ribonuclease, RNase A family, 5) 244 Shouji Shimoyama ATF5 (activating transcription factor 5) 252 Arthur KK Ching, Nathalie Wong BRE (brain and reproductive organ-expressed (TNFRSF1A modulator)) 255 Yiu-Loon Chui, Kenneth Ka-Ho Lee, John Yeuk-Hon Chan DDX1 (DEAD (Asp-Glu-Ala-Asp) box polypeptide 1) 259 Takahiko Hara, Kiyoko Tanaka DIO2 (deiodinase, iodothyronine, type II) 262 Ana Luiza Maia, Simone Magagnin Wajner, Leonardo B Leiria GFI1B (growth factor independent 1B transcription repressor) 266 Lothar Vassen, Tarik Möröy LRP5 (low density lipoprotein receptor-related protein 5) 270 Zhendong Alex Zhong, Bart O Williams MIF (macrophage migration inhibitory factor (glycosylation-inhibiting factor)) 276 Jan-Philipp Bach, Michael Bacher, Richard Dodel NEU3 (sialidase 3 (membrane sialidase)) 280 Kazunori Yamaguchi, Taeko Miyagi NPY1R (neuropeptide Y receptor Y1) 283 Massimiliano Ruscica, Elena Dozio, Luca Passafaro, Paolo Magni REPS2 (RALBP1 associated Eps domain containing 2) 288 Salvatore Corallino, Luisa Castagnoli XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) 293 Sabina Pucci, Maria Josè Zonetti Leukaemia Section t(6;22)(p21;q11) 297 Jean-Loup Huret Solid Tumour Section t(11;22)(q24;q12) in giant cell tumour of bone 299 Jean-Loup Huret Atlas Genet Cytogenet Oncol Haematol. 2011; 15(3) Atlast(11;14)(q 13;q32)of Genetics in multiple myeloma and Cytogenetics Huret JL, Laï JL in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS t(11;22)(q24;q12) in rhabdomyosarcomas (RMS) 300 Jean-Loup Huret t(11;22)(q24;q12) in solid pseudopapillary tumour of the pancreas 302 Jean-Loup Huret Deep Insight Section MTA1 of the MTA (metastasis-associated) gene family and its encoded proteins: molecular and regulatory functions and role in human cancer progression 304 Yasushi Toh, Garth L Nicolson Role of p38α in apoptosis: implication in cancer development and therapy 317 Almudena Porras, Carmen Guerrero Atlas Genet Cytogenet Oncol Haematol. 2011; 15(3) Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review AGER (advanced glycosylation end product- specific receptor) Geetha Srikrishna, Barry Hudson Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA (GS), Columbia University Medical Center, 630 West 168th St. New York, NY 10032, USA (BH) Published in Atlas Database: June 2010 Online updated version : http://AtlasGeneticsOncology.org/Genes/AGERID594ch6p21.html Printable original version : http://documents.irevues.inist.fr/bitstream/DOI AGERID594ch6p21.txt This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2011 Atlas of Genetics and Cytogenetics in Oncology and Haematology signal peptide (aa 1-22), followed by three Identity immunoglobulin-like domains, a V-type domain, (aa 23-116) and two C type domains (C1: aa 124- Other names: MGC22357; RAGE 221 and C2: 227-317), a single transmembrane HGNC (Hugo): AGER domain (aa 343-363), and a short cytoplasmic Location: 6p21.32 domain (aa 364-404) necessary for signaling. The prevalent isoforms of RAGE are full length RAGE, RAGE_v1 or endogenous secretory (es RAGE) which lacks the cytosolic and transmembrane domains and therefore can be secreted into the extracellular space, and N-terminal truncated Figure 1. Schematic of human chromosome 6. RAGE (RAGE_v2) which lacks N-terminal V domain and therefore cannot bind ligands. DNA/RNA RAGE_v2 does not form mature protein. Through Description its ability to scavenge RAGE ligands, soluble RAGE isoforms (sRAGE) are believed to act a The human AGER (RAGE) gene lies within the decoy receptor by regulating signaling mediated by major histocompatibility complex class III region activation of full length RAGE. Expression of on chromosome 6, which contains genes involved isoforms is tissue specific, suggesting tight tissue- in immune responses, such as TNFalpha, specific regulation of expression. sRAGE can also lymphotoxin, complement components
Recommended publications
  • The Interactome of KRAB Zinc Finger Proteins Reveals the Evolutionary History of Their Functional Diversification
    Resource The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification Pierre-Yves Helleboid1,†, Moritz Heusel2,†, Julien Duc1, Cécile Piot1, Christian W Thorball1, Andrea Coluccio1, Julien Pontis1, Michaël Imbeault1, Priscilla Turelli1, Ruedi Aebersold2,3,* & Didier Trono1,** Abstract years ago (MYA) (Imbeault et al, 2017). Their products harbor an N-terminal KRAB (Kru¨ppel-associated box) domain related to that of Krüppel-associated box (KRAB)-containing zinc finger proteins Meisetz (a.k.a. PRDM9), a protein that originated prior to the diver- (KZFPs) are encoded in the hundreds by the genomes of higher gence of chordates and echinoderms, and a C-terminal array of zinc vertebrates, and many act with the heterochromatin-inducing fingers (ZNF) with sequence-specific DNA-binding potential (Urru- KAP1 as repressors of transposable elements (TEs) during early tia, 2003; Birtle & Ponting, 2006; Imbeault et al, 2017). KZFP genes embryogenesis. Yet, their widespread expression in adult tissues multiplied by gene and segment duplication to count today more and enrichment at other genetic loci indicate additional roles. than 350 and 700 representatives in the human and mouse Here, we characterized the protein interactome of 101 of the ~350 genomes, respectively (Urrutia, 2003; Kauzlaric et al, 2017). A human KZFPs. Consistent with their targeting of TEs, most KZFPs majority of human KZFPs including all primate-restricted family conserved up to placental mammals essentially recruit KAP1 and members target sequences derived from TEs, that is, DNA trans- associated effectors. In contrast, a subset of more ancient KZFPs posons, ERVs (endogenous retroviruses), LINEs, SINEs (long and rather interacts with factors related to functions such as genome short interspersed nuclear elements, respectively), or SVAs (SINE- architecture or RNA processing.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • PDF Download
    TFIIIC90 Polyclonal Antibody Catalog No : YT4623 Reactivity : Human,Rat,Mouse, Applications : WB,ELISA Gene Name : GTF3C4 Protein Name : General transcription factor 3C polypeptide 4 Human Gene Id : 9329 Human Swiss Prot Q9UKN8 No : Mouse Swiss Prot Q8BMQ2 No : Immunogen : The antiserum was produced against synthesized peptide derived from human TF3C4. AA range:611-660 Specificity : TFIIIC90 Polyclonal Antibody detects endogenous levels of TFIIIC90 protein. Formulation : Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Source : Rabbit Dilution : Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications. Purification : The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen. Concentration : 1 mg/ml Storage Stability : -20°C/1 year Molecularweight : 92001 Observed Band : 95 1 / 3 Background : catalytic activity:Acetyl-CoA + histone = CoA + acetylhistone.,function:Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin. Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3. May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F. May be localized close to the A box.,sequence caution:Contaminating sequence. Potential poly-A sequence.,similarity:Belongs to the TFIIIC subunit 4 family.,subunit:Part of the TFIIIC subcomplex TFIIIC2, consisting of six subunits, GTF3C1, GTF3C2, GTF3C3, GTF3C4, GTF3C5 and GTF3C6. Interacts with BRF1, GTF3C1, GTF3C2, GTF3C5, GTF3C6, POLR3C and POLR3F., Function : catalytic activity:Acetyl-CoA + histone = CoA + acetylhistone.,function:Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin.
    [Show full text]
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons
    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
    [Show full text]
  • An Integrative View of the Regulatory and Transcriptional Landscapes in Mouse Hematopoiesis
    bioRxiv preprint doi: https://doi.org/10.1101/731729; this version posted January 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis Guanjue Xiang1*, Cheryl A. Keller1*, Elisabeth Heuston2, Belinda M. Giardine1, Lin An1, Alexander Q. Wixom1, Amber Miller1, April Cockburn1, Michael E.G. Sauria3, Kathryn Weaver3, Jens Lichtenberg2, Berthold Göttgens4, Qunhua Li5, David Bodine2, Shaun Mahony1, James Taylor3, Gerd A. Blobel6, Mitchell J. Weiss7, Yong Cheng7, Feng Yue8, Jim Hughes9, Douglas R. Higgs9, Yu Zhang5, Ross C. Hardison1** 1Department of Biochemistry and Molecular Biology, 5Department of Statistics, Program in Bioinformatics and Genomics, Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA; 2NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, MD; 3Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, MD; 4Welcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; 6Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; 7Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN; 8Department of Biochemistry and Molecular Biology, The Pennsylvania State University College
    [Show full text]
  • Identifying Potential Regions of Copy Number Variation for Bipolar Disorder
    Microarrays 2014, 3, 52-71; doi:10.3390/microarrays3010052 OPEN ACCESS microarrays ISSN 2076-3905 www.mdpi.com/journal/microarrays Article Identifying Potential Regions of Copy Number Variation for Bipolar Disorder Yi-Hsuan Chen 1, Ru-Band Lu 2, Hung Hung 1,3 and Po-Hsiu Kuo 1,3,* 1 Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan; E-Mails: [email protected] (Y.-H.C.); [email protected] (H.H.) 2 Department of Psychiatry, College of Medicine & Hospital, National Cheng Kung University, Tainan 704, Taiwan; E-Mail: [email protected] 3 Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei 100, Taiwan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-2-3366-8015; Fax: +886-2-2351-1955. Received: 1 December 2013; in revised form: 10 February 2014 / Accepted: 12 February 2014 / Published: 28 February 2014 Abstract: Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder.
    [Show full text]
  • A Novel 2.3 Mb Microduplication of 9Q34. 3 Inserted Into 19Q13. 4 in A
    Hindawi Publishing Corporation Case Reports in Pediatrics Volume 2012, Article ID 459602, 7 pages doi:10.1155/2012/459602 Case Report A Novel 2.3 Mb Microduplication of 9q34.3 Inserted into 19q13.4 in a Patient with Learning Disabilities Shalinder Singh,1 Fern Ashton,1 Renate Marquis-Nicholson,1 Jennifer M. Love,1 Chuan-Ching Lan,1 Salim Aftimos,2 Alice M. George,1 and Donald R. Love1, 3 1 Diagnostic Genetics, LabPlus, Auckland City Hospital, P.O. Box 110031, Auckland 1148, New Zealand 2 Genetic Health Service New Zealand-Northern Hub, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand 3 School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Correspondence should be addressed to Donald R. Love, [email protected] Received 1 July 2012; Accepted 27 September 2012 Academic Editors: L. Cvitanovic-Sojat, G. Singer, and V. C. Wong Copyright © 2012 Shalinder Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis revealed the karyotype 46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3)pat. Cytogenetic microarray analysis (CMA) identified a ∼2.3Mb duplication of 9q34.3 → qter, which was confirmed by Fluorescence in situ hybridisation (FISH).
    [Show full text]
  • Supplementary Appendix Table of Contents
    Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Table of Contents Supplementary Note ........................................................................................................................... 1 Author contributions ............................................................................................................................... 1 Additional authors from study groups .............................................................................................. 2 Task Force COVID-19 Humanitas ......................................................................................................................................... 2 TASK FORCE COVID-19 HUMANITAS GAVAZZENI & CASTELLI ............................................................................. 3 COVICAT Study Group ............................................................................................................................................................... 4 Pa COVID-19 Study Group ....................................................................................................................................................... 5 Covid-19 Aachen Study (COVAS) .......................................................................................................................................... 5 Norwegian SARS-CoV-2 Study group .................................................................................................................................
    [Show full text]
  • Transcription-Independent TFIIIC-Bound Sites Cluster Near Heterochromatin Boundaries Within
    bioRxiv preprint doi: https://doi.org/10.1101/813642; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Transcription-independent TFIIIC-bound sites cluster near heterochromatin boundaries within lamina-associated domains in C. elegans Alexis V. Stutzman1,3)*, April S. Liang2,4)*, Vera Beilinson1)*, and Kohta Ikegami1) 5 1)Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA; 2)Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA Current address: 10 3)Curriculum in Genetics and Molecular Biology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 4)School of Medicine, University of California San Francisco, San Francisco, California, USA *These authors contributed equally to this work. 15 Correspondence: Kohta Ikegami Email: [email protected] Tel: (773) 834-4260 20 KEYWORDS Transcription Factor III C (TFIIIC), RNA Polymerase III, C. elegans, Insulator, Chromatin, Chromosome, lamina-associated domain, nuclear periphery, LEM-2, Histone H3 Lysine 9 methylation 1 bioRxiv preprint doi: https://doi.org/10.1101/813642; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT 25 BACKGROUND: Chromatin organization is central to precise control of gene expression.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Excel S2 SILAC Data HEK293T.Xlsx
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018 Supporting Information Live-Cell Imaging and Profiling of c-Jun N-Terminal Kinases with Covalent Inhibitor-Derived Probes Linghui Qian,a,b* Sijun Pan,a Jun-Seok Lee,c Jingyan Ge,d Lin Li,e* Shao Q. Yaoa* aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore), E-mail: [email protected] (S.Q.Y.). bInstitute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China), E-mail: [email protected] (L.Q.) cMolecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (South Korea) dKey Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014 (China) eKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800 (China), E-mail: [email protected] (L.L.) S1_1 List of contents: 1 General Information 2 Chemical Synthesis and Characterizations 3 Experimental Methods 4 Results and Discussions 5 Appendix (1H and 13C NMR spectra & HRMS Data) 6 LC-MS/MS Data for Chemoproteomic Studies 7 Summary of performance of the probes and reporters Fig. S1 8 LC-MS characterization of QT1/QT2 + trans-cyclooctenol (TCO) ligation Fig. S2 9 Characterization of AAN-N3 + propargyl alcohol ligation Fig. S3 Photophysical properties of two-photon reporters before and after click 10 Fig. S4 reaction 11 Bioactivity of parental inhibitors and probes derived from them Fig.
    [Show full text]
  • A Catalog of Associations Between Rare Coding Variants and COVID-19 Outcomes
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.28.20221804; this version posted February 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . 1 A catalog of associations between rare coding variants and COVID-19 outcomes 2 J. A. Kosmicki1†, J. E. Horowitz1†, N. Banerjee1, R. Lanche1, A. Marcketta1, E. Maxwell1, X. Bai1, 3 D. Sun1, J. D. Backman1, D. Sharma1, H. M. Kang1, C. O’Dushlaine1, A. Yadav1, A. J. Mansfield1, 4 A. H. Li1, K. Watanabe1, L. Gurski1, S. E. McCarthy1, A. E. Locke1, S. Khalid1, S. O’Keeffe1, J. 5 Mbatchou1, O. Chazara2, Y. Huang3, E. Kvikstad5, A. O’Neill2, P. Nioi4, M. M. Parker4, S. 6 Petrovski2, H. Runz3, J. D. Szustakowski5, Q. Wang2, E. Wong6, A. Cordova-Palomera6, E. N. 7 Smith6, S. Szalma6, X. Zheng7, S. Esmaeeli7, J. W. Davis7, Y-P. Lai8, X. Chen8, A. E. Justice9, J. 8 B. Leader9, T. Mirshahi9, D. J. Carey9, A. Verma10, G. Sirugo10, M. D. Ritchie10, D. J. Rader10, G. 9 Povysil11, D. B. Goldstein11,12, K. Kiryluk11,13, E. Pairo-Castineira14,15, K. Rawlik14, D. Pasko16, S. 10 Walker16, A. Meynert15, A. Kousathanas16, L. Moutsianas16, A. Tenesa14,15,17, M. Caulfield16,18, R. 11 Scott16,19, J. F. Wilson15,17, J. K. Baillie14,15,20, G. Butler-Laporte21,22, T. Nakanishi21,23-25, M. 12 Lathrop23,26, J.B.
    [Show full text]