Abstracts of Contributed Papers

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts of Contributed Papers RevMexAA (Serie de Conferencias), 14, 103{150 (2002) ABSTRACTS OF CONTRIBUTED PAPERS OBSERVATIONS OF COMETARY NUCLEI, Knowledge of basic properties of the cometary en- FROM CASLEO vironment is desired to enhance the scientific return F. Artigue1, G. Tancredi1, J. Fern´andez1, of the mission. A coma model for 19P/Borrelly is R. Gil Hutton2, J. Licandro3, M. Melitta4 presented that consistently represents the cometary and H. Rickman5 environment from the nucleus surface to the solar wind interaction region (Benkhoff & Boice, P&SS CCD photometric observations of more than ten 44, 665, 1996; Wegmann et al., P&SS 46, 603, 1998). Jupiter Family comets were performed using the Neutral gas and plasma dynamics and spatial distri- 2.15-m telescope at CASLEO, Argentina in March butions of various cometary species are presented for 1995, March 1997 and May 1999. The data were re- scientific planning and risk assessment for the DS1 duced with IRAF in standard ways. We will do abso- encounter. Predictions of x-ray emissions are made lute photometry using DIGIPHOT/APPHOT pack- for coordinating in situ plasma measurements with age included in IRAF. Standars stars from Landolt Chandra observations as well as other predictions for (1992) and Stobie et al. (1985) will be used for cali- planning experiments during the encounter. bration purposes. Estimates for the effective radius Our major findings can be summarized as follows: of the nuclei will be computed considering a typical (1) Estimates of the dust environment show that the geometric albedo, pv = 0.04. Wherever possible, risk is very small for a mission-ending dust hazard cometary image profiles will be compared with stellar at the current flyby distance of about 1500 km. (2) profiles, in order to determine the existence of a faint Using estimates of the solar wind conditions and the coma. Many of the observed comets were active at gas production rate at the time of encounter, a bow heliocentric distances larger than 4 AU. This is part shock is expected at a distance of about 60,000 to of a long-term observational program designed to ob- 80,000 km along DS1s trajectory, however, DS1 will tain nuclear magnitudes estimates of a large sample not penetrate the contact surface. (3) At closest ap- of Jupiter family comets (Licandro et al., Icarus 147, proach, the plasma speed steadily decreases to about 161, 2000). 2 km s−1, with an ion temperature of about 2x105 K 4 1 and electron temperature of about 2x10 K (domi- Departamento de Astronom´ıa, Fac. de Ciencias, Igua 4225, nated by photoelectrons), and an ion number den- 11400 Montevideo, Uruguay −3 2 Observatorio Astron´omico F´elix Aguilar, Av. Benavidez sity of about 100 cm . (4) A kidney-bean shaped 8175 Oeste, 5407 Marquesado, San Juan, Argentina x-ray emission region of approximately 80,000 km by 3 Instituto de Astrof´ısica de Canarias, V´ıa L´actea s/n, La 60,000 km in extent is predicted as seen from earth Laguna, Tenerife, Spain 4 Facultad de Ciencias Astron´omicas y Geof´ısicas de La Plata, (40 degree aspect angle) with a maximum intensity −5 −2 −1 UNLP, Argentina of about 8x10 erg cm s , assuming their ori- 5 Astronomiska Observatoriet, Box 5151, S-751 20, Uppsala, gin is charge exchange of heavy, highly ionized solar Sweden wind ions with cometary neutrals, primarily water group species (Cravens, Geophys. Res. Lett. 24, 105, 1997). We wish to acknowledge funding from NASA for the DS1 Science Team, with additional support from NAO (Japan) and FAPESP (Brasil). PRE-ENCOUNTER MODELS OF COMET 19P/BORRELLY FOR THE DEEP SPACE 1 1 South West Research Institute, San Antonio, USA, and MISSION Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, 1 2 3 USP, Sao Pablo, Brazil [email protected] D.C. Boice , R. Wegmann , J.I. Watanabe 2 4 4 Max{Planck{Institut fur¨ Astrophysik, Garching, Germany A.A. de Almeida and M.V. Canaves 3 National Astronomical Observatory, Tokyo, Japan 4 Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, The Deep Space 1 Mission (DS1) is scheduled to en- USP, Sao Paulo, Brazil counter comet 19P/Borrelly on 22 September 2001. 103 104 ABSTRACTS COULD DYNAMIC PRESSURE EFFECTS of the Solar System. We present a new visible spec- CAUSE THE DISCONNECTION EVENTS IN troscopic survey of asteroids, the Small Solar Sys- COMET P/HALLEY? tem Objects Spectroscopic Survey (S3OS2). This M.R. Voelzke survey has been carried on between Nov. 1996 and Sep. 2001 at the 1,52-m telescope at ESO (La Silla, Universidade Cruzeiro do Sul, Brazil, Chile), aiming to contribute to a better understand- [email protected] ing of the compositional distribution in the main belt. More than 800 asteroids have been observed Cometary and solar wind data are compared with and the first results have been presented in Lazzaro the purpose of identifying the solar wind conditions et al. (BAAS 29, 975, 1997). Several families and which are associated with comet plasma tail discon- groups of asteroids have been studied, like the fami- nection events (DEs). The cometary data are from lies of Flora (Florczak et al., Icarus 133, 233, 1998), The International Halley Watch Atlas of Large-Scale Themis (Florczak et al., A&ASS 134, 463, 1998) and Phenomena (Brandt et al. 1992). A systematic vi- Eunomia (Lazzaro et al., Icarus 142, 445, 1999), and sual analysis of the atlas images (Voelzke & Mat- the groups of Hungaria and Phocaea (Carvano et al., suura, P&SS 46, 835, 1998) revealed, among other Icarus 149, 173, 2001). Among the results obtained morphological structures, 47 DEs along the plasma with our survey, the discovery of a basaltic asteroid tail of comet P/Halley. The solar wind data are in in the outer main belt (Lazzaro et al., Sci 288, 2030, situ measurements from IMP-8 (King, IMS Source 2000) should be stressed. The only basaltic aster- Book p10, 1982), which are used to construct the oids known in the belt were 4 Vesta and some small actual variation of solar wind speed, density and dy- asteroids considered as fragments of it. The discov- namic pressure during the analysed intervals. This ery of the basaltic crust of the asteroid 1459 Mag- work compares the onsets of these DEs with the solar nya indicates that a substantial thermal heating has wind dynamic pressure variations in order to clarify occurred in the outer belt. As a general result, al- if pressure effects play an important role in the for- though our data confirm earlier results about a con- mation of DEs and if they can even be considered tinuous trend of compositions in the asteroid belt, as the triggering mechanism. The analysis however they also reveal a more prominent mixing than pre- reveals a poor correlation (23%) between the onsets viously supposed. This mixing is more pronounced of P/Halley's DEs and the associated pressure ef- in small objects due to collisions and dynamical pro- fects. This result is in good agreement with Weg- cesses and also in \scattered" objects that have high- mann (A&A 294, 601, 1995) who concluded in an in- inclination and/or high eccentricity orbits. dependent and theoretical analysis, that about 25% of all tail disconnections must be caused by inter- 1 MCT/Observat´orio Nacional, 20921-400 Rio de Janeiro, planetary shocks. The DEs onsets of comet P/Halley Brazil analysed in this work, calculated from observational 2 CEFET, 80000 Curitiba, Brazil data, do not corroborate the idea that DEs are as- sociated with dynamic pressure effects. PHOTOMETRY OF ASTEROIDS MEMBERS OF MARIA AND THEMIS FAMILIES A.A. Alvarez1, S. Fern´andez2, J. Ahumada2 and R. Duffard3 S3OS2: A VISIBLE SPECTROSCOPIC SURVEY OF AROUND 800 ASTEROIDS In observations carried out during the last 3 years D. Lazzaro1, J.M. Carvano1, T. Moth´e-Diniz1, on asteroids members of Themis and Maria families, C.A. Angeli1, R. Duff´ard1 and M. Florczak2 we obtained light curves and rotational periods of members of that families. The observations were Most of the asteroids have their orbits between 2.2 made with the 154-cm telescope of Bosque Alegre and 3.3 A.U. from the Sun, in a region where the Astrophysical Station. The results shows that av- transition between terrestrial and giant planets takes erage rotational periods found in the Maria family place. Therefore, the identification of the composi- are smaller than the average periods in the fam- tional and mineralogical properties of a large sample ily of Themis. We found the rotational periods of these objects will ultimately led to a better un- of: (727) Niponia, (1996) Adams, (2151) Hadwiger, derstanding of the physical and chemical evolution (2429) Schurer, (2903) Zhubai and (4099) 1988AB5, ABSTRACTS 105 all from the family of Maria. From the family of GAUSS' FORMS OF THE LAGRANGE'S Themis we found the rotational periods of (996) Hi- EQUATIONS FOR THE ANALYTICAL laritas, (1171) Rusthawela and (1782) Schneller. SOLUTION OF THE POSTNEWTONIAN TWO BODY PROBLEM J.G. Portilla Name Family Period (hr) Amplitude (727) Niponia Maria 4.20 1.19 Observatorio Astron´omico Nacional, Universidad (1996) Adams Maria 3.30 0.4 Nacional de Colombia A.A. 2584, Bogot´a, Colombia (2151) Hadwiger Maria 2.72 0.33 [email protected] (2429) Schurer Maria 7.03 0.33 (2903) Zhubai Maria 6.15 0.48 The equations of motion of the n-body problem un- (4099) 1988AB5 Maria 3.25 0.25 der the General Relativity formalism are the so- (996) Hilaritas Themis 11.30 0.94 called EIH equations, now extensively used in the (1171) Rusthawela Themis 5.28 0.49 analytical and numerical theories necessary to con- (1782) Schneller Themis 7.70 0.63 struct the ephemeris of the bodies in the solar sys- 1 tem.
Recommended publications
  • New Catalogue of Optically Visible Open Clusters and Candidates ?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Astronomy & Astrophysics manuscript no. provided by CERN Document Server (will be inserted by hand later) New catalogue of optically visible open clusters and candidates ? W. S. Dias1,B.S.Alessi1,A.Moitinho2,andJ.R.D.L´epine1 1 Universidade de S~ao Paulo, Dept. de Astronomia, CP 3386, S~ao Paulo 01060-970, Brazil 2 Observatorio Astron´omico Nacional, UNAM, Apdo. Postal 877, C.P. 22800, Ensenada B.C., M´exico Received <date>/ Accepted <date> Abstract. We have compiled a new catalogue of open clusters in the Galaxy which updates the previous catalogues of Lyng˚a (1987) and of Mermilliod (1995) (included in the WEBDA database). New objects and new data, in particular, data on kinematics (proper motions) that were not present in the old catalogues, have been included. Virtually all the clusters (1537) presently known were included, which represents an increment of about 347 objects relative to the Lyng˚a (1987) catalogue. The catalogue is presented in a single table containing all the important data, which makes it easy to use. The catalogue can be accessed on line either at http://www.iagusp.usp.br/~wilton/ or as an electronic table which will be made available at the CDS. Key words. Galaxy: open clusters and associations: general - Catalogue 1. Introduction by Loktin et al. (2000) and the discussion of the prob- lem of the differences in the distances obtained with par- In this work, we introduce a new catalogue of the open allaxes and by photometric main sequence fitting (see clusters of our Galaxy.
    [Show full text]
  • PERIOD DETERMINATION for 448 NATALIE Eduardo Manuel Alvarez
    54 PERIOD DETERMINATION FOR 448 NATALIE Eduardo Manuel Alvarez Observatorio Los Algarrobos (OLASU) Costanera Sur 559, Salto 50.000, URUGUAY [email protected] (Received: 13 October) Lightcurve analysis for 448 Natalie was performed from observations during its 2010 opposition. The synodic rotation period was found to be 8.0646 ± 0.0004 h and the lightcurve amplitude was 0.32 ± 0.04 mag. As of early September 2010, only 6 of the first 500 numbered asteroids appeared to have no previously reported rotation periods (only four years ago, that number was seven times greater). One of those six, 448 Natalie, was chosen for observations since it would be favorably placed for several weeks during the 2010 apparition and because it was one of the recommended asteroids in the “Potential Lightcurve Targets 2010 July - September” included at the Collaborative Asteroid Lightcurve Link (CALL) web-site (Warner, 2010). The asteroid was observed from 2010 mid-September to early October at Observatorio Los Algarrobos, Salto, Uruguay (MPC Code I38), using a 0.3-m Meade LX-200R working at f/6.3 with a focal reducer. The CCD imager was a QSI 516wsg NABG with a 1536 x 1024 array of 9-micron pixels. Exposures were 60 s Minor Planet Bulletin 38 (2011) 55 working at –10C, unguided, and unfiltered at 2x2 binning, yielding CCD PHOTOMETRY AND LIGHTCURVE ANALYSIS OF an image scale of 1.9 arcseconds per pixel. All images were dark 1730 MARCELINE AND 1996 ADAMS FROM and flat field corrected. The images were measured using MPO OBSERVATORI CARMELITA IN TIANA Canopus version 10.2.0.2 (Bdw Publishing) with a differential photometry technique.
    [Show full text]
  • The Stellar Group NGC 1901 in Front of the Large Magellanic Cloud,
    A&A 466, 931–941 (2007) Astronomy DOI: 10.1051/0004-6361:20066687 & c ESO 2007 Astrophysics Observational templates of star cluster disruption The stellar group NGC 1901 in front of the Large Magellanic Cloud, G. Carraro1,2, R. de la Fuente Marcos3, S. Villanova1, C. Moni Bidin2, C. de la Fuente Marcos3,H.Baumgardt4, and G. Solivella5 1 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Suffolk University Madrid Campus, C/ Viña 3, 28003 Madrid, Spain 4 AIfA, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 5 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina Received 3 November 2006 / Accepted 23 January 2007 ABSTRACT Context. Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long-lived stellar groups are known as open clusters. They gradually lose stars and are severely disrupted in their final evolutionary stages, leaving an open cluster remnant made up of a few stars. Aims. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC 1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age, and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.
    [Show full text]
  • Open Cluster Remnants : an Observational Overview
    Bull. Astr. Soc. India (2006) 34, 153{162 Open cluster remnants : an observational overview Giovanni Carraro¤ Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago, Chile Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA Abstract. The state of the art in the current research on the ¯nal stages of Open Star Clusters dynamical evolution is presented. The focus will be on ob- servational studies and their achievements. By combining together photometric, spectroscopic and astrometric material, a new look at this exciting topic is now possible, thus providing a solid observational foundation for a new generation of theoretical studies on the subject. Keywords : Open Clusters { General, Open Clusters { Dynamics, Open Clus- ters { Individual: Upgren 1, Messier 73, Collinder 21. 1. Introduction Open Star Clusters are fragile ensembles of stars which hardly survive to the hostile Galac- tic disk environment. The Galaxy tidal ¯eld and close encounter with Giant Molecular clouds are the two most e®ective external processes driving dissolution of star clusters. Both numerical simulations (Terlevich 1987; Theuns 1992; de la Fuente Marcos 1997; Tanikawa and Fukushige 2005) and the observed age distribution of star clusters (Wielen 1971; Carraro et al. 2005a) suggest that the lifetime of most open clusters does not exceed 500 Myr. Apart from external perturbations, a star cluster looses its stellar content during a three stages evolution (de la Fuente Marcos 2001). (1) Soon after its birth, a cluster quickly acquires a core-halo structure (Baume et al. 2004), being the halo formed by low mass stars moved outwards due to close encounters occured in the inner regions.
    [Show full text]
  • Capricorn (Astrology) - Wikipedia, the Free Encyclopedia
    מַ זַל גְּדִ י http://www.morfix.co.il/en/Capricorn بُ ْر ُج ال َج ْدي http://www.arabdict.com/en/english-arabic/Capricorn برج جدی https://translate.google.com/#auto/fa/Capricorn Αιγόκερως Capricornus - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Capricornus h m s Capricornus Coordinates: 21 00 00 , −20° 00 ′ 00 ″ From Wikipedia, the free encyclopedia Capricornus /ˌkæprɨˈkɔrnəs/ is one of the constellations of the zodiac. Its name is Latin for "horned goat" or Capricornus "goat horn", and it is commonly represented in the form Constellation of a sea-goat: a mythical creature that is half goat, half fish. Its symbol is (Unicode ♑). Capricornus is one of the 88 modern constellations, and was also one of the 48 constellations listed by the 2nd century astronomer Ptolemy. Under its modern boundaries it is bordered by Aquila, Sagittarius, Microscopium, Piscis Austrinus, and Aquarius. The constellation is located in an area of sky called the Sea or the Water, consisting of many water-related constellations such as Aquarius, Pisces and Eridanus. It is the smallest constellation in the zodiac. List of stars in Capricornus Contents Abbreviation Cap Genitive Capricorni 1 Notable features Pronunciation /ˌkæprɨˈkɔrnəs/, genitive 1.1 Deep-sky objects /ˌkæprɨˈkɔrnaɪ/ 1.2 Stars 2 History and mythology Symbolism the Sea Goat 3 Visualizations Right ascension 20 h 06 m 46.4871 s–21 h 59 m 04.8693 s[1] 4 Equivalents Declination −8.4043999°–−27.6914144° [1] 5 Astrology 6 Namesakes Family Zodiac 7 Citations Area 414 sq. deg. (40th) 8 See also Main stars 9, 13,23 9 External links Bayer/Flamsteed 49 stars Notable features Stars with 5 planets Deep-sky objects Stars brighter 1 than 3.00 m Several galaxies and star clusters are contained within Stars within 3 Capricornus.
    [Show full text]
  • Investigation Into the Spatial Distribution of AGN Companion Galaxies in Gravitationally Isolated Environments
    Investigation into the Spatial Distribution of AGN Companion Galaxies in Gravitationally Isolated Environments Janakan Sivasubramanium A Thesis Submitted to The Faculty Of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Of Master of Science Graduate Program in Physics & Astronomy York University Toronto, Ontario September 2018 c Janakan Sivasubramanium, 2018 Abstract Active galaxies are an important subclass of galaxies, distinguished by an energetic core radiating an extraordinary amount of energy. These hyperactive cores, referred to as Active Galactic Nuclei (AGN), are driven by enhanced accretion onto a central supermassive black hole about a million to a billion times the mass of our Sun. Accre- tion onto a supermassive black hole may be a convincing mechanism to explain the extreme properties stemming from an active galaxy, but this proposal inevitably opens up another problem: what source provides the gaseous fuel for black hole accretion? In this research project, we examine the possibility that these active galaxies have engaged in some form of galactic \cannibalism" of their neighbouring galaxies to acquire a fuel supply to power their energetic cores. By using data from the Sloan Digital Sky Survey (SDSS), we conduct an environmental survey around active and non-active galaxies and map out the spatial distribution of their neighbouring galaxies. Our results show that, in gravitationally isolated environments, the local environment (< 0:5 Mpc) around active galaxies are seen to have an under-density or scarcity of neighbouring galaxies relative to the non-active control sample { a possible indication of a history of mergers and consumptions. ii Acknowledgments The past two years have been an incredible learning experience.
    [Show full text]
  • Issue 36, June 2008
    June2008 June2008 In This Issue: 7 Supernova Birth Seen in Real Time Alicia Soderberg & Edo Berger 23 Arp299 With LGS AO Damien Gratadour & Jean-René Roy 46 Aspen Instrument Update Joseph Jensen On the Cover: NGC 2770, home to Supernova 2008D (see story starting on page 7 Engaging Our Host of this issue, and image 52 above showing location Communities of supernova). Image Stephen J. O’Meara, Janice Harvey, was obtained with the Gemini Multi-Object & Maria Antonieta García Spectrograph (GMOS) on Gemini North. 2 Gemini Observatory www.gemini.edu GeminiFocus Director’s Message 4 Doug Simons 11 Intermediate-Mass Black Hole in Gemini South at moonset, April 2008 Omega Centauri Eva Noyola Collisions of 15 Planetary Embryos Earthquake Readiness Joseph Rhee 49 Workshop Michael Sheehan 19 Taking the Measure of a Black Hole 58 Polly Roth Andrea Prestwich Staff Profile Peter Michaud 28 To Coldly Go Where No Brown Dwarf 62 Rodrigo Carrasco Has Gone Before Staff Profile Étienne Artigau & Philippe Delorme David Tytell Recent 31 66 Photo Journal Science Highlights North & South Jean-René Roy & R. Scott Fisher Photographs by Gemini Staff: • Étienne Artigau NICI Update • Kirk Pu‘uohau-Pummill 37 Tom Hayward GNIRS Update 39 Joseph Jensen & Scot Kleinman FLAMINGOS-2 Update Managing Editor, Peter Michaud 42 Stephen Eikenberry Science Editor, R. Scott Fisher MCAO System Status Associate Editor, Carolyn Collins Petersen 44 Maxime Boccas & François Rigaut Designer, Kirk Pu‘uohau-Pummill 3 Gemini Observatory www.gemini.edu June2008 by Doug Simons Director, Gemini Observatory Director’s Message Figure 1. any organizations (Gemini Observatory 100 The year-end task included) have extremely dedicated and hard- completion statistics 90 working staff members striving to achieve a across the entire M 80 0-49% Done observatory are worthwhile goal.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Mazzone Et Al Lightcurves
    1 COLLABORATIVE ASTEROID PHOTOMETRY AND We find that this software presents some novelties in the LIGHTCURVE ANALYSIS AT OBSERVATORIES OAEGG, mathematical processing of the data. These are discussed in the OAC, EABA, AND OAS appendix along with some details regarding our methods. Fernando Mazzone All targets were selected from the “Potential Lightcurve Targets” Observatorio Astronómico Salvador (MPC I20), Achalay 1469 web site list on the Collaborative Asteroid Lightcurve Link site X5804HMI Río Cuarto, Córdoba, ARGENTINA (CALL; Warner et al., 2011) as a favorable target for observation Departamento de Matemática and with no previously reported period in the Lightcurve Database Universidad Nacional de Río Cuarto, Córdoba, ARGENTINA (LCDB, Warner et al., 2009). [email protected] The lightcurve figures contain the following information: 1) the Carlos Colazo estimated period and amplitude, 2) a 95% confidence interval Grupo de Astrometría y Fotometría regarding the period estimate, 3) RMS of the fitting, 4) estimated Observatorio Astronómico Córdoba amplitude and amplitude error, 5) the Julian time corresponding to Universidad Nacional de Córdoba, (Córdoba) ARGENTINA 0 rotation phase, and 6) the number of data points. In the reference Observatorio Astronómico El Gato Gris (MPC I19) boxes the columns represent, respectively, the marker, observatory Tanti (Córdoba), ARGENTINA MPC code, session date, session off-set, and number of data points. See the appendix for a description of the off-sets and Federico Mina reduced magnitudes. Grupo de Astrometría y Fotometría, Observatorio Astronómico Córdoba, Universidad Nacional de Córdoba 8059 Deliyannis. We collected 548 data points in five different Córdoba, ARGENTINA sessions. The derived period and amplitude were 6.0041 ± 0.0003 h and 0.39 ± 0.04 mag.
    [Show full text]
  • 80, June 1994
    British Astronomical Association Variable Star Section Circular No 80, June 1994 CONTENTS The Cambridge Variable Star Meeting (continued) 1 New Variable Star Publications 3 Photoelectric Photometry of HU Tauri 3 Photoelectric Photometry of 16 Tauri 4 RAS Grant for VSS Computerisation 4 Selected Medium-Term Light-Curves - Dave McAdam 4 Summaries of IBVS's Nos 3975 to 4006 8 Eclipsing Binary Predictions 9 V409 Persei (=TASV 030645) 12 Professional-Amateur Exchanges Report No 10 - Guy Hurst 13 UK N/SN Recurrent Objects Program Report 1993 - Gary Poyner 17 Making Visual Observations for the Variable Star Section 19 ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG Section Officers Director Tristram Brelstaff, 3 Malvern Court, Addington Road, READING, Berks, RG1 5PL Tel: 0734-268981 Section Melvyn D Taylor, 17 Cross Lane, WAKEFIELD, Secretary West Yorks, WF2 8DA Tel: 0924-374651 Chart John Toone, Hillside View, 17 Ashdale Road, Cressage, Secretary SHREWSBURY, SY5 6DT Tel: 0952-510794 Computer Dave McAdam, 33 Wrekin View, Madeley, TELFORD, Secretary Shropshire, TF7 5HZ Tel: 0952-432048 E-mai1: [email protected]. NET Nova/Supernova Guy M Hurst, 16 Westminster Close, Kempshott Rise, Secretary BASINGSTOKE, Hants, RG22 4PP Tel & Fax: 0256-471074 E-mail: [email protected] GMH@GXVG,AST.CAM.AC.UK Pro-Am Liaison Roger D Pickard, 28 Appletons, HADLOW, Kent TN11 0DT Committee Tel: 0732-850663 Secretary E-mail: [email protected] KENVAD::RDP Eclipsing Binary See Director Secretary Circulars See Director Telephone Alert Numbers Nova and First phone Nova/Supernova Secretary. If only answering Supernova machine response leave message and then try the following: Discoveries Denis Buczynski 0524-68530 Glyn Marsh 0772-690502 Martin Mobberley 0245-475297 (w'kdays) 0284-828431 (w'kends) Variable Star Gary Poyner 021-6053716 Alerts E-mail: [email protected] BHVAD::GP Charges for VSS Publications The following charges are made for the Circulars.
    [Show full text]
  • Characterization of Open Cluster Remnants
    Astronomy & Astrophysics manuscript no. 6240 c ESO 2021 June 14, 2021 Characterization of open cluster remnants ⋆ D. B. Pavani1,2 and E. Bica2 1 Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas (IAG) Universidade de S˜ao Paulo - Rua do Mat˜ao 1226; 05508-900, S˜ao Paulo, SP; Brazil e-mail: [email protected] 2 Universidade Federal do Rio Grande do Sul, IF, CP 15051; 912501-970, Porto Alegre, RS; Brazil e-mail: [email protected] ABSTRACT Context. Despite progress in the theoretical knowledge of open cluster remnants and the growing search for observational identifications in recent years, open questions still remain. The methods used to analyze open cluster remnants and criteria to define them as physical systems are not homogeneous. In this work we present a systematic method for studying these objects that provides a view of their properties and allows their characterization. Aims. Eighteen remnant candidates are analyzed by means of photometric and proper motion data. These data provide information on objects and their fields. We establish criteria for characterizing open cluster remnants, taking observational uncertainties into account. Methods. 2MASS J and H photometry is employed (i) to study structural properties of the objects by means of radial stellar density profiles, (ii) to test for any similarity between objects and fields with a statistical comparison method applied to the distributions of stars in the CMDs, and (iii) to obtain ages, reddening values, and distances from the CMD, taking an index of isochrone fit into account. The UCAC2 proper motions allowed an objective comparison between objects and large solid angle offset fields.
    [Show full text]