Einstein's Space-Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematical Methods of Classical Mechanics-Arnold V.I..Djvu
V.I. Arnold Mathematical Methods of Classical Mechanics Second Edition Translated by K. Vogtmann and A. Weinstein With 269 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest V. I. Arnold K. Vogtmann A. Weinstein Department of Department of Department of Mathematics Mathematics Mathematics Steklov Mathematical Cornell University University of California Institute Ithaca, NY 14853 at Berkeley Russian Academy of U.S.A. Berkeley, CA 94720 Sciences U.S.A. Moscow 117966 GSP-1 Russia Editorial Board J. H. Ewing F. W. Gehring P.R. Halmos Department of Department of Department of Mathematics Mathematics Mathematics Indiana University University of Michigan Santa Clara University Bloomington, IN 47405 Ann Arbor, MI 48109 Santa Clara, CA 95053 U.S.A. U.S.A. U.S.A. Mathematics Subject Classifications (1991): 70HXX, 70005, 58-XX Library of Congress Cataloging-in-Publication Data Amol 'd, V.I. (Vladimir Igorevich), 1937- [Matematicheskie melody klassicheskoi mekhaniki. English] Mathematical methods of classical mechanics I V.I. Amol 'd; translated by K. Vogtmann and A. Weinstein.-2nd ed. p. cm.-(Graduate texts in mathematics ; 60) Translation of: Mathematicheskie metody klassicheskoi mekhaniki. Bibliography: p. Includes index. ISBN 0-387-96890-3 I. Mechanics, Analytic. I. Title. II. Series. QA805.A6813 1989 531 '.01 '515-dcl9 88-39823 Title of the Russian Original Edition: M atematicheskie metody klassicheskoi mekhaniki. Nauka, Moscow, 1974. Printed on acid-free paper © 1978, 1989 by Springer-Verlag New York Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. -
Complex Analysis in Industrial Inverse Problems
Complex Analysis in Industrial Inverse Problems Bill Lionheart, University of Manchester October 30th , 2019. Isaac Newton Institute How does complex analysis arise in IP? We see complex analysis arise in two main ways: 1. Inverse Problems that are or can be reduced to two dimensional problems. Here we solve inverse problems for PDEs and integral equations using methods from complex analysis where the complex variable represents a spatial variable in the plane. This includes various kinds of tomographic methods involving weighted line integrals, and is used in medial imaging and non-destructive testing. In electromagnetic problems governed by some form of Maxwell’s equation complex analysis is typically used for a plane approximation to a two dimensional problem. 2. Frequency domain methods in which the complex variable is the Fourier-Laplace transform variable. The Hilbert transform is ubiquitous in signal processing (everyone has one implemented in their home!) due to the analytic representation of a signal. In inverse spectral problems analyticity with respect to a spectral parameter plays an important role. Industrial Electromagnetic Inverse Problems Many inverse problems involve imaging the inside from measuring on the outside. Here are some industrial applied inverse problems in electromagnetics I Ground penetrating radar, used for civil engineering eg finding burried pipes and cables. Similar also to microwave imaging (security, medicine) and radar. I Electrical resistivity/polarizability tomography. Used to locate underground pollution plumes, salt water ingress, buried structures, minerals. Also used for industrial process monitoring (pipes, mixing vessels etc). I Metal detecting and inductive imaging. Used to locate weapons on people, find land mines and unexploded ordnance, food safety, scrap metal sorting, locating reinforcing bars in concrete, non-destructive testing, archaeology, etc. -
Time Dilation of Accelerated Clocks
Astrophysical Institute Neunhof Circular se07117, February 2016 1 Time Dilation of accelerated Clocks The definitions of proper time and proper length in General Rela- tivity Theory are presented. Time dilation and length contraction are explicitly computed for the example of clocks and rulers which are at rest in a rotating reference frame, and hence accelerated versus inertial reference frames. Experimental proofs of this time dilation, in particular the observation of the decay rates of acceler- ated muons, are discussed. As an illustration of the equivalence principle, we show that the general relativistic equation of motion of objects, which are at rest in a rotating reference frame, reduces to Newtons equation of motion of the same objects at rest in an inertial reference system and subject to a gravitational field. We close with some remarks on real versus ideal clocks, and the “clock hypothesis”. 1. Coordinate Diffeomorphisms In flat Minkowski space, we place a rectangular three-dimensional grid of fiducial marks in three-dimensional position space, and assign cartesian coordinate values x1, x2, x3 to each fiducial mark. The values of the xi are constants for each fiducial mark, i. e. the fiducial marks are at rest in the coordinate frame, which they define. Now we stretch and/or compress and/or skew and/or rotate the grid of fiducial marks locally and/or globally, and/or re-name the fiducial marks, e. g. change from cartesian coordinates to spherical coordinates or whatever other coordinates. All movements and renamings of the fiducial marks are subject to the constraint that the map from the initial grid to the deformed and/or renamed grid must be differentiable and invertible (i. -
Post-Newtonian Description of Quantum Systems in Gravitational Fields
Post-Newtonian Description of Quantum Systems in Gravitational Fields Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von M. A. St.Philip Klaus Schwartz, geboren am 12.07.1994 in Langenhagen. 2020 Mitglieder der Promotionskommission: Prof. Dr. Elmar Schrohe (Vorsitzender) Prof. Dr. Domenico Giulini (Betreuer) Prof. Dr. Klemens Hammerer Gutachter: Prof. Dr. Domenico Giulini Prof. Dr. Klemens Hammerer Prof. Dr. Claus Kiefer Tag der Promotion: 18. September 2020 This thesis was typeset with LATEX 2# and the KOMA-Script class scrbook. The main fonts are URW Palladio L and URW Classico by Hermann Zapf, and Pazo Math by Diego Puga. Abstract This thesis deals with the systematic treatment of quantum-mechanical systems situated in post-Newtonian gravitational fields. At first, we develop a framework of geometric background structures that define the notions of a post-Newtonian expansion and of weak gravitational fields. Next, we consider the description of single quantum particles under gravity, before continuing with a simple composite system. Starting from clearly spelled-out assumptions, our systematic approach allows to properly derive the post-Newtonian coupling of quantum-mechanical systems to gravity based on first principles. This sets it apart from other, more heuristic approaches that are commonly employed, for example, in the description of quantum-optical experiments under gravitational influence. Regarding single particles, we compare simple canonical quantisation of a free particle in curved spacetime to formal expansions of the minimally coupled Klein– Gordon equation, which may be motivated from the framework of quantum field theory in curved spacetimes. -
COORDINATE TIME in the VICINITY of the EARTH D. W. Allan' and N
COORDINATE TIME IN THE VICINITY OF THE EARTH D. W. Allan’ and N. Ashby’ 1. Time and Frequency Division, National Bureau of Standards Boulder, Colorado 80303 2. Department of Physics, Campus Box 390 University of Colorado, Boulder, Colorado 80309 ABSTRACT. Atomic clock accuracies continue to improve rapidly, requir- ing the inclusion of general relativity for unambiguous time and fre- quency clock comparisons. Atomic clocks are now placed on space vehi- cles and there are many new applications of time and frequency metrology. This paper addresses theoretical and practical limitations in the accuracy of atomic clock comparisons arising from relativity, and demonstrates that accuracies of time and frequency comparison can approach a few picoseconds and a few parts in respectively. 1. INTRODUCTION Recent experience has shown that the accuracy of atomic clocks has improved by about an order of magnitude every seven years. It has therefore been necessary to include relativistic effects in the reali- zation of state-of-the-art time and frequency comparisons for at least the last decade. There is a growing need for agreement about proce- dures for incorporating relativistic effects in all disciplines which use modern time and frequency metrology techniques. The areas of need include sophisticated communication and navigation systems and funda- mental areas of research such as geodesy and radio astrometry. Significant progress has recently been made in arriving at defini- tions €or coordinate time that are practical, and in experimental veri- fication of the self-consistency of these procedures. International Atomic Time (TAI) and Universal Coordinated Time (UTC) have been defin- ed as coordinate time scales to assist in the unambiguous comparison of time and frequency in the vicinity of the Earth. -
Time Scales and Time Differences
SECTION 2 TIME SCALES AND TIME DIFFERENCES Contents 2.1 Introduction .....................................................................................2–3 2.2 Time Scales .......................................................................................2–3 2.2.1 Ephemeris Time (ET) .......................................................2–3 2.2.2 International Atomic Time (TAI) ...................................2–3 2.2.3 Universal Time (UT1 and UT1R)....................................2–4 2.2.4 Coordinated Universal Time (UTC)..............................2–5 2.2.5 GPS or TOPEX Master Time (GPS or TPX)...................2–5 2.2.6 Station Time (ST) ..............................................................2–5 2.3 Time Differences..............................................................................2–6 2.3.1 ET − TAI.............................................................................2–6 2.3.1.1 The Metric Tensor and the Metric...................2–6 2.3.1.2 Solar-System Barycentric Frame of Reference............................................................2–10 2.3.1.2.1 Tracking Station on Earth .................2–13 2.3.1.2.2 Earth Satellite ......................................2–16 2.3.1.2.3 Approximate Expression...................2–17 2.3.1.3 Geocentric Frame of Reference.......................2–18 2–1 SECTION 2 2.3.1.3.1 Tracking Station on Earth .................2–19 2.3.1.3.2 Earth Satellite ......................................2–20 2.3.2 TAI − UTC .........................................................................2–20 -
P.W. ANDERSON Stud
P.W. ANDERSON Stud. Hist. Phil. Mod. Phys., Vol. 32, No. 3, pp. 487–494, 2001 Printed in Great Britain ESSAY REVIEW Science: A ‘Dappled World’ or a ‘Seamless Web’? Philip W. Anderson* Nancy Cartwright, The Dappled World: Essays on the Perimeter of Science (Cambridge: Cambridge University Press, 1999), ISBN 0-521-64411-9, viii+247 pp. In their much discussed recent book, Alan Sokal and Jean Bricmont (1998) deride the French deconstructionists by quoting repeatedly from passages in which it is evident even to the non-specialist that the jargon of science is being outrageously misused and being given meanings to which it is not remotely relevant. Their task of ‘deconstructing the deconstructors’ is made far easier by the evident scientific illiteracy of their subjects. Nancy Cartwright is a tougher nut to crack. Her apparent competence with the actual process of science, and even with the terminology and some of the mathematical language, may lead some of her colleagues in the philosophy of science and even some scientists astray. Yet on a deeper level of real understanding it is clear that she just does not get it. Her thesis here is not quite the deconstruction of science, although she seems to quote with approval from some of the deconstructionist literature. She seems no longer to hold to the thesis of her earlier book (Cartwright, 1983) that ‘the laws of physics lie’. But I sense that the present book is almost equally subversive, in that it will be useful to the creationists and to many less extreme anti-science polemicists with agendas likely to benefit from her rather solipsistic views. -
Observer with a Constant Proper Acceleration Cannot Be Treated Within the Theory of Special Relativity and That Theory of General Relativity Is Absolutely Necessary
Observer with a constant proper acceleration Claude Semay∗ Groupe de Physique Nucl´eaire Th´eorique, Universit´ede Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium (Dated: February 2, 2008) Abstract Relying on the equivalence principle, a first approach of the general theory of relativity is pre- sented using the spacetime metric of an observer with a constant proper acceleration. Within this non inertial frame, the equation of motion of a freely moving object is studied and the equation of motion of a second accelerated observer with the same proper acceleration is examined. A com- parison of the metric of the accelerated observer with the metric due to a gravitational field is also performed. PACS numbers: 03.30.+p,04.20.-q arXiv:physics/0601179v1 [physics.ed-ph] 23 Jan 2006 ∗FNRS Research Associate; E-mail: [email protected] Typeset by REVTEX 1 I. INTRODUCTION The study of a motion with a constant proper acceleration is a classical exercise of special relativity that can be found in many textbooks [1, 2, 3]. With its analytical solution, it is possible to show that the limit speed of light is asymptotically reached despite the constant proper acceleration. The very prominent notion of event horizon can be introduced in a simple context and the problem of the twin paradox can also be analysed. In many articles of popularisation, it is sometimes stated that the point of view of an observer with a constant proper acceleration cannot be treated within the theory of special relativity and that theory of general relativity is absolutely necessary. -
Hep-Th/9911055V4 29 Feb 2000 AS0.0+;9.0C I92-F;UBF-7;OU-TAP UAB-FT-476; NI99022-SFU; 98.80.Cq PACS:04.50.+H; Increpnst H Edfrfo H Oio Fe Gravi After Horizon Brane
Gravity in the Randall-Sundrum Brane World. Jaume Garriga1,2 and Takahiro Tanaka1,2,3 1IFAE, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain; 2Isaac Newton Institute, University of Cambridge 20 Clarkson Rd., Cambridge, CB3 0EH, UK; 3Department of Earth and Space Science, Graduate School of Science Osaka University, Toyonaka 560-0043, Japan. We discuss the weak gravitational field created by isolated matter sources in the Randall-Sundrum brane-world. In the case of two branes of opposite tension, linearized Brans-Dicke (BD) gravity is recovered on either wall, with different BD parameters. On the wall with positive tension the BD parameter is larger than 3000 provided that the separation between walls is larger than 4 times the AdS radius. For the wall of negative tension the BD parameter is always negative. In either case, shadow matter from the other wall gravitates upon us. For equal Newtonian mass, light deflection from shadow matter is 25 % weaker than from ordinary matter. For the case of a single wall of posi- tive tension, Einstein gravity is recovered on the wall to leading order, and if the source is stationary the field stays localized near the wall. We calculate the leading Kaluza-Klein corrections to the linearized gravitational field of a non-relativistic spherical object and find that the metric is different from the Schwarzschild solution at large distances. We believe that our linearized solu- tion corresponds to the field far from the horizon after gravitational collapse of matter on the brane. PACS:04.50.+h; 98.80.Cq NI99022-SFU; UAB-FT-476; OU-TAP106 arXiv:hep-th/9911055v4 29 Feb 2000 It has recently been shown [1] that something very similar to four dimensional Einstein gravity exists on a domain wall (or 3-brane) of positive tension which is embedded in a five dimensional anti-de Sitter space (AdS). -
Post-Newtonian Approximations and Applications
Monash University MTH3000 Research Project Coming out of the woodwork: Post-Newtonian approximations and applications Author: Supervisor: Justin Forlano Dr. Todd Oliynyk March 25, 2015 Contents 1 Introduction 2 2 The post-Newtonian Approximation 5 2.1 The Relaxed Einstein Field Equations . 5 2.2 Solution Method . 7 2.3 Zones of Integration . 13 2.4 Multi-pole Expansions . 15 2.5 The first post-Newtonian potentials . 17 2.6 Alternate Integration Methods . 24 3 Equations of Motion and the Precession of Mercury 28 3.1 Deriving equations of motion . 28 3.2 Application to precession of Mercury . 33 4 Gravitational Waves and the Hulse-Taylor Binary 38 4.1 Transverse-traceless potentials and polarisations . 38 4.2 Particular gravitational wave fields . 42 4.3 Effect of gravitational waves on space-time . 46 4.4 Quadrupole formula . 48 4.5 Application to Hulse-Taylor binary . 52 4.6 Beyond the Quadrupole formula . 56 5 Concluding Remarks 58 A Appendix 63 A.1 Solving the Wave Equation . 63 A.2 Angular STF Tensors and Spherical Averages . 64 A.3 Evaluation of a 1PN surface integral . 65 A.4 Details of Quadrupole formula derivation . 66 1 Chapter 1 Introduction Einstein's General theory of relativity [1] was a bold departure from the widely successful Newtonian theory. Unlike the Newtonian theory written in terms of fields, gravitation is a geometric phenomena, with space and time forming a space-time manifold that is deformed by the presence of matter and energy. The deformation of this differentiable manifold is characterised by a symmetric metric, and freely falling (not acted on by exter- nal forces) particles will move along geodesics of this manifold as determined by the metric. -
Coordinate Systems in De Sitter Spacetime Bachelor Thesis A.C
Coordinate systems in De Sitter spacetime Bachelor thesis A.C. Ripken July 19, 2013 Radboud University Nijmegen Radboud Honours Academy Abstract The De Sitter metric is a solution for the Einstein equation with positive cosmological constant, modelling an expanding universe. The De Sitter metric has a coordinate sin- gularity corresponding to an event horizon. The physical properties of this horizon are studied. The Klein-Gordon equation is generalized for curved spacetime, and solved in various coordinate systems in De Sitter space. Contact Name Chris Ripken Email [email protected] Student number 4049489 Study Physicsandmathematics Supervisor Name prof.dr.R.H.PKleiss Email [email protected] Department Theoretical High Energy Physics Adress Heyendaalseweg 135, Nijmegen Cover illustration Projection of two-dimensional De Sitter spacetime embedded in Minkowski space. Three coordinate systems are used: global coordinates, static coordinates, and static coordinates rotated in the (x1,x2)-plane. Contents Preface 3 1 Introduction 4 1.1 TheEinsteinfieldequations . 4 1.2 Thegeodesicequations. 6 1.3 DeSitterspace ................................. 7 1.4 TheKlein-Gordonequation . 10 2 Coordinate transformations 12 2.1 Transformations to non-singular coordinates . ......... 12 2.2 Transformationsofthestaticmetric . ..... 15 2.3 Atranslationoftheorigin . 22 3 Geodesics 25 4 The Klein-Gordon equation 28 4.1 Flatspace.................................... 28 4.2 Staticcoordinates ............................... 30 4.3 Flatslicingcoordinates. 32 5 Conclusion 39 Bibliography 40 A Maple code 41 A.1 Theprocedure‘riemann’. 41 A.2 Flatslicingcoordinates. 50 A.3 Transformationsofthestaticmetric . ..... 50 A.4 Geodesics .................................... 51 A.5 TheKleinGordonequation . 52 1 Preface For ages, people have studied the motion of objects. These objects could be close to home, like marbles on a table, or far away, like planets and stars. -
Hal-03319394
Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies F Feppon, H Ammari To cite this version: F Feppon, H Ammari. Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies. 2021. hal-03319394 HAL Id: hal-03319394 https://hal.archives-ouvertes.fr/hal-03319394 Preprint submitted on 12 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MODAL DECOMPOSITIONS AND POINT SCATTERER APPROXIMATIONS NEAR THE MINNAERT RESONANCE FREQUENCIES F. FEPPON1;∗, H. AMMARI1 1 Department of Mathematics, ETH Z¨urich,Switzerland. Abstract. As a continuation of the previous works [13,4, 15], this paper provides several contributions to the mathematical analysis of subwavelength resonances in a high-contrast medium containing N acoustic obstacles. Our approach is based on an exact decomposition formula which reduces the solution of the sound scattering problem to that of a N dimensional linear system, and characterizes resonant frequencies as the solutions to a N-dimensional nonlinear eigenvalue problem. Under a simplicity assumptions on the eigenvalues of the capacitance matrix, we prove the analyticity of the scattering resonances with respect to the square root of the contrast parameter, and we provide a deterministic algorithm allowing to compute all terms of the corresponding Puiseux series.