Electro-Gravity Via Geometric Chronon Field
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implications for a Future Information Theory Based on Vacuum 1 Microtopology
Getting Something Out of Nothing: Implications for a Future Information Theory Based on Vacuum 1 Microtopology William Michael Kallfelz 2 Committee for Philosophy and the Sciences University of Maryland at College Park Abstract (word count: 194) Submitted October 3, 2005 Published in IANANO Conference Proceedings : October 31-November 4, 2005 3 Contemporary theoretical physicists H. S. Green and David R. Finkelstein have recently advanced theories depicting space-time as a singular limit, or condensate, formed from fundamentally quantum micro topological units of information, or process (denoted respectively by ‘qubits,’ or ‘chronons.’) H. S. Green (2000) characterizes the manifold of space-time as a parafermionic statistical algebra generated fundamentally by qubits. David Finkelstein (2004a-c) models the space-time manifold as singular limit of a regular structure represented by a Clifford algebra, whose generators γ α represent ‘chronons,’ i.e., elementary quantum processes. Both of these theories are in principle experimentally testable. Green writes that his parafermionic embeddings “hav[e] an important advantage over their classical counterparts [in] that they have a direct physical interpretation and their parameters are in principle observable.” (166) David Finkelstein discusses in detail unique empirical ramifications of his theory in (2004b,c) which most notably include the removal of quantum field-theoretic divergences. Since the work of Shannon and Hawking, associations with entropy, information, and gravity emerged in the study of Hawking radiation. Nowadays, the theories of Green and Finkelstein suggest that the study of space-time lies in the development of technologies better able to probe its microtopology in controlled laboratory conditions. 1 Total word count, including abstract & footnotes: 3,509. -
Supervised Language Modeling for Temporal Resolution of Texts
Supervised Language Modeling for Temporal Resolution of Texts Abhimanu Kumar Matthew Lease Jason Baldridge Dept. of Computer Science School of Information Department of Linguistics University of Texas at Austin University of Texas at Austin University of Texas at Austin [email protected] [email protected] [email protected] ABSTRACT describe any form of communication without cables (e.g. internet We investigate temporal resolution of documents, such as deter- access). As such, the word wireless embodies implicit time cues, mining the date of publication of a story based on its text. We a notion we might generalize by inferring its complete temporal describe and evaluate a model that build histograms encoding the distribution as well as that of all other words. By harnessing many probability of different temporal periods for a document. We con- such implicit cues in combination across a document, we might fur- struct histograms based on the Kullback-Leibler Divergence be- ther infer a unique temporal distribution for the overall document. tween the language model for a test document and supervised lan- As in prior document dating studies, we partition the timeline guage models for each interval. Initial results indicate this language (and document collection) to infer an unique language model (LM) modeling approach is effective for predicting the dates of publica- underlying each time period [10, 14]. While prior work consid- tion of short stories, which contain few explicit mentions of years. ered texts from the past 10-20 years, our work is more historically- oriented, predicting publication dates for historical works of fiction. -
Coordinates and Proper Time
Coordinates and Proper Time Edmund Bertschinger, [email protected] January 31, 2003 Now it came to me: . the independence of the gravitational acceleration from the na- ture of the falling substance, may be expressed as follows: In a gravitational ¯eld (of small spatial extension) things behave as they do in a space free of gravitation. This happened in 1908. Why were another seven years required for the construction of the general theory of relativity? The main reason lies in the fact that it is not so easy to free oneself from the idea that coordinates must have an immediate metrical meaning. | A. Einstein (quoted in Albert Einstein: Philosopher-Scientist, ed. P.A. Schilpp, 1949). 1. Introduction These notes supplement Chapter 1 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate on the discussion of bookkeeper coordinates and how coordinates are related to actual physical distances and times. Also, a brief discussion of the classic Twin Paradox of special relativity is presented in order to illustrate the principal of maximal (or extremal) aging. Before going to details, let us review some jargon whose precise meaning will be important in what follows. You should be familiar with these words and their meaning. Spacetime is the four- dimensional playing ¯eld for motion. An event is a point in spacetime that is uniquely speci¯ed by giving its four coordinates (e.g. t; x; y; z). Sometimes we will ignore two of the spatial dimensions, reducing spacetime to two dimensions that can be graphed on a sheet of paper, resulting in a Minkowski diagram. -
Time Dilation of Accelerated Clocks
Astrophysical Institute Neunhof Circular se07117, February 2016 1 Time Dilation of accelerated Clocks The definitions of proper time and proper length in General Rela- tivity Theory are presented. Time dilation and length contraction are explicitly computed for the example of clocks and rulers which are at rest in a rotating reference frame, and hence accelerated versus inertial reference frames. Experimental proofs of this time dilation, in particular the observation of the decay rates of acceler- ated muons, are discussed. As an illustration of the equivalence principle, we show that the general relativistic equation of motion of objects, which are at rest in a rotating reference frame, reduces to Newtons equation of motion of the same objects at rest in an inertial reference system and subject to a gravitational field. We close with some remarks on real versus ideal clocks, and the “clock hypothesis”. 1. Coordinate Diffeomorphisms In flat Minkowski space, we place a rectangular three-dimensional grid of fiducial marks in three-dimensional position space, and assign cartesian coordinate values x1, x2, x3 to each fiducial mark. The values of the xi are constants for each fiducial mark, i. e. the fiducial marks are at rest in the coordinate frame, which they define. Now we stretch and/or compress and/or skew and/or rotate the grid of fiducial marks locally and/or globally, and/or re-name the fiducial marks, e. g. change from cartesian coordinates to spherical coordinates or whatever other coordinates. All movements and renamings of the fiducial marks are subject to the constraint that the map from the initial grid to the deformed and/or renamed grid must be differentiable and invertible (i. -
The Book of Common Prayer
The Book of Common Prayer and Administration of the Sacraments and Other Rites and Ceremonies of the Church Together with The Psalter or Psalms of David According to the use of The Episcopal Church Church Publishing Incorporated, New York Certificate I certify that this edition of The Book of Common Prayer has been compared with a certified copy of the Standard Book, as the Canon directs, and that it conforms thereto. Gregory Michael Howe Custodian of the Standard Book of Common Prayer January, 2007 Table of Contents The Ratification of the Book of Common Prayer 8 The Preface 9 Concerning the Service of the Church 13 The Calendar of the Church Year 15 The Daily Office Daily Morning Prayer: Rite One 37 Daily Evening Prayer: Rite One 61 Daily Morning Prayer: Rite Two 75 Noonday Prayer 103 Order of Worship for the Evening 108 Daily Evening Prayer: Rite Two 115 Compline 127 Daily Devotions for Individuals and Families 137 Table of Suggested Canticles 144 The Great Litany 148 The Collects: Traditional Seasons of the Year 159 Holy Days 185 Common of Saints 195 Various Occasions 199 The Collects: Contemporary Seasons of the Year 211 Holy Days 237 Common of Saints 246 Various Occasions 251 Proper Liturgies for Special Days Ash Wednesday 264 Palm Sunday 270 Maundy Thursday 274 Good Friday 276 Holy Saturday 283 The Great Vigil of Easter 285 Holy Baptism 299 The Holy Eucharist An Exhortation 316 A Penitential Order: Rite One 319 The Holy Eucharist: Rite One 323 A Penitential Order: Rite Two 351 The Holy Eucharist: Rite Two 355 Prayers of the People -
Lecture Notes 17: Proper Time, Proper Velocity, the Energy-Momentum 4-Vector, Relativistic Kinematics, Elastic/Inelastic
UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 17 Prof. Steven Errede LECTURE NOTES 17 Proper Time and Proper Velocity As you progress along your world line {moving with “ordinary” velocity u in lab frame IRF(S)} on the ct vs. x Minkowski/space-time diagram, your watch runs slow {in your rest frame IRF(S')} in comparison to clocks on the wall in the lab frame IRF(S). The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your 2 rest frame IRF( S ) the time interval is: dt dtuu1 dt n.b. this is the exact same time dilation formula that we obtained earlier, with: 2 2 uu11uc 11 and: u uc We use uurelative speed of an object as observed in an inertial reference frame {here, u = speed of you, as observed in the lab IRF(S)}. We will henceforth use vvrelative speed between two inertial systems – e.g. IRF( S ) relative to IRF(S): Because the time interval dt occurs in your rest frame IRF( S ), we give it a special name: ddt = proper time interval (in your rest frame), and: t = proper time (in your rest frame). The name “proper” is due to a mis-translation of the French word “propre”, meaning “own”. Proper time is different than “ordinary” time, t. Proper time is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the choice of IRF - i.e. “ordinary” time is not a Lorentz-invariant quantity. 222222 The Lorentz-invariant interval: dI dx dx dx dx ds c dt dx dy dz Proper time interval: d dI c2222222 ds c dt dx dy dz cdtdt22 = 0 in rest frame IRF(S) 22t Proper time: ddtttt 21 t 21 11 Because d and are Lorentz-invariant quantities: dd and: {i.e. -
Class 3: Time Dilation, Lorentz Contraction, Relativistic Velocity Transformations
Class 3: Time dilation, Lorentz contraction, relativistic velocity transformations Transformation of time intervals Suppose two events are recorded in a laboratory (frame S), e.g. by a cosmic ray detector. Event A is recorded at location xa and time ta, and event B is recorded at location xb and time tb. We want to know the time interval between these events in an inertial frame, S ′, moving with relative to the laboratory at speed u. Using the Lorentz transform, ux x′=−γ() xut,,, yyzzt ′′′ = = =− γ t , (3.1) c2 we see, from the last equation, that the time interval in S ′ is u ttba′−= ′ γ() tt ba −− γ () xx ba − , (3.2) c2 i.e., the time interval in S ′ depends not only on the time interval in the laboratory but also in the separation. If the two events are at the same location in S, the time interval (tb− t a ) measured by a clock located at the events is called the proper time interval . We also see that, because γ >1 for all frames moving relative to S, the proper time interval is the shortest time interval that can be measured between the two events. The events in the laboratory frame are not simultaneous. Is there a frame, S ″ in which the separated events are simultaneous? Since tb′′− t a′′ must be zero, we see that velocity of S ″ relative to S must be such that u c( tb− t a ) β = = , (3.3) c xb− x a i.e., the speed of S ″ relative to S is the fraction of the speed of light equal to the time interval between the events divided by the light travel time between the events. -
COORDINATE TIME in the VICINITY of the EARTH D. W. Allan' and N
COORDINATE TIME IN THE VICINITY OF THE EARTH D. W. Allan’ and N. Ashby’ 1. Time and Frequency Division, National Bureau of Standards Boulder, Colorado 80303 2. Department of Physics, Campus Box 390 University of Colorado, Boulder, Colorado 80309 ABSTRACT. Atomic clock accuracies continue to improve rapidly, requir- ing the inclusion of general relativity for unambiguous time and fre- quency clock comparisons. Atomic clocks are now placed on space vehi- cles and there are many new applications of time and frequency metrology. This paper addresses theoretical and practical limitations in the accuracy of atomic clock comparisons arising from relativity, and demonstrates that accuracies of time and frequency comparison can approach a few picoseconds and a few parts in respectively. 1. INTRODUCTION Recent experience has shown that the accuracy of atomic clocks has improved by about an order of magnitude every seven years. It has therefore been necessary to include relativistic effects in the reali- zation of state-of-the-art time and frequency comparisons for at least the last decade. There is a growing need for agreement about proce- dures for incorporating relativistic effects in all disciplines which use modern time and frequency metrology techniques. The areas of need include sophisticated communication and navigation systems and funda- mental areas of research such as geodesy and radio astrometry. Significant progress has recently been made in arriving at defini- tions €or coordinate time that are practical, and in experimental veri- fication of the self-consistency of these procedures. International Atomic Time (TAI) and Universal Coordinated Time (UTC) have been defin- ed as coordinate time scales to assist in the unambiguous comparison of time and frequency in the vicinity of the Earth. -
Time Scales and Time Differences
SECTION 2 TIME SCALES AND TIME DIFFERENCES Contents 2.1 Introduction .....................................................................................2–3 2.2 Time Scales .......................................................................................2–3 2.2.1 Ephemeris Time (ET) .......................................................2–3 2.2.2 International Atomic Time (TAI) ...................................2–3 2.2.3 Universal Time (UT1 and UT1R)....................................2–4 2.2.4 Coordinated Universal Time (UTC)..............................2–5 2.2.5 GPS or TOPEX Master Time (GPS or TPX)...................2–5 2.2.6 Station Time (ST) ..............................................................2–5 2.3 Time Differences..............................................................................2–6 2.3.1 ET − TAI.............................................................................2–6 2.3.1.1 The Metric Tensor and the Metric...................2–6 2.3.1.2 Solar-System Barycentric Frame of Reference............................................................2–10 2.3.1.2.1 Tracking Station on Earth .................2–13 2.3.1.2.2 Earth Satellite ......................................2–16 2.3.1.2.3 Approximate Expression...................2–17 2.3.1.3 Geocentric Frame of Reference.......................2–18 2–1 SECTION 2 2.3.1.3.1 Tracking Station on Earth .................2–19 2.3.1.3.2 Earth Satellite ......................................2–20 2.3.2 TAI − UTC .........................................................................2–20 -
Arxiv:Quant-Ph/0206117V3 1 Sep 2002
Preprint NSF-ITP-02-62 A SIMPLE QUANTUM EQUATION FOR DECOHERENCE AND DISSIPATION (†) Erasmo Recami Facolt`adi Ingegneria, Universit`astatale di Bergamo, Dalmine (BG), Italy; INFN—Sezione di Milano, Milan, Italy; and Kavli Institute for Theoretical Physics, UCSB, CA 93106, USA. Ruy H. A. Farias LNLS - Synchrotron Light National Laboratory; Campinas, S.P.; Brazil. [email protected] Abstract – Within the density matrix formalism, it is shown that a simple way to get decoherence is through the introduction of a “quantum” of time (chronon): which implies replacing the differential Liouville–von Neumann equation with a finite-difference version of it. In this way, one is given the possibility of using a rather simple quantum equation to describe the decoherence effects due to dissipation. Namely, the mere introduction (not of a “time-lattice”, but simply) of a “chronon” allows us to go on from differential to finite-difference equations; and in particular to write down the quantum-theoretical equations (Schroedinger equation, Liouville–von Neumann equation,...) in three different ways: “retarded”, “symmetrical”, and “advanced”. One of such three formulations —the arXiv:quant-ph/0206117v3 1 Sep 2002 retarded one— describes in an elementary way a system which is exchanging (and losing) energy with the environment; and in its density-matrix version, indeed, it can be easily shown that all non-diagonal terms go to zero very rapidly. keywords: quantum decoherence, interaction with the environment, dissipation, quan- tum measurement theory, finite-difference equations, chronon, Caldirola, density-matrix formalism, Liouville–von Neumann equation (†) This reasearch was supported in part by the N.S.F. under Grant No.PHY99-07949; and by INFN and Murst/Miur (Italy). -
Debasishdas SUNDIALS to TELL the TIMES of PRAYERS in the MOSQUES of INDIA January 1, 2018 About
Authior : DebasishDas SUNDIALS TO TELL THE TIMES OF PRAYERS IN THE MOSQUES OF INDIA January 1, 2018 About It is said that Delhi has almost 1400 historical monuments.. scattered remnants of layers of history, some refer it as a city of 7 cities, some 11 cities, some even more. So, even one is to explore one monument every single day, it will take almost 4 years to cover them. Narratives on Delhi’s historical monuments are aplenty: from amateur writers penning down their experiences, to experts and archaeologists deliberating on historic structures. Similarly, such books in the English language have started appearing from as early as the late 18th century by the British that were the earliest translation of Persian texts. Period wise, we have books on all of Delhi’s seven cities (some say the city has 15 or more such cities buried in its bosom) between their covers, some focus on one of the cities, some are coffee-table books, some attempt to create easy-to-follow guide-books for the monuments, etc. While going through the vast collection of these valuable works, I found the need to tell the city’s forgotten stories, and weave them around the lesser-known monuments and structures lying scattered around the city. After all, Delhi is not a mere necropolis, as may be perceived by the un-initiated. Each of these broken and dilapidated monuments speak of untold stories, and without that context, they can hardly make a connection, however beautifully their architectural style and building plan is explained. My blog is, therefore, to combine actual on-site inspection of these sites, with interesting and insightful anecdotes of the historical personalities involved, and prepare essays with photographs and words that will attempt to offer a fresh angle to look at the city’s history. -
Observer with a Constant Proper Acceleration Cannot Be Treated Within the Theory of Special Relativity and That Theory of General Relativity Is Absolutely Necessary
Observer with a constant proper acceleration Claude Semay∗ Groupe de Physique Nucl´eaire Th´eorique, Universit´ede Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium (Dated: February 2, 2008) Abstract Relying on the equivalence principle, a first approach of the general theory of relativity is pre- sented using the spacetime metric of an observer with a constant proper acceleration. Within this non inertial frame, the equation of motion of a freely moving object is studied and the equation of motion of a second accelerated observer with the same proper acceleration is examined. A com- parison of the metric of the accelerated observer with the metric due to a gravitational field is also performed. PACS numbers: 03.30.+p,04.20.-q arXiv:physics/0601179v1 [physics.ed-ph] 23 Jan 2006 ∗FNRS Research Associate; E-mail: [email protected] Typeset by REVTEX 1 I. INTRODUCTION The study of a motion with a constant proper acceleration is a classical exercise of special relativity that can be found in many textbooks [1, 2, 3]. With its analytical solution, it is possible to show that the limit speed of light is asymptotically reached despite the constant proper acceleration. The very prominent notion of event horizon can be introduced in a simple context and the problem of the twin paradox can also be analysed. In many articles of popularisation, it is sometimes stated that the point of view of an observer with a constant proper acceleration cannot be treated within the theory of special relativity and that theory of general relativity is absolutely necessary.