Optical Sources • Optical Transmitter Coverts Electrical

Total Page:16

File Type:pdf, Size:1020Kb

Optical Sources • Optical Transmitter Coverts Electrical Optical Fiber Communication Deepak Khadka Chapter 4: Optical Sources • Optical transmitter coverts electrical input signal into corresponding optical signal. The optical signal is then launched into the fiber. Optical source is the major component in an optical transmitter. • LED (Light Emitting Diode) and LASER (Light Amplification by Stimulated Emission of Radiation) are the devices that are used widely as optical sources. Characteristics (Properties) of Light Source of Communication To be useful in an optical link, a light source needs the following characteristics: • It must be possible to operate the device continuously at a variety of temperatures for many years. • Must have compatible size and configuration to effectively launch light into an optical fiber. • Emit light at wavelength where fiber has low losses and low dispersion. • Must have high intensity light output. • Their light must be nearly monochromatic as much as possible. • Allow direct modulation over wide bandwidth. • For fiber links, the wavelength of the output should coincide with one of transmission windows for the fiber type used. • The power requirement for its operation must be low. • High coupling efficiency. • High optical output power. • High reliability. • Low weight and low cost. 4.1 LED( Light Emitting Diode) A light-emitting diode (LED) is a semiconductor device that emits incoherent light, through spontaneous emission, when a current is passed through it. Typically LEDs for the 850-nm region are fabricated using GaAs and AlGaAs. LEDs for the 1300-nm and 1550-nm regions are fabricated using InGaAsP and InP. The basic LED types used for fiber optic communication systems are the surface-emitting LED (SLED), the edge-emitting LED (ELED), and the superluminescent diode (SLD). LED performance differences help link designers decide which device is appropriate for the intended application. For short- distance (0 to 3 km), low-data-rate fiber optic systems, SLEDs and ELEDs are the preferred optical source. Typically, SLEDs operate efficiently for bit rates up to 250 megabits per second (Mb/s). Because SLEDs emit light over a wide area (wide far-field angle), they are almost exclusively used in multimode systems. For medium-distance, medium-data-rate systems, ELEDs are preferred. 1 Optical Fiber Communication Deepak Khadka ELEDs may be modulated at rates up to 400 Mb/s. ELEDs may be used for both single mode and multimode fiber systems. Both SLDs and ELEDs are used in long-distance, high-data-rate systems. SLDs are ELED-based diodes designed to operate in the superluminescence mode. A further discussion on superluminescence is provided later in this chapter. SLDs may be modulated at bit rates of over 400 Mb/s. • A light-emitting diode (LED) is a semiconductor light source. Modern versions are available across the visible, ultraviolet, and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence, and the color of the light (corresponding to the energy of the photon) is determined by the energy band gap of the semiconductor. Electronic symbol Pin configuration anode and cathode The LED consists of a chip of semiconducting material doped with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode, but not in the reverse direction. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level and releases energy in the form of a photon. Note : The light emitting region of both leds 2 Optical Fiber Communication Deepak Khadka The recombination of excess minority carriers is the mechanism by which optical radiation is generated. LED configurations At present there are two main types of LED used in optical fiber links – 1. Surface emitting LED. 2. Edge emitting LED. Both devices used a DH structure to constrain the carriers and the light to an active layer. Surface Emitting LEDs • In surface emitting LEDs the plane of active light emitting region is oriented perpendicularly to the axis of the fiber 3 Optical Fiber Communication Deepak Khadka • A circular well is etched through the substrate of the device. A fiber is then connected to accept the emitted light. • In addition, the epoxy resin that binds the optical fiber to the SLED reduces the refractive index mismatch, increasing coupling efficiency • At the back of device is a heat sink. The current flows through the p-type material and forms the small circular active region resulting in the intense beam of light. The circular active area in practical surface emitters is nominally 50 µm in diameter and upto 2.5 µm thick. • The emission pattern is essentially isotropic with a 120 degree half-power beamwidth • The isotropic emission pattern from surface emitting LED is of Lambartian pattern. In Lambartian pattern, the emitting surface is uniformly bright, but its projected area diminishes as cos θ, where θ is the angle between the viewing direction and the normal to the surface as shown in Fig. 3.1.3. The beam intensity is maximum along the normal. • The power is reduced to 50% of its peak when θ = 60 therefore the total half-power beamwidth is 120degree. The radiation pattern decides the coupling efficiency of LED. Edge-Emitting LED: 4 Optical Fiber Communication Deepak Khadka Fig: Structure of Edge Emitting. DH, strip Contact LED The demand for optical sources for longer distance, higher bandwidth systems operating at longer wavelengths led to the development of edge-emitting LEDs. Figure shows a typical ELED structure. • In order to reduce the losses caused by absorption in the active layer and to make the beam more directional, the light is collected from the edge of the LED. Such a device is known as edge emitting LED or ELED. • It consists of an active junction region which is the source of incoherent light and two guiding layers. The refractive index of guiding layers is lower than active region but higher than outer surrounding material. Thus a waveguide channel is form and optical radiation is directed into the fiber. • Edge emitter‘s emission pattern is more concentrated (directional) providing improved coupling efficiency. The beam is Lambartian in the plane parallel to the junction but diverges more slowly in the plane perpendicular to the junction. In this plane, the beam divergence is limited. In the parallel plane, there is no beam confinement and the radiation is Lambartian. To maximize the useful output power, a reflector may be placed at the end of the diode opposite the emitting edge. Fig. 3.1.5 shows radiation from ELED 5 Optical Fiber Communication Deepak Khadka ELEDs emit light in a narrow emission angle allowing for better source-to-fiber coupling. They couple more power into small NA fibers than SLEDs. ELEDs can couple enough power into single mode fibers for some applications. ELEDs emit power over a narrower spectral range than SLEDs. However, ELEDs typically are more sensitive to temperature fluctuations than SLEDs. Examples of SLED structure: Examples of ELED structure: 6 Optical Fiber Communication Deepak Khadka 4.2 Lasers A laser is a device that produces optical radiation by the process of stimulated emission. It is necessary to contain photons produced by stimulated emission within the laser active region. Figure 3 shows an optical cavity formed to contain the emitted photons by placing one reflecting mirror at each end of an amplifying medium. One mirror is made partially reflecting so that some radiation can escape from the cavity for coupling to an optical fiber. Figure 3. - Optical cavity for producing lasing. 7 Optical Fiber Communication Deepak Khadka Only a portion of the optical radiation is amplified. For a particular laser structure, there are only certain wavelengths that will be amplified by that laser. Amplification occurs when selected wavelengths, also called laser modes, reflect back and forth through the cavity. For lasing to occur, the optical gain of the selected modes must exceed the optical loss during one round-trip through the cavity. This process is referred to as optical feedback. The lasing threshold is the lowest drive current level at which the output of the laser results primarily from stimulated emission rather than spontaneous emission. Figure 4 illustrates the transition from spontaneous emission to stimulated emission by plotting the relative optical output power and input drive current of a semiconductor laser diode. The lowest current at which stimulated emission exceeds spontaneous emission is the threshold current. Before the threshold current is reached, the optical output power increases only slightly with small increases in drive current. However, after the threshold current is reached, the optical output power increases significantly with small changes in drive currents. Figure 4. - The optical output power as a function of input drive current of a semiconductor laser diode. 8 Optical Fiber Communication Deepak Khadka Many types of materials including gas, liquid, and semiconductors can form the lasing medium. However, in this chapter we only discuss semiconductor laser diodes. Semiconductor laser diodes are the primary lasers used in fiber optics. A laser diode emits light that is highly monochromatic and very directional. This means that the LD's output has a narrow spectral width and small output beam angle. A semiconductor LD's geometry is similar to an ELED with light-guiding regions surrounding the active region. Optical feedback is established by making the front facet partially reflective. This chapter provides no diagram detailing LD structures because they are similar to ELEDs in design. The rear facet is typically coated with a reflective layer so that all of the light striking the facet is reflected back into the active region.
Recommended publications
  • Photonics Systems - Introduction
    Photonics Systems - Introduction Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for non- www.patela.net commercial purposes, on condition that proper reference to the source is given. © Sergiusz Patela, 2001-6 Fiber-optic-transmission milestones 1854 - Demonstration of optical waveguide principle in water jets (J. Tyndal) 1960 - Laser (ruby, T. Maiman) 1972 - 4 dB/km multimode fiber 1982 - Single mode fiber reported 1991 - SONET telecommunications standards created 1995 - DWDM deployment began 1998 - > 1 Tb/s in one fiber 2000 - L-band system introduced (1570-1610nm) 40 Gb/s transmission in one channel. © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 2/23 Fiber optic link Light detector Light source „noise” (receiver) (transmitter) Electrical output signal Electrical input signal Lightguide with splices connectors and couplers © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 3/23 Light wave Light wave: electromagnetic wave (signal carrier) characterized by intensity, phase (coherence level), wavelength (frequency), polarization and propagation direction. Physical phenomena and effects that explain how waveguide works: • Light wave frequency Light = electromagnetic wave of frequency 3x1014Hz, (almost million GHz). • Total internal reflection effect and extremely low glass attenuation Fibers can guide light at long distances without regeneration • Wave nature of light and fiber modes Many waveguide parameters and construction details can be explained only if one takes into account that light is a wave guided by a structure of very low cross-section. © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 4/23 Construction of optical fiber Core Cladding Cover © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 5/23 Total internal reflection n2 n1 Total internal reflection at the border core-cladding Fiber diameter: 10 to 50 µm at 1 m distance creates 10 000 reflections.
    [Show full text]
  • Questions and Problems Review Questions Lec 4
    Semiconductor Optical Communication Components and Devices Questions and Problems Review Questions Lec 4: 1. Take a one dimensional periodic structure of a=5nm, b=20nm, and a * Vo=100meV. Take an effective mass of the electron to be me =0.07mo. mo is the free electron mass. Write a computer program to find the Energy at k=0 and k=p/(a+b) to an accuracy of 0.1meV. This is the first quantization energy. 2. (i) Increase ‘b’ till you reach where the two energies are same to the accuracy that you are working with. This is the energy for a single quantum well. (ii) Now increase Vo in steps till you reach a few eV. Compare this result 2 2 2 with that of an infinite potential well En=n h /(8me*a ) for n=1. Review Questions Lec 5: * 1. Take a=5nm and b=4nm with me =0.07mo. Check for the k=0 and k=p/(a+b) energy difference again. This would be the first mini-band of a superlattice. What is your comment with respect to that found in P2 above. Review Questions Lec 6: 1. Find the composition of InGaAsP alloy lattice matched to InP for which the band gap is 0.85eV. 2. Check the band shape of an indirect semiconductor and that of a direct band gap semiconductor. Justify whose electron effective mass would be larger. 3. Look at the shapes of the conduction band and the valence band of a direct band gap semiconductor. For electrons in the conduction band and holes in the valence band, which should have a larger effective mass? * * 4.
    [Show full text]
  • Statement on Leds and Laser Diodes
    INTERNATIONAL COMMISSION ON NON‐IONIZING RADIATION PROTECTION ICNIRP STATEMENT ON LIGHT‐EMITTING DIODES AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT PUBLISHED IN: HEALTH PHYSICS 78(6):744‐752; 2000 ICNIRP PUBLICATION – 2000 ICNIRP Statement ICNIRP STATEMENT ON LIGHT-EMITTING DIODES (LEDS) AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT International Commission on Non-Ionizing Radiation Protection*† INTRODUCTION From a safety standpoint, LEDs have been treated both as lasers (e.g., in IEC standard 60825-1) (IEC 1998; ANSI BOTH VISIBLE and infrared laser diodes and light-emitting 1988) and as lamps (CIE 1999; ANSI/IESNA 1996a,b). diodes (LEDs, or sometimes referred to as IREDs in the Because of some confusion relating to the actual risk, infrared) are widely used in displays and in many home ICNIRP organized a panel of experts to review the entertainment systems, toys, signal lamps, optical fiber potential hazards of current DEs. communication, and optical surveillance systems. Col- Laser diodes are constructed with miniature reso- lectively these are referred to as diode emitters (DEs). nant cavities with gain, produce a very narrow spectral While the higher power laser diodes have routinely been bandwidth, can generally achieve shorter pulse durations, considered to be “eye hazards,” traditional LEDs have are not limited in radiance, and can emit much higher been regarded as safe. However, with the recent devel- radiant powers than LEDs. opment of higher power LEDs, there has been an effort to Light-emitting diodes of low to moderate brightness develop LED safety standards. There are a variety of (luminance) are used in many types of visual displays as LED types ranging from surface emitters to super- indicator lights and many related products.
    [Show full text]
  • Fiber Optics V – Equipment
    PDHonline Course E312 (4 PDH) Fiber Optic Systems V - Equipment Instructor: Lee Layton, P.E 2020 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E359 www.PDHonline.org Fiber Optic Systems V - Equipment Lee Layton, P.E Table of Contents Section Page Preface ……………………………….….. 3 Introduction ………………………….….. 4 Chapter 1 – Optical Sources………….….. 5 Chapter 2 - Transmitters ………. .…..….. 15 Chapter 3 – Optical Detectors……….….. 18 Chapter 4 – Receivers………….…….….. 25 Chapter 5 – Fiber Optics Links…..…..….. 29 Summary ……………………………….. 37 This series of courses are based on the Navy Electricity and Electronics Training Series (NEETS) section on Fiber Optic cable systems. The NEETS material has been reformatted for readability and ease of use as a continuing education course. The NEETS series is produced by the Naval Education and Training Professional Development and Technology Center. © Lee Layton. Page 2 of 42 www.PDHcenter.com PDHonline Course E359 www.PDHonline.org Preface This is the fifth and final course a series of five courses about fiber optic cable systems. The series covers fiber optics from basic light theory transmission to cables, connectors, testing, and signal transmission. The complete series includes these five courses: 1. Fiber Optics I – Theory 2. Fiber Optics II – Cable Design 3. Fiber Optics III – Connectors 4. Fiber Optics IV – Testing 5. Fiber Optics V – Equipment The first course, Fiber Optics I –Theory, is an overview of the technology of fiber optic cables including a description of the components, history, and advantages of fiber optic cables.
    [Show full text]
  • Light Emitting Diodes (Leds) - Developer Zone - National Instruments 6/9/09 1:18 PM
    Light Emitting Diodes (LEDs) - Developer Zone - National Instruments 6/9/09 1:18 PM Improve your ni.com experience. Login or Create a user profile. Document Type: Prentice Hall Author: Djafar K. Mynbaev and Lowell L. Scheiner Book: Fiber-Optic Communications Technology Copyright: 2001 ISBN: 0-13-962069-9 NI Supported: No Publish Date: Sep 6, 2006 Light Emitting Diodes (LEDs) Table of Contents 1. Overview 2. Light Radiation by a Semiconductor 3. General Considerations 4. Reading Data Sheets—Characteristics of LEDs 5. Buy The Book Overview LEDs have been around for more than 30 years. They have found application in nearly every consumer-electronic device: TV sets, VCRs, telephones, car electronics, and many others. They are used in fiber-optic communications, mostly because of their small size and long life. However, their low intensity, poor beam focus, low-modulation bandwidth, and incoherent radiation—in comparison with laser diodes, that is—restrict their usage to a specific sector of communications technology: relatively short-distance and low-bandwidth networks. Local area networks are the largest application area for transmitters based on LEDs. Since fiber-optic LANs is a booming technology today, LEDs are in wide use. Thus, we need to take a thorough look at light-emitting diodes. Light Radiation by a Semiconductor Energy-band diagram You are probably familiar with semiconductor materials through your study of electronic devices such as diodes and transistors. Such background should help you to understand the workings of LEDs because an LED is, after all, a semiconductor diode. However, we'll discuss an LED's principle of operation on the assumption that you are unfamiliar with it or have forgotten much of what you learned some time ago.
    [Show full text]
  • Optical Sources
    Optical Sources Wei-Chih Wang Department of Mechanical Engineering University of Washington ME557 w.wang Fiber Optic Sources Two basic light sources are used for fiber optics: lasers and light-emitting diodes (LED). Each device has its own advantages and disadvantages as listed in Table Characteristic LED Laser Output power Lower Higher Spectral width Wider Narrower Numerical aperture Larger Smaller Speed Slower Faster Cost Less More Ease of operation Easier More difficult w.wang A. Guenther UCONN Output Power Linearly proportional to drive Proportional to current above the threshold current Drive Current: 50 to 100 mA Current Threshold Current: 5 to 40 mA Peak Coupled Power Moderate High Speed Slower Faster Output Pattern Higher Lower Bandwidth Moderate High Wavelengths 0.66 to 1.65 µm 0.78 to 1.65 µm Available Spectral Width Wider (40-190 nm FWHM) Narrower (0.00001 nm to 10 nm FWHM) Fiber Type Multimode Only SM, MM Ease of Use Easier Harder Lifetime Longer Long Cost Low ($5-$300) High ($100-$10,000) w.wang A. Guenther UCONN LASER LASAER = light amplification by stimulated emission of radiation Invented dated to 1958 with the publication of the scientific paper, Infrared and Optical Masers, by Arthur L. Schawlow, then a Bell Labs researcher, and Charles H. Townes, a consultant to Bell Labs w.wang Property of Laser Light • Nearly"monochromatic: consists of an extremely narrow range of wavelengths • Highly Directional: travel in a single direction within a narrow cone of divergence • Highly Coherence: coherence is the most fundamental
    [Show full text]
  • Entangled-Photons Generation with Quantum Dots Yuan Li1, Fei Ding*1,2 and Oliver G
    Entangled-photons generation with quantum dots Yuan Li1, Fei Ding*1,2 and Oliver G. Schmidt1 1 Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany. 2 Institute for Solid State Physics, Leibniz University of Hannover, Appelstraße 2, 30167 Hannover, Germany. Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources are far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field. Key words: Quantum information, Entangled-photon source, Quantum dots PACS: 03.67.Hk, 03.67.Bg, 73.21.La 1 Introduction In 1935, Einstein, Podolsky and Rosen presented a thought experiment to describe the peculiarity of the quantum entanglement.[1] In a many-body entanglement system, the quantum state of each constituting particle cannot be described independently, even when the particles are separated by large distances. The exploitation of the entanglement in quantum information processing (QIP), e.g., quantum computing,[2, 3] quantum cryptography[4, 5] and quantum teleportation,[6, 7] has attracted significant attentions in the last decade. In this regard, it is crucial to develop high-quality sources for entangled quantum bits (qubits).
    [Show full text]
  • LED Structures LED Structures
    LED Structures LED Structures y Five majjypor type: y 1-Planar LED y 2-Dome LED y 3-Surface emitter LEDs y 4-Edge Em itter LEDs y 5-Superluminescent LEDs y Only two have use in OFC(SLED and ELED) Planar LED y Simplest of the structures that are available. y Fabricated by liquid or vapour phase epitaxial processes over GaAs surf ace. y Lambertian emission. y TIR limites the Radiance low. Figure of Planar LED Dome LED y A hemisphere of n-type GaAs around p-region. y Higher external power efficiency than planar LED. Figure of Dome LED Surface Emitter LEDs this form of LED structure emits light perpendicular to the plane of the PN junctiony Method. for obtaining high radiance is to restrihict the em iiission to a sma llill active region within device. y Pioneered by Burrus and Dawson. y Used an etched well in a GaAs substrat inorder to prevent heavy absorption of emitted radiation. y Low thermal impedance in active region allowing high current densities and giving high radiance emission into optical fiber. BURRUS-SLED Explanation y the size of the ppyrimary active re gion is limited to a small circular area of 20 μm to 50 μm in diameter. y The active region is the portion of the LED where ph oton s ar e emi tted. y The primary active region is below the surface of the semiconductor substrate perpendicular to the axis of the fiber. Continue: y A well is etched into the substrate to allow direct coupling of the emitted light to the optical fiber.
    [Show full text]
  • Optical Communication (Eec-701) –Unit-Iii
    www.uptunotes.com OPTICAL COMMUNICATION (EEC-701) –UNIT-III Optical sources- LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product. Laser Diodes- Basic concepts, Classifications, Semiconductor injection Laser: Modes, Threshold conditions, External quantum efficiency, Laser diode rate equations, resonant frequencies, reliability of LED & ILD Optical sources The function of an optical transmitter is to convert incoming electrical signals into outgoing optical signals. The major component of the transmitter is the optical source, which either a semiconductor light-emitting diode (LED) or laser diode. Semiconductor diode devices have the advantages over other light sources of small size, high efficiency, high reliability, suitable wavelength ranges, small emission areas matching fiber cores, and the ability to be directly current modulated. 1. LED sources Light-emitting diodes are simply forward-biased p-n junctions, which emit light by spontaneousemission. Spontaneous emission (or electroluminescence) is caused by radiative recombination ofelectron-hole pairs in the depletion region. LED’s are temporally and spatially incoherent sourcesthat emit over a broad spectral bandwidth (20-150 nm) and large angular bandwidth. Advantages of LED: 1.Simpler fabrication. There are no mirror facets and in some structures no stripedgeometry. 2. Cost. The simpler construction of the LED leads to much reduced cost which isalways likely to be maintained. 3. Reliability. The LED does not exhibit catastrophic degradation and has proved farless sensitive to gradual degradation than the injection laser. It is also immune toself-pulsation and modal noise problems. 4. Generally less temperature dependence. The light output against currentcharacteristic is less affected by temperature than the corresponding characteristicfor the injection laser.
    [Show full text]
  • Optical Sources and Detectors 1
    www.getmyuni.com Optical Fiber Communication 10EC72 Optical Sources and Detectors 1. Optical Sources Optical transmitter coverts electrical input signal into corresponding optical signal. The optical signal is then launched into the fiber. Optical source is the major component in an optical transmitter. Popularly used optical transmitters are Light Emitting Diode (LED) and semiconductor Laser Diodes (LD). Characteristics of Light Source of Communication To be useful in an optical link, a light source needs the following characteristics: i) It must be possible to operate the device continuously at a variety of temperatures for many years. ii) It must be possible to modulate the light output over a wide range of modulating frequencies. iii) For fiber links, the wavelength of the output should coincide with one of transmission windows for the fiber type used. iv) To couple large amount of power into an optical fiber, the emitting area should be small. v) To reduce material dispersion in an optical fiber link, the output spectrum should be narrow. vi) The power requirement for its operation must be low. vii) The light source must be compatible with the modern solid state devices. viii) The optical output power must be directly modulated by varying the input current to the device. ix) Better linearity of prevent harmonics and intermodulation distortion. x) High coupling efficiency. xi) High optical output power. xii) High reliability. xiii) Low weight and low cost. Two types of light sources used in fiber optics are light emitting diodes (LEDs) and laser diodes (LDs). 2. Light Emitting Diodes (LEDs) P-n Junction Page 66 www.getmyuni.com Optical Fiber Communication 10EC72 Conventional p-n junction is called as homojunction as same semiconductor material is sued on both sides junction.
    [Show full text]
  • Lecture 16: LED Types Semiconductor Optical Communication
    Semiconductor Optical Communication Components and Devices Lecture 16: LED Types Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian Institute of Technology, Kanpur http://www.iitk.ac.in/ee/faculty/det_resume/utpal.html Heterostructure Light Emitting Devices h p n Double Heterostructure p-n junction enables the +V -V electrons and holes to spend more time together Holes Electrons in the active layer. Hence Active Layers the probability of (eg. AlGaAs) recombination increases. Cladding Layers (eg. AlGaAs) Moreover optical wave guiding effects can be Conduction incorporated. Band Energy h or E (eV) = 1.24/λ (μm) EFn h Refractive Index EFn Valence Band LED’s Types of LEDs - I - - Energy Spontaneous Emission Metal Contact + + P-Contact Light-emitting Region SLED ELED Light Metal Output Contact N-Contact Edge Emitting LED has only vertical Surface Emitting LED (Burrus LED): confinement of Photons: Easier to Easy to couple high power light into couple into single mode fibers a multimode optical fiber. Metallization Edge emitting LED structures GaAs Substrate 1μm (p) Al0.3Ga0.7As : Sn or Te Recombination 0.1μm to 0.3μm (p) Al0.1Ga0.9As Region 1μm (p) Al0.3Ga0.7As : Ge 1μm (p) GaAs : Ge Oxide Metallization 10-50 μm Solder Metal Strip Contact Epitaxial Cu Heat Sink Layer Strip Width = 13μm SiO2 + Current Distribution P Recombination N Region Cleaved Facet Types of LEDs - II Super luminescent LED (SLD) End facet not to be a good 4 reflector such that standing o T=0 C waves are not generated. 3.5 5oC 3 10oC 2.5 15oC SLD 2 20oC There is gain of Photons in 1.5 o the waveguide due to 25 C Light OutputLight (mW) stimulated emission but it is 1 30oC 35oC not large enough to self 40oC sustain oscillation.
    [Show full text]
  • Unit-3 Lecture -4
    Unit-3 Lecture -4 LED, Structures, DOME LED, Planner LED, Surface Edge LED LIGHT-EMITTING DIODES • A light-emitting diode (LED) is a semiconductor device that emits incoherent light, through spontaneous emission • when a current is passed through it. Typically LEDs for the 850-nm region are fabricated using GaAs and AlGaAs. • LEDs for the 1300-nm and 1550-nm regions are fabricated using InGaAsP and InP. Types of LED The basic LED types used for fiber optic communication systems are • Surface-emitting LED (SLED), • Edge-emitting LED (ELED), and LED performance differences (1) • LED performance differences help link designers decide which device is appropriate for the intended application. • For short-distance (0 to 3 km), low-data-rate fiber optic systems, SLEDs and ELEDs are the preferred optical source. • Typically, SLEDs operate efficiently for bit rates up to 250 megabits per second (Mb/s). Because SLEDs emit light over a wide area (wide far-field angle), they are almost exclusively used in multimode systems. LED performance differences (2) • For medium-distance, medium-data-rate systems, ELEDs are preferred. • ELEDs may be modulated at rates up to 400 Mb/s. ELEDs may be used for both single mode and multimode fiber systems. • Both SLDs and ELEDs are used in long-distance, high-data- rate systems. SLDs are ELED-based diodes designed to operate in the super luminescence mode. • SLDs may be modulated at bit rates of over 400 Mb/s. Surface-Emitting LEDs • The surface-emitting LED is also known as the Burrus LED in honor of C. A. Burrus, its developer.
    [Show full text]