Multi-Year Assessment of Coastal Planktonic Fungi Reveals Environmental Drivers of Diversity and Abundance

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Year Assessment of Coastal Planktonic Fungi Reveals Environmental Drivers of Diversity and Abundance The ISME Journal (2016) 10, 2118–2128 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance Joe D Taylor1,3 and Michael Cunliffe1,2 1Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK and 2Marine Biology and Ecology Research Centre, Marine Institute, Plymouth University, Plymouth, UK Mycoplankton have so far been a neglected component of pelagic marine ecosystems, having been poorly studied relative to other plankton groups. Currently, there is a lack of understanding of how mycoplankton diversity changes through time, and the identity of controlling environmental drivers. Using Fungi-specific high-throughput sequencing and quantitative PCR analysis of plankton DNA samples collected over 6 years from the coastal biodiversity time series site Station L4 situated off Plymouth (UK), we have assessed changes in the temporal variability of mycoplankton diversity and abundance in relation to co-occurring environmental variables. Mycoplankton diversity at Station L4 was dominated by Ascomycota, Basidiomycota and Chytridiomycota, with several orders within these phyla frequently abundant and dominant in multiple years. Repeating interannual mycoplank- ton blooms were linked to potential controlling environmental drivers, including nitrogen availability and temperature. Specific relationships between mycoplankton and other plankton groups were also identified, with seasonal chytrid blooms matching diatom blooms in consecutive years. Mycoplank- ton α-diversity was greatest during periods of reduced salinity at Station L4, indicative of riverine input to the ecosystem. Mycoplankton abundance also increased during periods of reduced salinity, and when potential substrate availability was increased, including particulate organic matter. This study has identified possible controlling environmental drivers of mycoplankton diversity and abundance in a coastal sea ecosystem, and therefore sheds new light on the biology and ecology of an enigmatic marine plankton group. Mycoplankton have several potential functional roles, including saprotrophs and parasites, that should now be considered within the consensus view of pelagic ecosystem functioning and services. The ISME Journal (2016) 10, 2118–2128; doi:10.1038/ismej.2016.24; published online 4 March 2016 Introduction (Caporaso et al., 2012; Logares et al., 2014; de Vargas et al., 2015). Plankton are the foundation of marine ecosystems Even though planktonic fungi (mycoplankton) because they sustain food webs and drive global have been known to be present in marine ecosystems biogeochemical cycles (Worden et al., 2015). Some for several decades (Vishniac, 1956), they have plankton groups, such as phytoplankton and zoo- received considerably less attention compared with plankton, have been studied extensively for decades, other plankton groups (Wang et al., 2012). Marine with earlier research founded on microscope-based mycoplankton exist as free-living filamentous assessments of diversity and abundance (Russell et al., and yeast forms, or as parasites of other plankton 1971; Southward, 1974). More recently, through the (Richards et al., 2012; Wang et al., 2012). The application of DNA-based tools that incorporate ecosystem functioning roles that marine myco- previously poorly described plankton groups, such plankton may undertake have been largely assumed as bacterioplankton and protists, marine plankton from comparison with their terrestrial and fresh- diversity has been shown to be vast, complex and influenced by a wide range of environmental drivers water analogues (Richards et al., 2012). For example, Richards et al. (2012) proposed that, similar to terrestrial fungi, saprotrophic marine fungi probably Correspondence: M Cunliffe, Marine Biological Association of the attach to particulate organic material, produce extra- United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, cellular enzymes and utilise resulting lower mole- UK. cular weight compounds. Supporting this theory, E-mail: [email protected] evidence from the coastal waters off Chile suggest 3Current address: Department of Biology, University of York, York, UK. that mycoplankton have a major role in processing Received 5 August 2015; revised 7 January 2016; accepted phytoplankton-derived biopolymers using extra- 21 January 2016; published online 4 March 2016 cellular enzymes (Gutiérrez et al., 2011). Marine mycoplankton diversity and abundance JD Taylor and M Cunliffe 2119 Relative to other plankton groups, such as the The environmental metadata used in this study bacterioplankton, there have been a limited number were collected at the same time as the seawater of assessments of marine mycoplankton diversity. So samples for DNA extraction (above) also as part far, studies of marine mycoplankton diversity have of the regular activities at the WCO (Table 1 and been largely based on samples collected from one-off Supplementary Figure 1). Temperature and salinity sampling campaigns that have provided important and were determined via a rosette-mounted SeaBird SBE insightful ‘snap shots’ of diversity, but with limited 19+ CTD (Sea-Bird Electronics, St Bellevue, WA, temporal resolution (Bass et al., 2007; Gao et al., 2010; USA). Nutrients were measured in seawater samples Richards et al., 2012; Manohar and Raghukumar, 2013; collected via a sampling bottle attached to the rosette Taylor and Cunliffe, 2014). Time series assessments of and using established protocols for nitrate (Brewer and other plankton groups have proven invaluable in Riley, 1965), nitrite (Grasshoff et al., 1999), ammonia developing our understanding of their biology and (Mantoura and Woodward, 1983), phosphate (Zhang ecology (Karl and Church, 2014; Fuhrman et al., 2015). and Chi, 2002) and silicate (Kirkwood, 1989). Spatially defined and reoccurring assessments of The concentrations of particulate organic carbon, total plankton diversity and abundance that are aligned particulate nitrogen and particulate organic nitrogen with co-occurring environmental variables (tempera- were determined by filtering 250 ml seawater samples ture, nutrients and so on) have been used to identify (prefiltered through 200 μm mesh) onto ashed glass the key controlling environmental drivers that influ- fibre filters (GF/F) and analysed using an FlashEA ence planktonic organisms, and to form the basis of 1112 elemental analyser (Thermo Scientific, Lough- establishing the underpinning principles of their borough, UK). For chlorophyll a determination, ecologies and ecosystem functional roles. For example, 100 ml of sea water was filtered onto GF/F, followed multi-year assessments of bacterioplankton diversity at by extraction in 90% acetone at 4 °C, and fluorescence the time series site Station L4 in the Western English measured using a fluorometer (Welschmeyer, 1994). Channel has shown that bacterioplankton have To determine diatom abundance and diversity, 200 ml annually repeating seasonal-scale patterns in diversity seawater samples were fixed with Lugol’siodine that relate to changes in a variety of environmental solution (2% final concentration) and examined drivers, including seawater temperature, seasonal by light microscopy via the Utermöhl counting diatom blooms and organic carbon availability technique (Widdicombe et al., 2010). Metadata are (Gilbert et al., 2009, 2012; Taylor et al., 2014). available from the WCO (www.westernchannelobser The coastal time series site Station L4 is located vatory.org.uk). 13kmoffPlymouthintheWesternEnglishChannel and has a depth of 50 m (Figure 1). The site is dynamic and influenced by periodic estuarine incursions from DNA extraction, PCR and sequencing the neighbouring Tamar and Plym rivers. During the Filters were transferred to 2 ml microcentrifuge tubes summer, the water column becomes thermally strati- and 1 ml phenol/chloroform/isoamyl alcohol (25:24:1) fied at Station L4 and nutrient depletion occurs was added. The tubes were vortexed for 2 min, heated (Smyth et al., 2010). Here we present a multi-year for 10 min at 60 °C, before being vortexing again and time series assessment of mycoplankton diversity and centrifuged for 1 min at 13 000 g. The aqueous phase abundance, correlating observed changes with co- (~0.5 ml) was transferred to a new 1.5 ml tube contain- occurring environmental parameters. We have ing 0.5 ml chloroform/isoamyl alcohol, briefly vortexed focussed on the mycoplankton communities at Station and centrifuged again for 1 min at 13 000 g.The L4 because previous studies have indicated that aqueous phase was transferred again to a new 1.5 ml mycoplankton diversity is greater in coastal waters microcentrifuge tube followed by 10% (v/v) 3 M sodium than in the open ocean (Gao et al., 2010; Wang et al., acetate and 2 volumes of molecular-grade ethanol. 2014), and the station has been proven to be an DNA was precipitated for 1 h at − 20 °C, followed by exemplar site for elucidating the ecology and biology centrifugation at 13 000 g for 25 min. The supernatant of other plankton groups (Eloire et al., 2010; was removed and the DNA pellet washed with 0.5 ml Widdicombe et al., 2010; Gilbert et al., 2012). 75% ethanol, before being dissolved in 50 μl nuclease free molecular-grade water and stored at − 80 °C. The fungi-specific internal transcribed spacer Materials and methods (ITS) region (ITS1,5.8S, ITS2) was amplified
Recommended publications
  • A New Type of Plankton Food Web Functioning in Coastal Waters Revealed by Coupling Monte Carlo Markov Chain Linear Inverse Metho
    A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, Aurélie Chaalali, Olivier Pringault, Asma Sakka Hlaili To cite this version: Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, et al.. A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecological Indicators, Elsevier, 2019, 104, pp.67-85. 10.1016/j.ecolind.2019.04.077. hal-02146355 HAL Id: hal-02146355 https://hal.archives-ouvertes.fr/hal-02146355 Submitted on 3 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 A new type of plankton food web functioning in coastal waters revealed by coupling 2 Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis 3 4 5 Marouan Meddeba,b*, Nathalie Niquilc, Boutheïna Gramia,d, Kaouther Mejria,b, Matilda 6 Haraldssonc, Aurélie Chaalalic,e,f, Olivier Pringaultg, Asma Sakka Hlailia,b 7 8 aUniversité de Carthage, Faculté des Sciences de Bizerte, Laboratoire de phytoplanctonologie 9 7021 Zarzouna, Bizerte, Tunisie.
    [Show full text]
  • Crustacean Zooplankton in Lake Constance from 1920 to 1995: Response to Eutrophication and Re-Oligotrophication
    Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53, p. 255-274, December 1998 Lake Constance, Characterization of an ecosystem in transition Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication Dietmar Straile and Waiter Geller with 9 figures Abstract: During the first three quarters ofthis century, the trophic state ofLake Constance changed from oligotrophic to meso-/eutrophic conditions. The response ofcrustaceans to the eutrophication process is studied by comparing biomasses ofcrustacean zooplankton from recent years, i.e. from 1979-1995, with data from the early 1920s (AUERBACH et a1. 1924, 1926) and the 1950s (MUCKLE & MUCKLE­ ROTTENGATTER 1976). This comparison revealed a several-fold increase in crustacean biomass. The relative biomass increase was more pronounced from the early 1920s to the 1950s than from the 1950s to the 1980s. Most important changes ofthe species inventory included the invasion of Cyclops vicinus and Daphnia galeata and the extinction of Heterocope borealis and Diaphanosoma brachyurum during the 1950s and early 1960s. All species which did not become extinct increased their biomass during eutrophication. This increase in biomass differed between species and throughout the season which re­ sulted in changes in relative biomass between species. Daphnids were able to enlarge their seasonal window ofrelative dominance from 3 months during the 1920s (June to August) to 7 months during the 1980s (May to November). On an annual average, this resulted in a shift from a copepod dominated lake (biomass ratio cladocerans/copepods = 0.4 during 1920/24) to a cladoceran dominated lake (biomass ratio cladocerans/copepods = 1.5 during 1979/95).
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • Fertilizing the Ocean with Iron Is This a Viable Way to Help Reduce Carbon Dioxide Levels in the Atmosphere?
    380 Fertilizing the Ocean with Iron Is this a viable way to help reduce carbon dioxide levels in the atmosphere? 360 ive me half a tanker of iron, and I’ll give you an ice Twenty years on, Martin’s line is still viewed alternately age” may rank as the catchiest line ever uttered by a as a boast or a quip—an opportunity too good to pass up or a biogeochemist.“G The man responsible was the late John Martin, misguided remedy doomed to backfire. Yet over the same pe- former director of the Moss Landing Marine Laboratory, who riod, unrelenting increases in carbon emissions and mount- discovered that sprinkling iron dust in the right ocean waters ing evidence of climate change have taken the debate beyond could trigger plankton blooms the size of a small city. In turn, academic circles and into the free market. the billions of cells produced might absorb enough heat-trap- Today, policymakers, investors, economists, environ- ping carbon dioxide to cool the Earth’s warming atmosphere. mentalists, and lawyers are taking notice of the idea. A few Never mind that Martin companies are planning new, was only half serious when larger experiments. The ab- 340 he made the remark (in his Ocean Iron Fertilization sence of clear regulations for “best Dr. Strangelove accent,” either conducting experiments he later recalled) at an infor- An argument for: Faced with the huge at sea or trading the results mal seminar at Woods Hole consequences of climate change, iron’s in “carbon offset” markets Oceanographic Institution outsized ability to put carbon into the oceans complicates the picture.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Phytoplankton
    Phytoplankton • What are the phytoplankton? • How do the main groups differ? Phytoplankton Zooplankton Nutrients Plankton “wandering” or “drifting” (incapable of sustained, directed horizontal movement) www.shellbackdon.com Nekton Active swimmers Components of the Plankton Virioplankton: Viruses Bacterioplankton: Bacteria — free living planktobacteria; epibacteria attached to larger particles Mycoplankton: Fungi Phytoplankton: Photosynthetic microalgae, cyanobacteria, and prochlorophytes Zooplankton: Heterotrophic — Protozooplankton (unicellular) and Metazooplankton (larval and adult crustaceans, larval fish, coelenterates…) Components of the Phytoplankton: Older scheme Netplankton: Plankton that is retained on a net or screen, usually Inspecting a small plankton 20 - 100 µm net. In: "From the Surface to the Bottom of the Sea" by H. Nanoplankton: Plankton that Bouree, 1912, Fig. 49, p. 61. passes the net, but Library Call Number 525.8 B77. which is > 2 µm Ultrananoplankton: Plankton < 2µm Components of the Plankton (older scheme) Netplankton: Plankton that is retained on a net or screen, usually 20 - 100 µm Nanoplankton: Plankton that passes the net, but which is > 2 µm Ultrananoplankton: Plankton < 2µm Microzooplankton: Zooplankton in the microplankton (i.e., < 200 µm) Length Scales to Define Plankton Groups Sieburth, J. M., Smetacek, V. and Lenz, J. (1978). Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263. Terminology and Scales:
    [Show full text]
  • SSWIMS: Plankton
    Unit Six SSWIMS/Plankton Unit VI Science Standards with Integrative Marine Science-SSWIMS On the cutting edge… This program is brought to you by SSWIMS, a thematic, interdisciplinary teacher training program based on the California State Science Content Standards. SSWIMS is provided by the University of California Los Angeles in collaboration with the Los Angeles County school districts, including the Los Angeles Unified School District. SSWIMS is funded by a major grant from the National Science Foundation. Plankton Lesson Objectives: Students will be able to do the following: • Determine a basis for plankton classification • Differentiate between various plankton groups • Compare and contrast plankton adaptations for buoyancy Key concepts: phytoplankton, zooplankton, density, diatoms, dinoflagellates, holoplankton, meroplankton Plankton Introduction “Plankton” is from a Greek word for food chains. They are autotrophs, “wanderer.” It is a making their own food, using the collective term for process of photosynthesis. The the various animal plankton or zooplankton eat organisms that drift or food for energy. These swim weakly in the heterotrophs feed on the open water of the sea or microscopic freshwater lakes and ponds. These world of the weak swimmers, carried about by sea and currents, range in size from the transfer tiniest microscopic organisms to energy up much larger animals such as the food jellyfish. pyramid to fishes, marine mammals, and humans. Plankton can be divided into two large groups: planktonic plants and Scientists are interested in studying planktonic animals. The plant plankton, because they are the basis plankton or phytoplankton are the for food webs in both marine and producers of ocean and freshwater freshwater ecosystems.
    [Show full text]
  • Collection and Analysis of a Global Marine Phytoplankton Primary
    Discussions https://doi.org/10.5194/essd-2021-230 Earth System Preprint. Discussion started: 7 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data Collection and analysis of a global marine phytoplankton primary production dataset Franceso Mattei1,2,3, Michele Scardi1,2 1Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica (no street number), Rome, 00133, 5 Italy. 2CoNISMa, Piazzale Flaminio, 9, Rome, 00196, Italy. 3 Ph.D. Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata. Correspondence to: Francesco Mattei ([email protected]) Keywords: Phytoplankton primary production, Marine ecology, Global marine primary productivity. 10 Abstract. Phytoplankton primary production is a key oceanographic process. It has relationships with the marine food webs dynamics, the global carbon cycle and the Earth’s climate. The study of phytoplankton production on a global scale relies on indirect approaches due to field campaigns difficulties. Modelling approaches require in situ data for calibration and validation. In fact, the need for more phytoplankton primary production data was highlighted several times during the last decades. Most of the available primary production datasets are scattered in various repositories, reporting heterogeneous information 15 and missing records. We decided to retrieve field measurements of marine phytoplankton production from several sources and create a homogeneous and ready to use dataset. We handled missing data and added variables related to primary production which were not present in the original datasets. Subsequently, we performed a general analysis of the highlighting the relationships between the variables from a numerical and an ecological perspective.
    [Show full text]
  • Algae and Lakes Algae Are Primitive, Usually Microscopic, Organisms Found in Every Lake
    Algae and Lakes Algae are primitive, usually microscopic, organisms found in every lake. Like green plants, most algae have pigments that allow them to create energy from sunlight through the process of photosynthesis. Algae use this energy and nutrients such as nitrogen and phosphorus to grow and reproduce. Algae form the base of the food web in lakes. Small animals called zooplankton feed on algae. In Drawings from IFAS, Center for Aquatic Plants, turn, zooplankton become food for fish. Algae University of Florida, 1990; and U.S. Soil Conservation Service, Water Quality Indicators Guide: Surface Waters, also produce some of the oxygen found in lake 1989. water and in the atmosphere What types of algae live in my lake? There are thousands of species of freshwater algae living in lakes around the world. Most species of algae in Snohomish County lakes are free-floating, collectively known as phytoplankton. There are also many species of algae that attach to rocks, docks, and aquatic plants, called periphyton. There are three main groups of algae—the green algae (Chlorophyta), the golden brown algae (Chrysophyta) which also includes a large group called diatoms, and A typical microscopic view of algae found in local lakes the blue-green algae (Cyanobacteria)—as well as several smaller groups (euglenoids, cryptomonads, and dinoflagellates). Under the microscope, many algae have beautiful shapes and colors. Algae are important for healthy lakes. Without algae, your lake would likely be devoid of fish and other wildlife. Most algae are inconspicuous and do not cause problems. Unfortunately, a few types of algae can cause water quality problems in lakes.
    [Show full text]
  • PHYTOPLANKTON Grass of The
    S. G. No. 9 Oregon State University Extension Service Rev. December 1973 FIGURE 6: Oregon State Univer- sity's Marine Science Center in MARINE ADVISORY PROGRAM Newport, Oregon, is engaged in re- search, teaching, marine extension, and related activities under the Sea Grant Program of the National Oceanic and Atmospheric Adminis- tration. Located on Yaquina Bay, the center attracts thousands of visitors yearly to view the exhibits PHYTOPLANKTON of oceanographic phenomena and the aquaria of most of Oregon's marine fishes and invertebrates. Scientists studying the charac- grass of the sea teristics of life in the ocean (in- cluding phytoplankton) and in estu- aries work in various laboratories at the center. The Marine Science Center is home port for OSU School of Ocea- nography vessels, ranging in size from 180 to 33 feet (the 180-foot BY HERBERT CURL, JR. Yaquina and the 80-foot Cayuse PROFESSOR OF OCEANOGRAPHY are shown at the right). OREGON STATE UNIVERSITY Anyone taking a trip at sea or walking on the beach Want to Know More About Phytoplankton? Press, 1943—out of print; reprinted Ann Arbor: notices that nearshore water along coasts is frequently University Microfilms, Inc., University of Michigan). For the student or teacher who wishes to learn green or brown and sometimes even red. Often these more about phytoplankton, the following publications colors signify the presence of mud or silt carried into offer detailed information about phytoplankton and Want Other Marine Information? the sea by rivers or stirred up from the bottom if the their relationship to the ocean and mankind. Oregon State University's Extension Marine Advis- water is sufficiently shallow.
    [Show full text]
  • Effects of N:P:Si Ratios and Zooplankton Grazing on Phytoplankton Communities in the Northern Adriatic Sea
    AQUATIC MICROBIAL ECOLOGY Vol. 18: 37-54, 1999 Published July 16 Aquat Microb Ecol 1 Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. I. Nutrients, phytoplankton biomass, and polysaccharide production Edna Granelil.*, Per ~arlsson',Jefferson T. urne er^, Patricia A. ester^, Christian Bechemin4, Rodger ~awson',Enzo ~unari' 'University of Kalmar, Department of Marine Sciences. POB 905, S-391 29 Kalmar. Sweden 'Biology Department. University of Massachusetts Dartmouth. North Dartmouth, Massachusetts 02747. USA 3National Marine Fisheries Service, NOAA, Southeast Fisheries Science Center. Beaufort Laboratory, Beaufort. North Carolina 28516, USA 4CREMA-L'Houmeau(CNRS-IFREMER), BP5, F-17137 L'Houmeau, France 'Chesapeake Biological Laboratory, University of Maryland, Solomons, Maryland 20688. USA '~aboratoriodi Igiene Ambientale, Istituto di Sanita, Viale R. Elena 299. 1-00161 Rome, Italy ABSTRACT: The northern Adriatic Sea has been historically subjected to phosphorus and nitrogen loading. Recent signs of increasing eutrophication include oxygen def~ciencyin the bottom waters and large-scale formation of gelatinous macroaggregates. The reason for the formation of these macroag- gregates is unclear, but excess production of phytoplankton polysacchandes is suspected. In order to study the effect of different nutrient (nitrogen~phosphorus:silicon)ratios on phytoplankton production, biomass, polysacchandes, and species succession, 4 land-based enclosure experiments were per- formed with northern Adriatic seawater. During 2 of these experiments the importance of zooplankton grazlng as a phytoplankton loss factor was also investigated. Primary productivity in the northern Adri- atic Sea is thought to be phosphorus limited, and our experiments confirmed that even low daily phos- phorus additions Increased phytoplankton biomass.
    [Show full text]
  • Iron Fertilization: a Scientific Review with International Policy Recommendations
    Iron Fertilization: A Scientific Review with International Policy Recommendations By Jennie Dean* TABLE OF CONTENTS INTRODUCTION ................................ ....... .322 I. CLIMATE CHANGE AND THE OCEAN ......................................... 322 A . D escribing the problem ................................................................ 322 B. Identifying a potential solution .................................................... 323 II. IRON FERTILIZATION EXAMINED ............................................... 326 A . Potential benefits .......................................................................... 326 B . Potential problem s ........................................................................ 328 C. Synthesis and suggested action .................................................... 333 III. IRON FERTILIZATION AND INTERNATIONAL LAW ................. 334 A . Introduction .................................................................................. 334 B. Coverage under pollution and dumping regulations ..................... 334 C. Coverage under biological conservation regulations .................... 336 D. Coverage under global climate change mitigation regulations ..... 338 IV. RECOM M ENDATION S ..................................................................... 339 A . Suggested modifications ............................................................. 339 B . F easibility ..................................................................................... 340 C O N C L U SIO N ...............................................................................................
    [Show full text]