Chapter 6: Gravity & Projectile Motion

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6: Gravity & Projectile Motion Chapter 6: Gravity & Projectile Motion Sun at Center Orbits are Circular Tycho Brahe 1546-1601 Tycho was the greatest observational astronomer of his time. Tycho did not believe in the Copernican model because he didn’t believe that the Earth Moved. Kepler worked for Tycho as his mathematician. Kepler derived his laws of planetary motion from Tycho’s observational data. Orbits are Elliptical Kepler’s 3 Laws of Planetary Motion 1: The orbit of each planet about the sun is an ellipse with the sun at one focus. 2. Each planet moves so that it sweeps out equal areas in equal times. 22 Tr11 3. 22= Tr22 Isaac Newton (1642 -1727) UniversalUniversal LawLaw ofof GravityGravity Every particle in the Universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product to their masses and inversely proportional to the square of the distance between them. M d m mM F ~ d 2 Gravitational Force is Universal The same force that makes the apple fall to Earth, causes the moon to fall around the Earth. UniversalUniversal LawLaw ofof GravityGravity Nm2 Gx= 6.67 10−11 kg 2 M d m GmM F = d 2 Measuring G: Cavendish mM GmM F ~ 2 F = d d 2 Nm2 Gx= 6.67 10−11 kg 2 G is the same everywhere in the Universe. Inverse Square Law GmM F = d 2 Gravitational Force How would the force of gravity and the acceleration due to gravity change as you fell through a hole in the Earth? Problem Calculate the acceleration of gravity acting on you at the surface of the Earth. Gmyou M E F = Fma= you d 2 GM a = E d 2 −11 2 2 24 ()6.673xNmkgxkg 10 /() 5.98 10 a = 8 2 ()3.84xm 10 ams= 9.81 / 2 Problem Calculate the force of gravity between the Earth and the Moon. Assume a circular orbit. GmM F = d 2 −11 2 2 24 22 (6.673xNmk 10 /g )( 6.00xk 10g )( 7.4xk 10 g ) F = 8 2 ()3.84xm 10 FxN= 2.01 1020 Problem Calculate the acceleration of the Earth due to the Earth-Moon gravitational interaction. F a = m 2.01x 1020 N a = 5.98x 1024 kg axms= 3.33 10−52 / Problem Calculate the acceleration of the Moon due to the Earth-Moon gravitational interaction. F a = m 2.01x 1020 N a = 7.35x 1022 kg axms= 2.73 10−32 / Problem The acceleration of gravity at the Moon due to the Earth is: axms= 2.73 10−32 / The acceleration of gravity at the Earth due to the moon is: axms= 3.33 10−52 / Why the difference? FORCE is the same. Acceleration is NOT!!! Force is not Acceleration! FFEarth on Moon= − Moon on Earth The forces are equal but the accelerations are not! Gravitational forces produce the tides and keep the same side of the Moon always facing the Earth in a Synchronous Rotation. The gravitational force between Earth and Moon results in tides Large spring tides occur when the Sun and Moon are aligned such that they BOTH pull on the Earth’s water. Smaller neap tides occur when the Sun and Moon are misaligned such that they pull on the Earth’s water in different directions. Earth’s Ocean Tides Neap Tides Spring Tides How many High and Low Tides per day? Earth- Moon System: Tidal Lock Moon pulls on Earth and causes tidal bulges in Oceans. Earth pulls on moon causing tidal bulge in Moon such that the CM is off from CG. Earth’s pull on the moon at its center of gravity produces a torque which rotates it. The moon is ‘tidally locked’ so that it rotates at the same rate at which it revolves, showing Earth only one face. Questions! Which exerts a greater gravitational force on the Earth, the moon or the Sun? Which has a greater effect on the Earth’s tides? Why? The Sun exerts a greater force on the Earth. It also causes tides, though it has about half the effect as the moon. Tides are due to differences in force on opposite sides of the Earth. The sun is so far away relative to the size of the Earth that the difference in force is not as significant as the difference due to the Moon since it is closer! Spring Spring Neap Bouncing laser beams off the Moon demonstrates that it slowly moving away from the Earth ~.25 cm/month Earth- Moon System is Changing! •Earth Rotation Slowing due to friction of ocean on bottom •.0023 s per century: 900 Million yrs ago, Earth day was 18 hrs! •Decrease of Earth’s spin angular momentum, increases the orbital angular momentum of the Moon! •Earth is slowing down and Moon is moving further away! Eventually the Earth's rotation period will be identical to the Moon's orbital period. This situation is called synchronous (1:1) rotation. In the distant future (many billions of years from now), the Earth will have a day which is 47 current days long, and the Moon will only be visible from one side of the Earth!! Projectile Motion Ignore Air Resistance! Most Important: X and Y components are INDEPENDENT of each other! Zero at the Top! Y component of velocity is zero at the top of the path in both cases! You know they have the y component of velocity is the same in both cases because they reached the same height! Projectile Motion Horizontal and vertical components are independent of each other! Gravity acts in the vertical direction but not in the horizontal direction!! Speed in vertical direction speeds up! Speed in horizontal direction stays the same! First the SIMPLE Case: Horizontal Launch (Ignore Air Resistance) The x-component doesn’t change (no acceleration in x-direction.) The y-component changes (a = -g.) Projectile Motion No Change ax = 0 Actual path is a vector sum of horizontal and vertical motions. change agy = Dropping From Moving Frame Plane and Package An airplane traveling at a constant speed and height drops a care package. Ignoring air resistance, at the moment the package hits the ground, where is it relative to the plane? a) Behind the plane. b) Under the plane. c) In front of the plane. Any object dropped from a plane has the same initial velocity as the plane! Projectile Motion Which hits the ground first? SAME! Both falling the same height! Horizontal speed doesn’t effect the time to hit the ground! If it takes 1 second to hit the ground, how tall is the tower? Projectile Motion dt==55(1)522 = m If it takes 1 second to hit the ground, how tall is the tower? Same rock, same speed, same angle. Which rock hits the water first? a) Rock 1 b) Rock 2 c) same Which rock hits the water with the greatest speed? a) Rock 1 b) Rock 2 c) same Same rock, same speed, same angle. Which rock hits the water first? a) Rock 1 b) Rock 2 c) same Which rock hits the water with the greatest speed? a) Rock 1 b) Rock 2 c) same Spatial Symmetry In G Field! Projectile Motion Launched at an Angle (Ignore Air Resistance) The x-component doesn’t change (no acceleration in x-direction.) The y-component changes (a = -g.) Shooting UP From Moving Frame Horizontal and vertical components are independent of each other! Horizontal component remains unchanged without air resistance. Only the vertical component changes! Projectiles Launched at an Angle: The simple case: Δy=0 Question gms=10 / 2 The ball is thrown horizontally at 20 m/s. About how long does it take to hit the ground? 0 1 2 2Δy Δ=y vt + gt ts==1 yi 2 g d How far does it travel in the horizontal direction? m Δ=x vt =20 1 s = 20 m xi s Question gms=10 / 2 The ball is thrown horizontally at 30 m/s. About how long does it take to hit the ground? 1 2 2Δy Δ=y vt + gt ts==1 yi 2 g Only Δy determines time! d How far does it travel in the horizontal direction? m Δ=x vt =30 1 s = 30 m xi s Question gms=10 / 2 The ball is thrown horizontally at 100 m/s. How long does it take to hit the ground? 1 Second!! How far does it travel in the horizontal direction? m Δ=x vt =100 1 s = 100 m xi s Curvature of Earth If you threw the ball at 8000 m/s off the surface of the Earth (and there were no buildings or mountains in the way) how far would it travel in the vertical and horizontal directions in 1 second? Curvature of Earth If you threw the ball at 8000 m/s off the surface of the Earth (and there were no buildings or mountains in the way) how far would it travel in the vertical and horizontal directions in 1 second? horizontal: Δ= x vx t =(8000 m / s)( 1 s) = 8000 m 1 2 vertical : Δ=ygtt22 =5 = 5() 1 s = 5 m 2 Curvature of Earth If you threw the ball at 8000 m/s off the surface of the Earth (and there were no buildings or mountains in the way) how far would it travel in the vertical and horizontal directions in 1 second? horizontal: Δ= x vx t =(8000 m / s)( 1 s) = 8000 m 1 2 vertical : Δ=ygtt22 =5 = 5() 1 s = 5 m 2 Curvature of Earth If you threw the ball at 8000 m/s off the surface of the Earth (and there were no buildings or mountains in the way) how far would it travel in the vertical and horizontal directions in 1 second? Does the ball ever hit the Earth???? Curvature of Earth Curvature of the Earth: Every 8000 m, the Earth curves by 5 meters! Orbital Velocity If you can throw a ball at 8000m/s, the Earth curves away from it so that the ball continually falls in free fall around the Earth – it is in orbit around the Earth! Ignoring air resistance.
Recommended publications
  • 3 Rectangular Coordinate System and Graphs
    06022_CH03_123-154.QXP 10/29/10 10:56 AM Page 123 3 Rectangular Coordinate System and Graphs In This Chapter A Bit of History Every student of mathematics pays the French mathematician René Descartes (1596–1650) hom- 3.1 The Rectangular Coordinate System age whenever he or she sketches a graph. Descartes is consid- ered the inventor of analytic geometry, which is the melding 3.2 Circles and Graphs of algebra and geometry—at the time thought to be completely 3.3 Equations of Lines unrelated fields of mathematics. In analytic geometry an equa- 3.4 Variation tion involving two variables could be interpreted as a graph in Chapter 3 Review Exercises a two-dimensional coordinate system embedded in a plane. The rectangular or Cartesian coordinate system is named in his honor. The basic tenets of analytic geometry were set forth in La Géométrie, published in 1637. The invention of the Cartesian plane and rectangular coordinates contributed significantly to the subsequent development of calculus by its co-inventors Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz (1646–1716). René Descartes was also a scientist and wrote on optics, astronomy, and meteorology. But beyond his contributions to mathematics and science, Descartes is also remembered for his impact on philosophy. Indeed, he is often called the father of modern philosophy and his book Meditations on First Philosophy continues to be required reading to this day at some universities. His famous phrase cogito ergo sum (I think, there- fore I am) appears in his Discourse on the Method and Principles of Philosophy. Although he claimed to be a fervent In Section 3.3 we will see that parallel lines Catholic, the Church was suspicious of Descartes’philosophy have the same slope.
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Unification of Gravity and Quantum Theory Adam Daniels Old Dominion University, [email protected]
    Old Dominion University ODU Digital Commons Faculty-Sponsored Student Research Electrical & Computer Engineering 2017 Unification of Gravity and Quantum Theory Adam Daniels Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/engineering_students Part of the Elementary Particles and Fields and String Theory Commons, Engineering Physics Commons, and the Quantum Physics Commons Repository Citation Daniels, Adam, "Unification of Gravity and Quantum Theory" (2017). Faculty-Sponsored Student Research. 1. https://digitalcommons.odu.edu/engineering_students/1 This Report is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Faculty-Sponsored Student Research by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Unification of Gravity and Quantum Theory Adam D. Daniels [email protected] Electrical and Computer Engineering Department, Old Dominion University Norfolk, Virginia, United States Abstract- An overview of the four fundamental forces of objects falling on earth. Newton’s insight was that the force that physics as described by the Standard Model (SM) and prevalent governs matter here on Earth was the same force governing the unifying theories beyond it is provided. Background knowledge matter in space. Another critical step forward in unification was of the particles governing the fundamental forces is provided, accomplished in the 1860s when James C. Maxwell wrote down as it will be useful in understanding the way in which the his famous Maxwell’s Equations, showing that electricity and unification efforts of particle physics has evolved, either from magnetism were just two facets of a more fundamental the SM, or apart from it.
    [Show full text]
  • Motion and Time Study the Goals of Motion Study
    Motion and Time Study The Goals of Motion Study • Improvement • Planning / Scheduling (Cost) •Safety Know How Long to Complete Task for • Scheduling (Sequencing) • Efficiency (Best Way) • Safety (Easiest Way) How Does a Job Incumbent Spend a Day • Value Added vs. Non-Value Added The General Strategy of IE to Reduce and Control Cost • Are people productive ALL of the time ? • Which parts of job are really necessary ? • Can the job be done EASIER, SAFER and FASTER ? • Is there a sense of employee involvement? Some Techniques of Industrial Engineering •Measure – Time and Motion Study – Work Sampling • Control – Work Standards (Best Practices) – Accounting – Labor Reporting • Improve – Small group activities Time Study • Observation –Stop Watch – Computer / Interactive • Engineering Labor Standards (Bad Idea) • Job Order / Labor reporting data History • Frederick Taylor (1900’s) Studied motions of iron workers – attempted to “mechanize” motions to maximize efficiency – including proper rest, ergonomics, etc. • Frank and Lillian Gilbreth used motion picture to study worker motions – developed 17 motions called “therbligs” that describe all possible work. •GET G •PUT P • GET WEIGHT GW • PUT WEIGHT PW •REGRASP R • APPLY PRESSURE A • EYE ACTION E • FOOT ACTION F • STEP S • BEND & ARISE B • CRANK C Time Study (Stopwatch Measurement) 1. List work elements 2. Discuss with worker 3. Measure with stopwatch (running VS reset) 4. Repeat for n Observations 5. Compute mean and std dev of work station time 6. Be aware of allowances/foreign element, etc Work Sampling • Determined what is done over typical day • Random Reporting • Periodic Reporting Learning Curve • For repetitive work, worker gains skill, knowledge of product/process, etc over time • Thus we expect output to increase over time as more units are produced over time to complete task decreases as more units are produced Traditional Learning Curve Actual Curve Change, Design, Process, etc Learning Curve • Usually define learning as a percentage reduction in the time it takes to make a unit.
    [Show full text]
  • Post-Newtonian Approximation
    Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism Post-Newtonian Approximation Piotr Jaranowski Faculty of Physcis, University of Bia lystok,Poland 01.07.2013 P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Relativistic binary systems exist in nature, they comprise compact objects: neutron stars or black holes. These systems emit gravitational waves, which experimenters try to detect within the LIGO/VIRGO/GEO600 projects.
    [Show full text]
  • Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis Thaliana Root Tip
    plants Article Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip Alicia Villacampa 1 , Ludovico Sora 1,2 , Raúl Herranz 1 , Francisco-Javier Medina 1 and Malgorzata Ciska 1,* 1 Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] (A.V.); [email protected] (L.S.); [email protected] (R.H.); [email protected] (F.-J.M.) 2 Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy * Correspondence: [email protected]; Tel.: +34-91-837-3112 (ext. 4260); Fax: +34-91-536-0432 Abstract: Clinorotation was the first method designed to simulate microgravity on ground and it remains the most common and accessible simulation procedure. However, different experimental set- tings, namely angular velocity, sample orientation, and distance to the rotation center produce different responses in seedlings. Here, we compare A. thaliana root responses to the two most commonly used velocities, as examples of slow and fast clinorotation, and to vertical and horizontal clinorotation. We investigate their impact on the three stages of gravitropism: statolith sedimentation, asymmetrical auxin distribution, and differential elongation. We also investigate the statocyte ultrastructure by electron microscopy. Horizontal slow clinorotation induces changes in the statocyte ultrastructure related to a stress response and internalization of the PIN-FORMED 2 (PIN2) auxin transporter in the lower endodermis, probably due to enhanced mechano-stimulation. Additionally, fast clinorotation, Citation: Villacampa, A.; Sora, L.; as predicted, is only suitable within a very limited radius from the clinorotation center and triggers Herranz, R.; Medina, F.-J.; Ciska, M.
    [Show full text]
  • 1 the Principle of Wave–Particle Duality: an Overview
    3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave.
    [Show full text]
  • Einstein's Gravitational Field
    Einstein’s gravitational field Abstract: There exists some confusion, as evidenced in the literature, regarding the nature the gravitational field in Einstein’s General Theory of Relativity. It is argued here that this confusion is a result of a change in interpretation of the gravitational field. Einstein identified the existence of gravity with the inertial motion of accelerating bodies (i.e. bodies in free-fall) whereas contemporary physicists identify the existence of gravity with space-time curvature (i.e. tidal forces). The interpretation of gravity as a curvature in space-time is an interpretation Einstein did not agree with. 1 Author: Peter M. Brown e-mail: [email protected] 2 INTRODUCTION Einstein’s General Theory of Relativity (EGR) has been credited as the greatest intellectual achievement of the 20th Century. This accomplishment is reflected in Time Magazine’s December 31, 1999 issue 1, which declares Einstein the Person of the Century. Indeed, Einstein is often taken as the model of genius for his work in relativity. It is widely assumed that, according to Einstein’s general theory of relativity, gravitation is a curvature in space-time. There is a well- accepted definition of space-time curvature. As stated by Thorne 2 space-time curvature and tidal gravity are the same thing expressed in different languages, the former in the language of relativity, the later in the language of Newtonian gravity. However one of the main tenants of general relativity is the Principle of Equivalence: A uniform gravitational field is equivalent to a uniformly accelerating frame of reference. This implies that one can create a uniform gravitational field simply by changing one’s frame of reference from an inertial frame of reference to an accelerating frame, which is rather difficult idea to accept.
    [Show full text]
  • Principle of Relativity and Inertial Dragging
    ThePrincipleofRelativityandInertialDragging By ØyvindG.Grøn OsloUniversityCollege,Departmentofengineering,St.OlavsPl.4,0130Oslo, Norway Email: [email protected] Mach’s principle and the principle of relativity have been discussed by H. I. HartmanandC.Nissim-Sabatinthisjournal.Severalphenomenaweresaidtoviolate the principle of relativity as applied to rotating motion. These claims have recently been contested. However, in neither of these articles have the general relativistic phenomenonofinertialdraggingbeeninvoked,andnocalculationhavebeenoffered byeithersidetosubstantiatetheirclaims.HereIdiscussthepossiblevalidityofthe principleofrelativityforrotatingmotionwithinthecontextofthegeneraltheoryof relativity, and point out the significance of inertial dragging in this connection. Although my main points are of a qualitative nature, I also provide the necessary calculationstodemonstratehowthesepointscomeoutasconsequencesofthegeneral theoryofrelativity. 1 1.Introduction H. I. Hartman and C. Nissim-Sabat 1 have argued that “one cannot ascribe all pertinentobservationssolelytorelativemotionbetweenasystemandtheuniverse”. They consider an UR-scenario in which a bucket with water is atrest in a rotating universe,andaBR-scenariowherethebucketrotatesinanon-rotatinguniverseand givefiveexamplestoshowthatthesesituationsarenotphysicallyequivalent,i.e.that theprincipleofrelativityisnotvalidforrotationalmotion. When Einstein 2 presented the general theory of relativity he emphasized the importanceofthegeneralprincipleofrelativity.Inasectiontitled“TheNeedforan
    [Show full text]
  • 5D Kaluza-Klein Theories - a Brief Review
    5D Kaluza-Klein theories - a brief review Andr´eMorgado Patr´ıcio, no 67898 Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (Dated: 21 de Novembro de 2013) We review Kaluza-Klein theory in five dimensions from the General Relativity side. Kaluza's original idea is examined and two distinct approaches to the subject are presented and contrasted: compactified and noncompactified theories. We also discuss some cosmological implications of the noncompactified theory at the end of this paper. ^ ^ 1 ^ I. INTRODUCTION where GAB ≡ RAB − 2 g^ABR is the Einstein tensor. Inspired by the ties between Minkowki's 4D space- For the metric, we identify the αβ-part ofg ^AB with time and Maxwell's EM unification, Nordstr¨om[3] in 1914 gαβ, the α4-part as the electromagnetic potential Aα and and Kaluza[4] in 1921 showed that 5D general relativ- g^44 with a scalar field φ, parametrizing it as follows: ity contains both Einstein's 4D gravity and Maxwell's g + κ2φ2A A κφ2A EM. However, they imposed an artificial restriction of no g^ (x; y) = αβ α β α ; (4) AB κφ2A φ2 dependence on the fifth coordinate (cylinder condition). β Klein[5], in 1926, suggested a physical basis to avoid this where κ is a multiplicative factor. If we identifyp it in problem in the compactification of the fifth dimension, terms of the 4D gravitational constant by κ = 4 πG, idea now used in higher-dimensional generalisations to then, using the metric4 and applying the cylinder con- include weak and strong interactions.
    [Show full text]
  • Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
    CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.
    [Show full text]
  • Vertical and Horizontal Transcendence Ursula Goodenough Washington University in St Louis, [email protected]
    Washington University in St. Louis Washington University Open Scholarship Biology Faculty Publications & Presentations Biology 3-2001 Vertical and Horizontal Transcendence Ursula Goodenough Washington University in St Louis, [email protected] Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs Part of the Biology Commons, and the Religion Commons Recommended Citation Goodenough, Ursula, "Vertical and Horizontal Transcendence" (2001). Biology Faculty Publications & Presentations. 93. https://openscholarship.wustl.edu/bio_facpubs/93 This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. VERTICAL AND HORIZONTAL TRANSCENDENCE Ursula Goodenough Draft of article published in Zygon 36: 21-31 (2001) ABSTRACT Transcendence is explored from two perspectives: the traditional concept wherein the origination of the sacred is “out there,” and the alternate concept wherein the sacred originates “here.” Each is evaluated from the perspectives of aesthetics and hierarchy. Both forms of transcendence are viewed as essential to the full religious life. KEY WORDS: transcendence, green spirituality, sacredness, aesthetics, hierarchy VERTICAL TRANSCENDENCE One of the core themes of the monotheistic traditions, and many Asian traditions as well, is the concept of transcendence. A description of this orientation from comparative religionist Michael Kalton (2000) can serve to anchor our discussion. "Transcendence" both describes a metaphysical structure grounding the contingent in the Absolute, and a practical spiritual quest of rising above changing worldly affairs to ultimate union with the Eternal.
    [Show full text]