UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA MECÂNICA Anelize Zomkowski Salvi ENUMERATING and ASSEMBLING C

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA MECÂNICA Anelize Zomkowski Salvi ENUMERATING and ASSEMBLING C UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA MECÂNICA Anelize Zomkowski Salvi ENUMERATING AND ASSEMBLING CONFIGURATIONS WITH MODULAR ROBOTS. Florianópolis 2018 Anelize Zomkowski Salvi ENUMERATING AND ASSEMBLING CONFIGURATIONS WITH MODULAR ROBOTS. Tese submetida ao Programa de Pós- Graduação em Engenharia Mecânica para a obtenção do grau de Doutor em Engenharia Mecânica. Orientador: Henrique Simas, PhD Coorientador: Roberto Simoni, PhD Florianópolis 2018 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Salvi, Anelize Zomkowski Enumerating and assembling configurations with modular robots / Anelize Zomkowski Salvi ; orientador, Henrique Simas, coorientador, Roberto Simoni, 2018. 224 p. Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós Graduação em Engenharia Mecânica, Florianópolis, 2018. Inclui referências. 1. Engenharia Mecânica. 2. enumeration. 3. modular robots. 4. assemble sequence planning. 5. metamorphic robots. I. Simas, Henrique . II. Simoni, Roberto . III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Mecânica. IV. Título. Anelize Zomkowski Salvi ENUMERATING AND ASSEMBLING CONFIGURATIONS WITH MODULAR ROBOTS. Esta Tese foi julgada aprovada para a obtenção do Título de “Doutor em Engenharia Mecânica”, e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Mecânica. Florianópolis, 07 de Maio 2018. Jonny Carlos da Silva, PhD Coordenador do Curso Roberto Simoni, PhD Coorientador Banca Examinadora: Henrique Simas, PhD Presidente Tarcisio Antonio Hess Coelho, PhD Relator Clovis Sperb De Barcellos, PhD Fábio Baldissera, PhD Luís Paulo Laus, PhD Marcelo Sobottka, PhD To my husband. AGRADECIMENTOS I would like to thank my supervisor, Prof. Henrique Simas, and my co-supervisor, Prof. Roberto Simoni, for the patient guidance, en- couragement, advice and friendship throughout all my time as a stu- dent. They have been crucial to this work and to my formation as a scientist. Special thanks to my committee, Prof. Tarcisio Antonio Hess Coelho, Prof. Clovis Sperb De Barcellos, Prof. Fábio Baldissera, Prof. Luís Paulo Laus and Prof. Marcelo Sobottka for their guidance and suggestions which have strongly contributed to this work. All colleagues of UFSC, for their support, encouragement and friendship. I am grateful to institutions that have supported my work: UFSC (Federal University of Santa Catarina); CAPES (Coordenação de Aper- feiçoamento de Pessoal de Nível Superior) and CNPQ (National Coun- sel of Technological and Scientific Development). I wish to thank my family, my mother, brother, stepfather and parents in law, for their support and encouragement throughout all these years. I am specially thankful to my husband, Andrea Piga Car- boni, whose love and encouragement cannot be measured. You are my life. Wisdom begins in wonder. Socrates RESUMO Esta tese apresenta novas contribuições para dois problemas forte- mente relacionados: a enumeração e o sequenciamento da montagem de configurações (Assembly Sequence Planning - ASP) constituídas por robôs modulares. Ferramentas matemáticas, mais especificamente, fer- ramentas de Teoria dos Grafos, são largamente empregadas no trata- mento desses dois problemas. Em sua primeira parte, a tese aborda o problema de enumeração, fornecendo um novo método que permite enumerar as configurações não-isomórficas de robôs modulares com mó- dulos cúbicos. Este método é baseado em trabalhos anteriores do autor para robôs modulares com módulos planares. O método foi imple- mentado em C++, fornecendo a enumeração de configurações com até 10 módulos cúbicos. Este resultado constitui um avanço em relação ao número de módulos alcançados na literatura. Em sua segunda parte, a tese introduz três novos ASP para robôs modulares que tratam classes de configurações em aberto na literatura. Esta tese é o primeiro tra- balho a resolver os seguintes problemas: Como montar configurações compostas por sistemas de robôs modulares; como montar configura- ções com corredores estreitos; como montar configurações com furos internos; como montar configurações sem furos internos nem corredores estreitos, mas escolhendo o ponto de partida do ASP e como montar estruturas planares verticais. Todos os ASP obedecem a condição de acessibilidade, ou seja, nenhum módulo pode passar por um corredor entre dois robôs que estejam na estrutura, se este corredor for tão es- treito quanto o lado de um módulo. Como resultado complementar, esta tese apresenta novas contribuições ao ASP para estrutura maríti- mas de Seo, Yim e Kumar. Palavras-chave: enumeração, robôs modulares, robôs metamórficos, sequência de montagem (ASP). RESUMO EXPANDIDO Introdução Robôs modulares reconfiguráveis são robôs constituídos de módulos independentes que podem ser homogêneos ou heterogêneos em suas formas e funcionalidades. Cada módulo possui atuadores, sensores, processadores de energia, memória, além de maneiras de se comunicar e de se conectar a outros módulos. Se um robô modular reconfigurável pode mudar de forma autônoma as conexões de seus módulos, o robô é chamado de robô modular auto-reconfigurável (MSR). Em outras palavras, um MSR é capaz de modificar de maneira autônoma o seu formato rearranjando as conexões entre seus módulos. Um MSR pode modificar seu formato para efetuar determinada tarefa, seja ela transpor um buraco, rolar adotando a forma de um aro, cons- truir uma forma complexa com muitos braços ou ainda utilizar a re- configuração para locomoção. O crescente interesse neste tipo de robôs deve-se justamente à capacidade de auto-reconfiguração, pois esta ca- racterística confere aos robôs adaptabilidade a novas circunstâncias e tarefas, bem como a capacidade de recuperação de falhas mecânicas, como, por exemplo, a perda da funcionalidade de um módulo. Visto que é a capacidade de assumir diferentes configurações que torna estes robôs versáteis, é necessário que eles possam ser operados no maior número de configurações diversas. Portanto, é importante conhecer as configurações que um dado conjunto de módulos pode assumir, assim como determinar uma sequência correta de montagem para cada con- figuração. A enumeração de configurações e a montagem de configurações são pro- blemas fortemente relacionados. De fato, para que uma configuração seja montada, é necessário escolhê-la do conjunto de todas as configura- ções possíveis para um dado número de módulos. Além disto, escolhida a configuração desejada, é importante determinar que sequência de ope- rações leva à correta montagem da configuração. Estes dois problemas são tratados nesta tese que apresenta um novo método de enumeração para configurações não-isomórficas de robôs modulares com módulos cúbicos e novas estratégias de montagem para configurações planares compostas por módulos retangulares ou cúbicos. Objetivos gerais Os objetivos gerais desta tese são desenvolver métodos de enumera- ção e de montagem para configurações de robôs modulares. Objetivos específicos: problema de enumeração Os objetivos específicos relativos à enumeração de configurações para robôs modulares são: desenvolver um método de enumeração para con- figurações compostas por módulos cúbicos e desenvolver um método simples para capturar as simetrias deste tipo de configuração. Objetivos específicos: problema de montagem O objetivo específico relativo à montagem de configurações para robôs modulares é atingir classes de configurações não tratadas na literatura, como por exemplo: estruturas compostas de substruturas previamente montadas e estruturas que apresentem corredores estreitos, i.e. espaços que são demasiado estreitos para que um módulo possa atravessá-los ou ainda estruturas planares verticais. Metodologia A tese trata o problema de enumeração e de montagem em capítu- los distintos. Porém, ferramentas de teoria dos grafos são largamente utilizadas no tratamento de ambos os problemas e fornecem uma base comum para o desenvolvimento da tese. Metodologia: problema de enumeração Em trabalhos anteriores [15–17], o autor propôs técnicas de enume- ração para robôs modulares. Uma destas técnicas, chamada Método Orbital [16, 17], foi desenvolvida para robôs com módulos quadrados. A tese estende o Método Orbital para configurações compostas por módulos cúbicos. Para efetuar esta extensão, ferramentas de teoria dos grafos e dos gru- pos são largamente empregadas e uma nova modelagem que permite detectar as simetrias das configurações é apresentada. Além disto, dois resultados apresentados pelo autor [15] para robôs com módulos qua- drados são estendidos para o caso cúbico. Assim, um método completo para enumeração de configurações não-isomórficas compostas de mó- dulos cúbicos e um teste para checagem de simetrias deste tipo de configuração são obtidos e são melhor discutidos na seção Resultados e Discussão. Metodologia: problema de montagem Para atingir diferentes classes de configurações, a tese introduz três novos ASP. Estes ASP são baseados em teoria dos grafos, mais especi- ficamente em algoritmos de busca em grafos. Além disso estes ASP são modelados para obedecer a condição de aces- sibilidade proposta por Paulos et al.[2]: “Qualquer módulo retangular não pode passar por um espaço entre dois módulos da estrutura final, se este espaço for tão pequeno quanto o lado do módulo.” Nos ASP propostos, a estrutura é modelada por um grafo não direci- onado, apresentado na forma de sua lista de adjacência. Estes ASP são estruturados com um algoritmo principal que apresenta uma
Recommended publications
  • Snakes in the Plane
    Snakes in the Plane by Paul Church A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2008 c 2008 Paul Church I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Recent developments in tiling theory, primarily in the study of anisohedral shapes, have been the product of exhaustive computer searches through various classes of poly- gons. I present a brief background of tiling theory and past work, with particular empha- sis on isohedral numbers, aperiodicity, Heesch numbers, criteria to characterize isohedral tilings, and various details that have arisen in past computer searches. I then develop and implement a new “boundary-based” technique, characterizing shapes as a sequence of characters representing unit length steps taken from a finite lan- guage of directions, to replace the “area-based” approaches of past work, which treated the Euclidean plane as a regular lattice of cells manipulated like a bitmap. The new technique allows me to reproduce and verify past results on polyforms (edge-to-edge as- semblies of unit squares, regular hexagons, or equilateral triangles) and then generalize to a new class of shapes dubbed polysnakes, which past approaches could not describe. My implementation enumerates polyforms using Redelmeier’s recursive generation algo- rithm, and enumerates polysnakes using a novel approach.
    [Show full text]
  • Tiling a Rectangle with Polyominoes Olivier Bodini
    Tiling a Rectangle with Polyominoes Olivier Bodini To cite this version: Olivier Bodini. Tiling a Rectangle with Polyominoes. Discrete Models for Complex Systems, DMCS’03, 2003, Lyon, France. pp.81-88. hal-01183321 HAL Id: hal-01183321 https://hal.inria.fr/hal-01183321 Submitted on 12 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science AB(DMCS), 2003, 81–88 Tiling a Rectangle with Polyominoes Olivier Bodini1 1LIRMM, 161, rue ADA, 34392 Montpellier Cedex 5, France A polycube in dimension d is a finite union of unit d-cubes whose vertices are on knots of the lattice Zd. We show that, for each family of polycubes E, there exists a finite set F of bricks (parallelepiped rectangles) such that the bricks which can be tiled by E are exactly the bricks which can be tiled by F. Consequently, if we know the set F, then we have an algorithm to decide in polynomial time if a brick is tilable or not by the tiles of E. please also repeat in the submission form Keywords: Tiling, Polyomino 1 Introduction A polycube in dimension d (or more simply a polycube) is a finite -not necessarily connected- union of unit cubes whose vertices are on nodes of the lattice Zd .
    [Show full text]
  • Open Problem Collection
    Open problem collection Peter Kagey May 14, 2021 This is a catalog of open problems that I began in late 2017 to keep tabs on different problems and ideas I had been thinking about. Each problem consists of an introduction, a figure which illustrates an example, a question, and a list related questions. Some problems also have references which refer to other problems, to the OEIS, or to other web references. 1 Rating Each problem is rated both in terms of how difficult and how interesting I think the problem is. 1.1 Difficulty The difficulty score follows the convention of ski trail difficulty ratings. Easiest The problem should be solvable with a modest amount of effort. Moderate Significant progress should be possible with moderate effort. Difficult Significant progress will be difficult or take substantial insight. Most difficult The problem may be intractable, but special cases may be solvable. 1.2 Interest The interest rating follows a four-point scale. Each roughly describes what quartile I think it belongs in with respect to my interest in it. Least interesting Problems have an interesting idea, but may feel contrived. More interesting Either a somewhat complicated or superficial question. Very interesting Problems that are particularly natural or simple or cute. Most interesting These are the problems that I care the most about. Open problem collection Peter Kagey Problem 1. Suppose you are given an n × m grid, and I then think of a rectangle with its corners on grid points. I then ask you to \black out" as many of the gridpoints as possible, in such a way that you can still guess my rectangle after I tell you all of the non-blacked out vertices that its corners lie on.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Combinatorics and Complexity in Geometric Visibility Problems A Dissertation Presented by Justin G. Iwerks to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University August 2012 Stony Brook University The Graduate School Justin G. Iwerks We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Joseph S. B. Mitchell - Dissertation Advisor Professor, Department of Applied Mathematics and Statistics Esther M. Arkin - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Steven Skiena Distinguished Teaching Professor, Department of Computer Science Jie Gao - Outside Member Associate Professor, Department of Computer Science Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Combinatorics and Complexity in Geometric Visibility Problems by Justin G. Iwerks Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2012 Geometric visibility is fundamental to computational geometry and its ap- plications in areas such as robotics, sensor networks, CAD, and motion plan- ning. We explore combinatorial and computational complexity problems aris- ing in a collection of settings that depend on various notions of visibility. We first consider a generalized version of the classical art gallery problem in which the input specifies the number of reflex vertices r and convex vertices c of the simple polygon (n = r + c).
    [Show full text]
  • Gemblo and Polyhex Blokus
    with John Gough < [email protected]> Gemblo and Polyhex Blokus Blokus joined together whole-edge to whole-edge. Gemblo is one of the possible polyhex Blokus is an abstract strategy board game games that might be invented. Why for 2 to 4 players. It uses polyominoes obvious? Because both Blokus and Blokus WHicH are plane geometric lgures formed Trigon used families of shapes made from by joining one or more equal squares edge regular polygons that tessellate. How many to edge refer &igure . 0olyominoes HaVe are there? been described as being “a polyform whose cells are squaresv and they are classiled Gemblo according to how many cells they have. ie. number of cells. Wikipedia, 2017 March In 2005, Gemblo was created by Justin Oh 19). Polyominoes and other mathematically in Korea. It is an abstract strategy board patterned families of shapes were invented game with translucent, coloured pieces, by Solomon Golomb, and popularised by each of which is made up of one to lve hex- Martin Gardner. agons. The six colours are clear, red, yellow, green, blue, and purple. Despite the obvious similarities to Blokus, Oh has stated that when he was inventing Gemblo he did not know about Blokus. The name is based on the word ‘gem’, alluding to the gem-like colours used for the play- ing pieces and ‘blocking’—a central feature of playing. The size of the playing board depends on the number of people playing. Figure 1: Examples of polyominoes With players using a hexagonal shaped board that has sides of 8 unit-hexagons. Blokus—using squares—has a sister- game called Blokus Trigon that uses poly- Playing Gemblo iamonds, those families of shapes made s Gemblo can be played as a one- from unit-sided equilateral triangles joined person puzzle or solitaire, or by whole-edge to whole-edge.
    [Show full text]
  • A New Mathematical Model for Tiling Finite Regions of the Plane with Polyominoes
    Volume 15, Number 2, Pages 95{131 ISSN 1715-0868 A NEW MATHEMATICAL MODEL FOR TILING FINITE REGIONS OF THE PLANE WITH POLYOMINOES MARCUS R. GARVIE AND JOHN BURKARDT Abstract. We present a new mathematical model for tiling finite sub- 2 sets of Z using an arbitrary, but finite, collection of polyominoes. Unlike previous approaches that employ backtracking and other refinements of `brute-force' techniques, our method is based on a systematic algebraic approach, leading in most cases to an underdetermined system of linear equations to solve. The resulting linear system is a binary linear pro- gramming problem, which can be solved via direct solution techniques, or using well-known optimization routines. We illustrate our model with some numerical examples computed in MATLAB. Users can download, edit, and run the codes from http://people.sc.fsu.edu/~jburkardt/ m_src/polyominoes/polyominoes.html. For larger problems we solve the resulting binary linear programming problem with an optimization package such as CPLEX, GUROBI, or SCIP, before plotting solutions in MATLAB. 1. Introduction and motivation 2 Consider a planar square lattice Z . We refer to each unit square in the lattice, namely [~j − 1; ~j] × [~i − 1;~i], as a cell.A polyomino is a union of 2 a finite number of edge-connected cells in the lattice Z . We assume that the polyominoes are simply-connected. The order (or area) of a polyomino is the number of cells forming it. The polyominoes of order n are called n-ominoes and the cases for n = 1; 2; 3; 4; 5; 6; 7; 8 are named monominoes, dominoes, triominoes, tetrominoes, pentominoes, hexominoes, heptominoes, and octominoes, respectively.
    [Show full text]
  • Edgy Puzzles Karl Schaffer Karl [email protected]
    Edgy Puzzles Karl Schaffer [email protected] Countless puzzles involve decomposing areas or volumes of two or three-dimensional figures into smaller figures. “Polyform” puzzles include such well-known examples as pentominoes, tangrams, and soma cubes. This paper will examine puzzles in which the edge sets, or "skeletons," of various symmetric figures like polyhedra are decomposed into multiple copies of smaller graphs, and note their relationship to representations by props or body parts in dance performance. The edges of the tetrahedron in Figure 1 are composed of a folded 9-gon, while the cube and octahedron are each composed of six folded paths of length 2. These constructions have been used in dances created by the author and his collaborators. The photo from the author’s 1997 dance “Pipe Dreams” shows an octahedron in which each dancer wields three lengths of PVC pipe held together by cord at the two internal vertices labeled a in the diagram on the right. The shapes created by the dancers, which might include whimsical designs reminiscent of animals or other objects as well as mathematical forms, seem to appear and dissolve in fluid patterns, usually in time to a musical score. L R a R L a L R Figure 1. PVC pipe polyhedral skeletons used in dances The desire in the dance company co-directed by the author to incorporate polyhedra into dance works led to these constructions, and to similar designs with loops of rope, fingers and hands, and the bodies of dancers. Just as mathematical concepts often suggest artistic explorations for those involved in the interplay between these fields, performance problems may suggest mathematical questions, in this case involving finding efficient and symmetrical ways to construct the skeletons, or edge sets, of the Platonic solids.
    [Show full text]
  • Treb All De Fide Gra U
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Grau en Matematiques` T´ıtol:Tilings and the Aztec Diamond Theorem Autor: David Pardo Simon´ Director: Anna de Mier Departament: Mathematics Any academic:` 2015-2016 TREBALL DE FI DE GRAU Facultat de Matemàtiques i Estadística David Pardo 2 Tilings and the Aztec Diamond Theorem A dissertation submitted to the Polytechnic University of Catalonia in accordance with the requirements of the Bachelor's degree in Mathematics in the School of Mathematics and Statistics. David Pardo Sim´on Supervised by Dr. Anna de Mier School of Mathematics and Statistics June 28, 2016 Abstract Tilings over the plane R2 are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Dia- mond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work. MSC2010: 05B45, 52C20, 05A19. iii Contents 1 Tilings and basic notions1 1.1 Monohedral tilings............................3 1.2 The case of the heptiamonds.......................8 1.2.1 Domino Tilings.......................... 13 2 The Aztec Diamond Theorem 15 2.1 Schr¨odernumbers and Hankel matrices................. 16 2.2 Bijection between tilings and paths................... 19 2.3 Hankel matrices and n-tuples of Schr¨oderpaths............ 27 v Chapter 1 Tilings and basic notions The history of tilings and patterns goes back thousands of years in time.
    [Show full text]
  • Folding Polyominoes Into (Poly)Cubes
    Folding polyominoes into (poly)cubes Citation for published version (APA): Aichholzer, O., Biro, M., Demaine, E. D., Demaine, M. L., Eppstein, D., Fekete, S. P., Hesterberg, A., Kostitsyna, I., & Schmidt, C. (2015). Folding polyominoes into (poly)cubes. In Proc. 27th Canadian Conference on Computational Geometry (CCCG) (pp. 1-6). [37] http://research.cs.queensu.ca/cccg2015/CCCG15- papers/37.pdf Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity∗
    Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity∗ Erik D. Demaine, Martin L. Demaine MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu Dedicated to Jin Akiyama in honor of his 60th birthday. Abstract. We show that jigsaw puzzles, edge-matching puzzles, and polyomino packing puzzles are all NP-complete. Furthermore, we show direct equivalences between these three types of puzzles: any puzzle of one type can be converted into an equivalent puzzle of any other type. 1. Introduction Jigsaw puzzles [37,38] are perhaps the most popular form of puzzle. The original jigsaw puzzles of the 1760s were cut from wood sheets using a hand woodworking tool called a jig saw, which is where the puzzles get their name. The images on the puzzles were European maps, and the jigsaw puzzles were used as educational toys, an idea still used in some schools today. Handmade wooden jigsaw puzzles for adults took off around 1900. Today, jigsaw puzzles are usually cut from cardboard with a die, a technology that became practical in the 1930s. Nonetheless, true addicts can still find craftsmen who hand-make wooden jigsaw puzzles. Most jigsaw puzzles have a guiding image and each side of a piece has only one “mate”, although a few harder variations have blank pieces and/or pieces with ambiguous mates. Edge-matching puzzles [21] are another popular puzzle with a similar spirit to jigsaw puzzles, first appearing in the 1890s. In an edge-matching puzzle, the goal is to arrange a given collection of several identically shaped but differently patterned tiles (typically squares) so that the patterns match up along the edges of adjacent tiles.
    [Show full text]
  • Common Unfoldings of Polyominoes and Polycubes
    Common Unfoldings of Polyominoes and Polycubes Greg Aloupis1, Prosenjit K. Bose3, S´ebastienCollette2, Erik D. Demaine4, Martin L. Demaine4, Karim Dou¨ıeb3, Vida Dujmovi´c3, John Iacono5, Stefan Langerman2?, and Pat Morin3 1 Academia Sinica 2 Universit´eLibre de Bruxelles 3 Carleton University 4 Massachusetts Institute of Technology 5 Polytechnic Institute of New York University Abstract. This paper studies common unfoldings of various classes of polycubes, as well as a new type of unfolding of polyominoes. Previously, Knuth and Miller found a common unfolding of all tree-like tetracubes. By contrast, we show here that all 23 tree-like pentacubes have no such common unfolding, although 22 of them have a common unfolding. On the positive side, we show that there is an unfolding common to all “non-spiraling” k-ominoes, a result that extends to planar non-spiraling k-cubes. 1 Introduction Polyominoes. A polyomino or k-omino is a weakly simple orthogonal polygon made from k unit squares placed on a unit square grid. Here the polygon explicitly specifies the boundary, so that two squares might share two grid points yet we consider them to be not adjacent. Two unit squares of the polyomino are adjacent if their shared side is interior to the polygon; otherwise, the intervening two edges of polygon boundary are called an incision. By imagining the boundary as a cycle (essentially an Euler tour), each edge of the boundary has a unique incident unit square of the polyomino. In this paper, we consider only “tree-like” polyominoes. A polyomino is tree- like if its dual graph, which has a vertex for each unit square and an edge for each adjacency (as defined above), is a tree.
    [Show full text]
  • Formulae and Growth Rates of Animals on Cubical and Triangular Lattices
    Formulae and Growth Rates of Animals on Cubical and Triangular Lattices Mira Shalah Technion - Computer Science Department - Ph.D. Thesis PHD-2017-18 - 2017 Technion - Computer Science Department - Ph.D. Thesis PHD-2017-18 - 2017 Formulae and Growth Rates of Animals on Cubical and Triangular Lattices Research Thesis Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Mira Shalah Submitted to the Senate of the Technion | Israel Institute of Technology Elul 5777 Haifa September 2017 Technion - Computer Science Department - Ph.D. Thesis PHD-2017-18 - 2017 Technion - Computer Science Department - Ph.D. Thesis PHD-2017-18 - 2017 This research was carried out under the supervision of Prof. Gill Barequet, at the Faculty of Computer Science. Some results in this thesis have been published as articles by the author and research collaborators in conferences and journals during the course of the author's doctoral research period, the most up-to-date versions of which being: • Gill Barequet and Mira Shalah. Polyominoes on Twisted Cylinders. Video Review at the 29th Symposium on Computational Geometry, 339{340, 2013. https://youtu.be/MZcd1Uy4iv8. • Gill Barequet and Mira Shalah. Automatic Proofs for Formulae Enu- merating Proper Polycubes. In Proceedings of the 8th European Conference on Combinatorics, Graph Theory and Applications, 145{151, 2015. Also in Video Review at the 31st Symposium on Computational Geometry, 19{22, 2015. https://youtu.be/ojNDm8qKr9A. Full version: Gill Barequet and Mira Shalah. Counting n-cell Polycubes Proper in n − k Dimensions. European Journal of Combinatorics, 63 (2017), 146{163. • Gill Barequet, Gunter¨ Rote and Mira Shalah.
    [Show full text]