Stony Brook University

Total Page:16

File Type:pdf, Size:1020Kb

Stony Brook University SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Combinatorics and Complexity in Geometric Visibility Problems A Dissertation Presented by Justin G. Iwerks to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University August 2012 Stony Brook University The Graduate School Justin G. Iwerks We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Joseph S. B. Mitchell - Dissertation Advisor Professor, Department of Applied Mathematics and Statistics Esther M. Arkin - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Steven Skiena Distinguished Teaching Professor, Department of Computer Science Jie Gao - Outside Member Associate Professor, Department of Computer Science Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Combinatorics and Complexity in Geometric Visibility Problems by Justin G. Iwerks Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2012 Geometric visibility is fundamental to computational geometry and its ap- plications in areas such as robotics, sensor networks, CAD, and motion plan- ning. We explore combinatorial and computational complexity problems aris- ing in a collection of settings that depend on various notions of visibility. We first consider a generalized version of the classical art gallery problem in which the input specifies the number of reflex vertices r and convex vertices c of the simple polygon (n = r + c). This additional information better char- acterizes the shape of the polygon. Through a lower bound construction, tight combinatorial bounds for coverage are achieved for all r 0 and c 3. ≥ ≥ The combinatorics of guarding polyominoes and other polyforms are stud- ied in terms of m, the number of cells, as opposed to the traditional parameter n. Various visibility models and guard types are considered. We establish that finding a minimum cardinality guard set for covering a polyomino is NP-hard. We introduce an algorithm for constructing a spiral serpentine polygoniza- tion of a set of n 3 points in the plane. The algorithm’s behavior can be viewed as incrementally≥ appending a visible triangle to the triangulation constructed so far. We consider beacon-based point-to-point routing and coverage problems. A beacon b is a point that can be activated to effect a gravitational pull toward itself in a polygonal domain. Algorithms are given for computing the attraction region of b and finding a minimum size set of beacons to route from a source s to a destination t given a finite set of candidate beacon locations. iii We show that finding a minimum cardinality set of beacons to cover a simple polygon or conduct certain types of routing in a simple polygon is NP-hard. iv Contents Abstract iii List of Figures vii Acknowledgments ix List of Publications x 1 Introduction 1 2 The Art Gallery Theorem for Simple Polygons in Terms of theNumberofReflexandConvexVertices 5 2.1 Introduction............................ 5 2.2 PreviousWork .......................... 6 2.3 LowerBoundConstructions . 7 2.4 Conclusion............................. 13 3 Guarding Polyominoes 14 3.1 Introduction............................ 14 3.2 CombinatorialBounds . 17 3.2.1 NecessaryConditions . 17 3.2.2 SufficiencyConditions . 18 3.2.3 GeneralizationtoRectanglominoes . 25 3.3 Hardness.............................. 26 3.3.1 From MAX2SAT(2L) to MLCP in Octagonal Grids . 27 3.3.2 FromMLCPtoPolyominoes. 30 3.4 AlgorithmsforSpecialCases. 33 3.4.1 GuardingThinPolyominoTrees . 34 3.4.2 GuardingThinPolyominoPaths . 34 3.4.3 ProofsofOptimality . 36 v 3.5 Conclusion.............................. 41 4 Guarding Polyforms 42 4.1 Introduction............................ 42 4.2 NecessaryConditions . 43 4.2.1 Polycubes ......................... 43 4.2.2 Polyiamonds........................ 44 4.2.3 Polyhexes ......................... 45 4.3 SufficiencyConditions . 46 4.3.1 Polycubes ......................... 46 4.3.2 Polyiamonds........................ 59 4.3.3 Polyhexes ......................... 68 4.4 Conclusion............................. 72 5 Spiral Serpentine Polygonization of a Planar Point Set 73 5.1 Introduction............................ 73 5.2 TheAlgorithm .......................... 75 5.3 Correctness ............................ 78 5.4 ImplementationandExamples . 81 5.5 Conclusion.............................. 81 6 Beacon-BasedRoutingandCoverage 83 6.1 Introduction............................ 83 6.1.1 OurResults ........................ 84 6.2 Beacon-BasedRouting . 85 6.2.1 Combinatorics of All Pairs Routing in a Simple Polygon 85 6.2.2 Computing the Attraction Region of a Beacon . 90 6.2.3 Routing with a Discrete Set of Candidate Beacons . 97 6.3 HardnessofBeaconCoverage . 98 6.4 Conclusion............................. 99 References 100 Appendix A 105 vi List of Figures 2.1 ShutterPolygons ......................... 6 2.2 Guarding Pseudotriangle Chain Polygons . 7 2.3 DoubleSweepTechnique . 8 2.4 PseudotriangleChainLabeling. 9 2.5 Illustration of Lower Bound Constructions . 12 3.1 AnExampleofaPolyomino . 15 3.2 VisibilityModels ......................... 16 3.3 PointGuardLowerBoundConstruction . 17 3.4 PixelGuardLowerBoundConstruction . 18 3.5 CaseAnalysisforCoveringSmallPolyominoes . 19 3.6 Special5-Polyominoes . 20 3.7 BFSTreeStructure......................... 21 3.8 Finding a Subtree That Forms a Good Polyomino . 22 3.9 OpenPixelGuardLowerBoundConstruction . 24 3.10 Differing Guard Numbers Between a Rectanglomino and its As- sociatedPolyomino ........................ 25 3.11 VariableGadget.......................... 28 3.12 NestingBoxesforPlacingClauseGadgets . 28 3.13ClauseGadgets .......................... 29 3.14 HorizontalRayGadget . 30 3.15 Slant-RayGadget. 31 3.16RayGadgetsonBox ....................... 32 3.17 FourFreeSubpolyominoTypes . 37 3.18 NineFreeSubpolyominoTypes . 40 4.1 LowerBoundConstructionsforPolycubes . 44 4.2 LowerBoundConstructionsforPolyiamonds . 45 4.3 LowerBoundConstructionsforPolyhexes . 45 4.4 Special5-polycubes . 47 vii 4.5 An8-PolycubeRequiring3PointGuards . 49 4.6 An11-PolycubeRequiring4PointGuards . 50 4.7 ExampleCasesthatAreNotVoxel-Good . 51 4.8 MoreExamplesCasesthatAreNotVoxel-Good . 52 4.9 A23-PolycubeRequiring6PointGuards . 54 4.10 Special6-Polycubes. 55 4.11 AnExampleIllustratingSubcase3h. 59 4.12 The 15 free 8-Polyiamonds Having a Dual that is a Path . 61 4.13 Analysis for Case (5e) of Guarding Polyiamonds with Point Guards............................... 64 4.14 10-Polyiamonds with Path Duals Requiring 2 Guards . 65 4.15 Illustrations of Pixel Guard Placement for Case (6b) . .... 67 4.16 TheSevenFree4-Polyhexes . 69 4.17 Team-upCoverageofaPixelinaPolyhex . 71 5.1 Spiral Polygon and a Serpentine Triangulation . 74 5.2 SpiralingPolygonalPath . 75 5.3 Two Cases Arising During Algorithm Execution . 78 ′ 5.4 v vqk+1 CannotFormaRightTurn . 79 5.5 ExperimentalResults. 82 6.1 DeadPoints............................ 84 6.2 Lower Bound Construction for Beacon Point-to-Point Routing 85 6.3 BeaconPlacementCaseAnalysis . 86 6.4 InductivePlacementofBeacons . 87 6.5 ZigzagSpikeGadget ....................... 89 6.6 AllDestinationsSpikeGadget . 90 6.7 Upper Bound on the Number of Dead Points in a Simple Polygon 93 6.8 Cut-VertexClasses ........................ 94 6.9 ArrowSpikeGadget ....................... 98 A.1 TheCasesforaSubtreeofHeight3 . 108 A.2 TheSpecialCoverforSubtreesofSize7 . 110 A.3 TheCasesforaSubtreeofHeight4 . 114 A.4 TheCasesforaSubtreeofHeight5 . 116 viii Acknowledgments I am indebted to my advisor, Joseph S. B. Mitchell, for helping me develop into an independent mathematical researcher. I must also thank Joe for introducing me to the wonderful world of computational geometry. I hope to inspire my own students with the rich intensity of excitement and passion he has for this field. I would like to thank James Glimm and Xiaolin Li for their valuable guidance and support while I began my first research projects. I am grateful for my colleagues and co-authors including Esther Arkin, Therese Biedl, Michael Biro, Brian Fix, Jie Gao, Mohammed T. Irfan, Tulin Ka- man, Ryan Kaufman, Joondong Kim, Irina Kostitsyna, Hyunkyung Lim, Alan Tucker, Shang Yang and Yan Yu. I would like to thank Amy Picard Winston, my superb high school physics teacher, for inspiring me to pursue physics and mathematics in college. I am thankful for my parents and siblings who always made learning fun growing up and encouraged me to pursue my academic interests. I would like to thank my wife, Rebecca, for her steadfast patience and support. Despite moving three times, years of long work commutes, and budgeting with a graduate student’s income, she has gracefully stuck by my side. Thanks also to our daughter, Cambria, for providing uncountable amounts of joy. Completing my doctoral degree is nothing short of a grand and improbable victory that I could never have accomplished alone. I therefore wish to give thanks to Jesus Christ and close with the following quote: Then Samuel took a stone and set it up between Mizpah and Shen. He named it Ebenezer, saying, “Thus
Recommended publications
  • Tiling a Rectangle with Polyominoes Olivier Bodini
    Tiling a Rectangle with Polyominoes Olivier Bodini To cite this version: Olivier Bodini. Tiling a Rectangle with Polyominoes. Discrete Models for Complex Systems, DMCS’03, 2003, Lyon, France. pp.81-88. hal-01183321 HAL Id: hal-01183321 https://hal.inria.fr/hal-01183321 Submitted on 12 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science AB(DMCS), 2003, 81–88 Tiling a Rectangle with Polyominoes Olivier Bodini1 1LIRMM, 161, rue ADA, 34392 Montpellier Cedex 5, France A polycube in dimension d is a finite union of unit d-cubes whose vertices are on knots of the lattice Zd. We show that, for each family of polycubes E, there exists a finite set F of bricks (parallelepiped rectangles) such that the bricks which can be tiled by E are exactly the bricks which can be tiled by F. Consequently, if we know the set F, then we have an algorithm to decide in polynomial time if a brick is tilable or not by the tiles of E. please also repeat in the submission form Keywords: Tiling, Polyomino 1 Introduction A polycube in dimension d (or more simply a polycube) is a finite -not necessarily connected- union of unit cubes whose vertices are on nodes of the lattice Zd .
    [Show full text]
  • Sylvester-Gallai-Like Theorems for Polygons in the Plane
    RC25263 (W1201-047) January 24, 2012 Mathematics IBM Research Report Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Research Division Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner¤ Abstract Given an arrangement of lines in the plane, an ordinary point is a point of intersection of precisely two of the lines. Motivated by a desire to understand the fine structure of ordinary points in line arrangements, we consider the following problem: given a polygon P in the plane and a family of lines passing into the interior of P, how many ordinary intersection points must there be on or inside of P? We answer this question for a variety of different types of polygons.
    [Show full text]
  • Preprocessing Imprecise Points and Splitting Triangulations
    Preprocessing Imprecise Points and Splitting Triangulations Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell Technical Report UU-CS-2009-007 March 2009 Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands www.cs.uu.nl ISSN: 0924-3275 Department of Information and Computing Sciences Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands Preprocessing Imprecise Points and Splitting Triangulations∗ Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell [email protected] [email protected] [email protected] Abstract Traditional algorithms in computational geometry assume that the input points are given precisely. In practice, data is usually imprecise, but information about the imprecision is often available. In this context, we investigate what the value of this information is. We show here how to preprocess a set of disjoint regions in the plane of total complexity n in O(n log n) time so that if one point per set is specified with precise coordinates, a triangulation of the points can be computed in linear time. In our solution, we solve another problem which we believe to be of independent interest. Given a triangulation with red and blue vertices, we show how to compute a triangulation of only the blue vertices in linear time. 1 Introduction Computational geometry deals with computing structure in 2-dimensional space (or higher). The most popular input is a set of points, on which something useful is then computed, for example, a triangulation. Algorithms for these tasks have been developed many years ago, and are provably fast and correct.
    [Show full text]
  • Computational Geometry Lecture Notes1 HS 2012
    Computational Geometry Lecture Notes1 HS 2012 Bernd Gärtner <[email protected]> Michael Hoffmann <[email protected]> Tuesday 15th January, 2013 1Some parts are based on material provided by Gabriel Nivasch and Emo Welzl. We also thank Tobias Christ, Anna Gundert, and May Szedlák for pointing out errors in preceding versions. Contents 1 Fundamentals 7 1.1 ModelsofComputation ............................ 7 1.2 BasicGeometricObjects. 8 2 Polygons 11 2.1 ClassesofPolygons............................... 11 2.2 PolygonTriangulation . 15 2.3 TheArtGalleryProblem ........................... 19 3 Convex Hull 23 3.1 Convexity.................................... 24 3.2 PlanarConvexHull .............................. 27 3.3 Trivialalgorithms ............................... 29 3.4 Jarvis’Wrap .................................. 29 3.5 GrahamScan(SuccessiveLocalRepair) . .... 31 3.6 LowerBound .................................. 33 3.7 Chan’sAlgorithm................................ 33 4 Line Sweep 37 4.1 IntervalIntersections . ... 38 4.2 SegmentIntersections . 38 4.3 Improvements.................................. 42 4.4 Algebraic degree of geometric primitives . ....... 42 4.5 Red-BlueIntersections . .. 45 5 Plane Graphs and the DCEL 51 5.1 TheEulerFormula............................... 52 5.2 TheDoubly-ConnectedEdgeList. .. 53 5.2.1 ManipulatingaDCEL . 54 5.2.2 GraphswithUnboundedEdges . 57 5.2.3 Remarks................................. 58 3 Contents CG 2012 6 Delaunay Triangulations 61 6.1 TheEmptyCircleProperty . 64 6.2 TheLawsonFlipalgorithm
    [Show full text]
  • 5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E
    5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E. Goodman INTRODUCTION Pseudoline arrangements generalize in a natural way arrangements of straight lines, discarding the straightness aspect, but preserving their basic topological and com- binatorial properties. Elementary and intuitive in nature, at the same time, by the Folkman-Lawrence topological representation theorem (see Chapter 6), they provide a concrete geometric model for oriented matroids of rank 3. After their explicit description by Levi in the 1920’s, and the subsequent devel- opment of the theory by Ringel in the 1950’s, the major impetus was given in the 1970’s by Gr¨unbaum’s monograph Arrangements and Spreads, in which a number of results were collected and a great many problems and conjectures posed about arrangements of both lines and pseudolines. The connection with oriented ma- troids discovered several years later led to further work. The theory is by now very well developed, with many combinatorial and topological results and connections to other areas as for example algebraic combinatorics, as well as a large number of applications in computational geometry. In comparison to arrangements of lines arrangements of pseudolines have the advantage that they are more general and allow for a purely combinatorial treatment. Section 5.1 is devoted to the basic properties of pseudoline arrangements, and Section 5.2 to related structures, such as arrangements of straight lines, configura- tions (and generalized configurations) of points, and allowable sequences of permu- tations. (We do not discuss the connection with oriented matroids, however; that is included in Chapter 6.) In Section 5.3 we discuss the stretchability problem.
    [Show full text]
  • Chapter 12 Pseudotriangulations
    Chapter 12 Pseudotriangulations We have seen that arrangements and visibility graphs are useful and powerful models for motion planning. However, these structures can be rather large and thus expensive to build and to work with. Let us therefore consider a simpli ed problem: for a robot which is positioned in some environment of obstacles, which and where is the next obstacle that it would hit, if it continues to move linearly in some direction? This type of problem is known as a ray shooting query because we imagine to shoot a ray starting from the current position in a certain direction and want to know what is the rst object hit by this ray. If the robot is modeled as a point and the environment as a simple polygon, we arrive at the following problem. Problem 8 (Ray-shooting in a simple polygon.) Given a simple polygon P = (p1, . , pn), a point q 2 R2, and a ray r emanating from q, which is the rst edge of P hit by r? r q P Figure 12.1: An instance of the ray-shooting problem within a simple polygon. In the end, we would like to have a data structure to preprocess a given polygon such that a ray shooting query can be answered eciently for any query ray starting somewhere inside P. As a warmup, let us look at the case that P is a convex polygon. Here the problem is easy: Supposing we are given the vertices of P in an array-like structure, the boundary 103 Chapter 12.
    [Show full text]
  • Exploring Topics of the Art Gallery Problem
    The College of Wooster Open Works Senior Independent Study Theses 2019 Exploring Topics of the Art Gallery Problem Megan Vuich The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Recommended Citation Vuich, Megan, "Exploring Topics of the Art Gallery Problem" (2019). Senior Independent Study Theses. Paper 8534. This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2019 Megan Vuich Exploring Topics of the Art Gallery Problem Independent Study Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Arts in the Department of Mathematics and Computer Science at The College of Wooster by Megan Vuich The College of Wooster 2019 Advised by: Dr. Robert Kelvey Abstract Created in the 1970’s, the Art Gallery Problem seeks to answer the question of how many security guards are necessary to fully survey the floor plan of any building. These floor plans are modeled by polygons, with guards represented by points inside these shapes. Shortly after the creation of the problem, it was theorized that for guards whose positions were limited to the polygon’s j n k vertices, 3 guards are sufficient to watch any type of polygon, where n is the number of the polygon’s vertices. Two proofs accompanied this theorem, drawing from concepts of computational geometry and graph theory.
    [Show full text]
  • A New Mathematical Model for Tiling Finite Regions of the Plane with Polyominoes
    Volume 15, Number 2, Pages 95{131 ISSN 1715-0868 A NEW MATHEMATICAL MODEL FOR TILING FINITE REGIONS OF THE PLANE WITH POLYOMINOES MARCUS R. GARVIE AND JOHN BURKARDT Abstract. We present a new mathematical model for tiling finite sub- 2 sets of Z using an arbitrary, but finite, collection of polyominoes. Unlike previous approaches that employ backtracking and other refinements of `brute-force' techniques, our method is based on a systematic algebraic approach, leading in most cases to an underdetermined system of linear equations to solve. The resulting linear system is a binary linear pro- gramming problem, which can be solved via direct solution techniques, or using well-known optimization routines. We illustrate our model with some numerical examples computed in MATLAB. Users can download, edit, and run the codes from http://people.sc.fsu.edu/~jburkardt/ m_src/polyominoes/polyominoes.html. For larger problems we solve the resulting binary linear programming problem with an optimization package such as CPLEX, GUROBI, or SCIP, before plotting solutions in MATLAB. 1. Introduction and motivation 2 Consider a planar square lattice Z . We refer to each unit square in the lattice, namely [~j − 1; ~j] × [~i − 1;~i], as a cell.A polyomino is a union of 2 a finite number of edge-connected cells in the lattice Z . We assume that the polyominoes are simply-connected. The order (or area) of a polyomino is the number of cells forming it. The polyominoes of order n are called n-ominoes and the cases for n = 1; 2; 3; 4; 5; 6; 7; 8 are named monominoes, dominoes, triominoes, tetrominoes, pentominoes, hexominoes, heptominoes, and octominoes, respectively.
    [Show full text]
  • The Symplectic Geometry of Polygons in Euclidean Space
    The Symplectic Geometry of Polygons in Euclidean Space Michael Kap ovich and John J Millson March Abstract We study the symplectic geometry of mo duli spaces M of p oly r gons with xed side lengths in Euclidean space We show that M r has a natural structure of a complex analytic space and is complex 2 n analytically isomorphic to the weighted quotient of S constructed by Deligne and Mostow We study the Hamiltonian ows on M ob r tained by b ending the p olygon along diagonals and show the group generated by such ows acts transitively on M We also relate these r ows to the twist ows of Goldman and JereyWeitsman Contents Intro duction Mo duli of p olygons and weighted quotients of conguration spaces of p oints on the sphere Bending ows and p olygons Actionangle co ordinates This research was partially supp orted by NSF grant DMS at University of Utah Kap ovich and NSF grant DMS the University of Maryland Millson The connection with gauge theory and the results of Gold man and JereyWeitsman Transitivity of b ending deformations Bending of quadrilaterals Deformations of ngons Intro duction Let P b e the space of all ngons with distinguished vertices in Euclidean n 3 space E An ngon P is determined by its vertices v v These vertices 1 n are joined in cyclic order by edges e e where e is the oriented line 1 n i segment from v to v Two p olygons P v v and Q w w i i+1 1 n 1 n are identied if and only if there exists an orientation preserving isometry g 3 of E which
    [Show full text]
  • Folding Polyominoes Into (Poly)Cubes
    Folding polyominoes into (poly)cubes Citation for published version (APA): Aichholzer, O., Biro, M., Demaine, E. D., Demaine, M. L., Eppstein, D., Fekete, S. P., Hesterberg, A., Kostitsyna, I., & Schmidt, C. (2015). Folding polyominoes into (poly)cubes. In Proc. 27th Canadian Conference on Computational Geometry (CCCG) (pp. 1-6). [37] http://research.cs.queensu.ca/cccg2015/CCCG15- papers/37.pdf Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Common Unfoldings of Polyominoes and Polycubes
    Common Unfoldings of Polyominoes and Polycubes Greg Aloupis1, Prosenjit K. Bose3, S´ebastienCollette2, Erik D. Demaine4, Martin L. Demaine4, Karim Dou¨ıeb3, Vida Dujmovi´c3, John Iacono5, Stefan Langerman2?, and Pat Morin3 1 Academia Sinica 2 Universit´eLibre de Bruxelles 3 Carleton University 4 Massachusetts Institute of Technology 5 Polytechnic Institute of New York University Abstract. This paper studies common unfoldings of various classes of polycubes, as well as a new type of unfolding of polyominoes. Previously, Knuth and Miller found a common unfolding of all tree-like tetracubes. By contrast, we show here that all 23 tree-like pentacubes have no such common unfolding, although 22 of them have a common unfolding. On the positive side, we show that there is an unfolding common to all “non-spiraling” k-ominoes, a result that extends to planar non-spiraling k-cubes. 1 Introduction Polyominoes. A polyomino or k-omino is a weakly simple orthogonal polygon made from k unit squares placed on a unit square grid. Here the polygon explicitly specifies the boundary, so that two squares might share two grid points yet we consider them to be not adjacent. Two unit squares of the polyomino are adjacent if their shared side is interior to the polygon; otherwise, the intervening two edges of polygon boundary are called an incision. By imagining the boundary as a cycle (essentially an Euler tour), each edge of the boundary has a unique incident unit square of the polyomino. In this paper, we consider only “tree-like” polyominoes. A polyomino is tree- like if its dual graph, which has a vertex for each unit square and an edge for each adjacency (as defined above), is a tree.
    [Show full text]
  • An Introductory Study on Art Gallery Theorems and Problems
    AN INTRODUCTORY STUDY ON ART GALLERY THEOREMS AND PROBLEMS JEFFRY CHHIBBER M Dept of Mathematics, Noorul Islam Centre of Higher Education, Kanyakumari, Tamil Nadu, India. E-mail: [email protected] Abstract - In computational geometry and robot motion planning, a visibility graph is a graph of intervisible locations, typically for a set of points and obstacles in the Euclidean plane. Visibility graphs may also be used to calculate the placement of radio antennas, or as a tool used within architecture and urban planningthrough visibility graph analysis. This is a brief survey on the visibility graphs application in Art Gallery Problems and Theorems. Keywords- Art galley theorems, orthogonal polygon, triangulation, Visibility graphs I. INTRODUCTION point y outside of P if the segment xy is nowhere interior to P; xy may intersect ∂P, the boundary of P. In a visibility graph, each node in the graph Star polygon: A polygon visible from a single interior represents a point location, and each edge represents point. Diagonal: A segment inside a polygon whose a visible connectionbetween them. That is, if the line endpoints are vertices, and which otherwise does not segment connecting two locations does not pass touch ∂P. Floodlight: A light that illuminates from the through any obstacle, an edge is drawn between them apex of a cone with aperture α. Vertex floodlight: in the graph. Lozano-Perez & Wesley (1979) attribute One whose apex is at a vertex (at most one per the visibility graph method for Euclidean shortest vertex). paths to research in 1969 by Nils Nilsson on motion planning for Shakey the robot, and also cite a 1973 The problem: description of this method by Russian mathematicians What is the art gallery problem? M.
    [Show full text]