An Introductory Study on Art Gallery Theorems and Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stony Brook University
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Combinatorics and Complexity in Geometric Visibility Problems A Dissertation Presented by Justin G. Iwerks to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University August 2012 Stony Brook University The Graduate School Justin G. Iwerks We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Joseph S. B. Mitchell - Dissertation Advisor Professor, Department of Applied Mathematics and Statistics Esther M. Arkin - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Steven Skiena Distinguished Teaching Professor, Department of Computer Science Jie Gao - Outside Member Associate Professor, Department of Computer Science Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Combinatorics and Complexity in Geometric Visibility Problems by Justin G. Iwerks Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2012 Geometric visibility is fundamental to computational geometry and its ap- plications in areas such as robotics, sensor networks, CAD, and motion plan- ning. We explore combinatorial and computational complexity problems aris- ing in a collection of settings that depend on various notions of visibility. We first consider a generalized version of the classical art gallery problem in which the input specifies the number of reflex vertices r and convex vertices c of the simple polygon (n = r + c). -
Exploring Topics of the Art Gallery Problem
The College of Wooster Open Works Senior Independent Study Theses 2019 Exploring Topics of the Art Gallery Problem Megan Vuich The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Recommended Citation Vuich, Megan, "Exploring Topics of the Art Gallery Problem" (2019). Senior Independent Study Theses. Paper 8534. This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2019 Megan Vuich Exploring Topics of the Art Gallery Problem Independent Study Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Arts in the Department of Mathematics and Computer Science at The College of Wooster by Megan Vuich The College of Wooster 2019 Advised by: Dr. Robert Kelvey Abstract Created in the 1970’s, the Art Gallery Problem seeks to answer the question of how many security guards are necessary to fully survey the floor plan of any building. These floor plans are modeled by polygons, with guards represented by points inside these shapes. Shortly after the creation of the problem, it was theorized that for guards whose positions were limited to the polygon’s j n k vertices, 3 guards are sufficient to watch any type of polygon, where n is the number of the polygon’s vertices. Two proofs accompanied this theorem, drawing from concepts of computational geometry and graph theory. -
AN EXPOSITION of MONSKY's THEOREM Contents 1. Introduction
AN EXPOSITION OF MONSKY'S THEOREM WILLIAM SABLAN Abstract. Since the 1970s, the problem of dividing a polygon into triangles of equal area has been a surprisingly difficult yet rich field of study. This paper gives an exposition of some of the combinatorial and number theoretic ideas used in this field. Specifically, this paper will examine how these methods are used to prove Monsky's theorem which states only an even number of triangles of equal area can divide a square. Contents 1. Introduction 1 2. The p-adic Valuation and Absolute Value 2 3. Sperner's Lemma 3 4. Proof of Monsky's Theorem 4 Acknowledgments 7 References 7 1. Introduction If one tried to divide a square into triangles of equal area, one would see in Figure 1 that an even number of such triangles would work, but could an odd number work? Fred Richman [3], a professor at New Mexico State, considered using this question in an exam for graduate students in 1965. After being unable to find any reference or answer to this question, he decided to ask it in the American Mathematical Monthly. n Figure 1. Dissection of squares into an even number of triangles After 5 years, Paul Monsky [4] finally found an answer when he proved that only an even number of triangles of equal area could divide a square, which later came to be known as Monsky's theorem. Formally, the theorem states: Theorem 1.1 (Monsky [4]). Let S be a square in the plane. If a triangulation of S into m triangles of equal area is given, then m is even. -
CSE 5319-001 (Computational Geometry) SYLLABUS
CSE 5319-001 (Computational Geometry) SYLLABUS Spring 2012: TR 11:00-12:20, ERB 129 Instructor: Bob Weems, Associate Professor, http://ranger.uta.edu/~weems Office: 627 ERB, 817/272-2337 ([email protected]) Hours: TR 12:30-1:50 PM and by appointment (please email by 8:30 AM) Prerequisite: Advanced Algorithms (CSE 5311) Objective: Ability to apply and expand geometric techniques in computing. Outcomes: 1. Exposure to algorithms and data structures for geometric problems. 2. Exposure to techniques for addressing degenerate cases. 3. Exposure to randomization as a tool for developing geometric algorithms. 4. Experience using CGAL with C++/STL. Textbooks: M. de Berg et.al., Computational Geometry: Algorithms and Applications, 3rd ed., Springer-Verlag, 2000. https://libproxy.uta.edu/login?url=http://www.springerlink.com/content/k18243 S.L. Devadoss and J. O’Rourke, Discrete and Computational Geometry, Princeton University Press, 2011. References: Adobe Systems Inc., PostScript Language Tutorial and Cookbook, Addison-Wesley, 1985. (http://Www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF) B. Casselman, Mathematical Illustrations: A Manual of Geometry and PostScript, Springer-Verlag, 2005. (http://www.math.ubc.ca/~cass/graphics/manual) CGAL User and Reference Manual (http://www.cgal.org/Manual) T. Cormen, et.al., Introduction to Algorithms, 3rd ed., MIT Press, 2009. E.D. Demaine and J. O’Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, 2007. (occasionally) J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford Univ. Press, 1987. (http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/art.html, occasionally) J. O’Rourke, Computational Geometry in C, 2nd ed., Cambridge Univ. -
Optimal Higher Order Delaunay Triangulations of Polygons*
Optimal Higher Order Delaunay Triangulations of Polygons Rodrigo I. Silveira and Marc van Kreveld Department of Information and Computing Sciences Utrecht University, 3508 TB Utrecht, The Netherlands {rodrigo,marc}@cs.uu.nl Abstract. This paper presents an algorithm to triangulate polygons optimally using order-k Delaunay triangulations, for a number of qual- ity measures. The algorithm uses properties of higher order Delaunay triangulations to improve the O(n3) running time required for normal triangulations to O(k2n log k + kn log n) expected time, where n is the number of vertices of the polygon. An extension to polygons with points inside is also presented, allowing to compute an optimal triangulation of a polygon with h ≥ 1 components inside in O(kn log n)+O(k)h+2n expected time. Furthermore, through experimental results we show that, in practice, it can be used to triangulate point sets optimally for small values of k. This represents the first practical result on optimization of higher order Delaunay triangulations for k>1. 1 Introduction One of the best studied topics in computational geometry is the triangulation. When the input is a point set P , it is defined as a subdivision of the plane whose bounded faces are triangles and whose vertices are the points of P .When the input is a polygon, the goal is to decompose it into triangles by drawing diagonals. Triangulations have applications in a large number of fields, including com- puter graphics, multivariate analysis, mesh generation, and terrain modeling. Since for a given point set or polygon, many triangulations exist, it is possible to try to find one that is the best according to some criterion that measures some property of the triangulation. -
Polygon Decomposition Motivation: Art Gallery Problem Art Gallery Problem
CG Lecture 3 Motivation: Art gallery problem Definition: two points q and r in a Polygon decomposition simple polygon P can see each other if the open segment qr R lies entirely within P. 1. Polygon triangulation p q • Triangulation theory A point p guards a region • Monotone polygon triangulation R ⊆ P if p sees all q∈R 2. Polygon decomposition into monotone r pieces Problem: Given a polygon P, what 3. Trapezoidal decomposition is the minimum number of guards 4. Convex decomposition required to guard P, and what are their locations? 5. Other results 1 2 Simple observations Art gallery problem: upper bound • Convex polygon: all points • Theorem: Every simple planar are visible from all other polygon with n vertices has a points only one guard in triangulation of size n-2 (proof any location is necessary! later). convex • Star-shaped polygon: all • n-2 guards suffice for an n-gon: points are visible from any • Subdivide the polygon into n–2 point in the kernel only triangles (triangulation). one guard located in its • Place one guard in each triangle. kernel is necessary. star-shaped 3 4 Art gallery problem: lower bound Simple polygon triangulation • There exists a Input: a polygon P polygon with n described by an ordered vertices, for which sequence of vertices ⎣n/3⎦ guards are <v0, …vn–1>. necessary. Output: a partition of P Can we improve the upper into n–2 non-overlapping • Therefore, ⎣n/3⎦ bound? triangles and the guards are needed in adjacencies between Yes! In fact, at most ⎣n/3⎦ the worst case. -
Two Algorithms for Constructing a Delaunay Triangulation 1
International Journal of Computer and Information Sciences, Vol. 9, No. 3, 1980 Two Algorithms for Constructing a Delaunay Triangulation 1 D. T. Lee 2 and B. J. Schachter 3 Received July 1978; revised February 1980 This paper provides a unified discussion of the Delaunay triangulation. Its geometric properties are reviewed and several applications are discussed. Two algorithms are presented for constructing the triangulation over a planar set of Npoints. The first algorithm uses a divide-and-conquer approach. It runs in O(Nlog N) time, which is asymptotically optimal. The second algorithm is iterative and requires O(N 2) time in the worst case. However, its average case performance is comparable to that of the first algorithm. KEY WORDS: Delaunay triangulation; triangulation; divide-and-con- quer; Voronoi tessellation; computational geometry; analysis of algorithms. 1. INTRODUCTION In this paper we consider the problem of triangulating a set of points in the plane. Let V be a set of N ~> 3 distinct points in the Euclidean plane. We assume that these points are not all colinear. Let E be the set of (n) straight- line segments (edges) between vertices in V. Two edges el, e~ ~ E, el ~ e~, will be said to properly intersect if they intersect at a point other than their endpoints. A triangulation of V is a planar straight-line graph G(V, E') for which E' is a maximal subset of E such that no two edges of E' properly intersect.~16~ 1 This work was supported in part by the National Science Foundation under grant MCS-76-17321 and the Joint Services Electronics Program under contract DAAB-07- 72-0259. -
Cluster Algebras in Kinematic Space of Scattering Amplitudes
Prepared for submission to JHEP Cluster Algebras in Kinematic Space of Scattering Amplitudes Marcus A. C. Torres IMPA, Est. Dona Castorina 110, 22460-320 Rio de Janeiro-RJ, Brazil E-mail: [email protected] Abstract: We clarify the natural cluster algebra of type A that exists in a residual and tropical form in the kinematical space as suggested in 1711.09102 by the use of triangu- lations, mutations and associahedron on the definition of scattering forms. We also show that this residual cluster algebra is preserved in a hypercube (diamond) necklace inside the n associahedron where cluster sub-algebras (A1) exist. This result goes in line with results with cluster poligarithms in 1401.6446 written in terms of A2 and A3 functions only and other works showing the primacy of A cluster sub-algebras as data input for scattering amplitudes. arXiv:1712.06161v1 [hep-th] 17 Dec 2017 Contents 1 Introduction1 2 Cluster Algebras3 2.1 An Cluster Algebras4 2.2 Snake triangulations5 3 Kinematic space and its An cluster structure6 3 4 Kn vs. Confn(P ) 9 5 Conclusion 10 1 Introduction In [1] cluster algebras made quite an appearance in the studies of Scattering Amplitudes. There, the authors showed that a judicious choice of kinematic variables was one of the main ingredients in a large simplification of the previously calculated two-loops six particle (2) MHV remainder function Rn [2–4] of N = 4 supersymmetric Yang-Mills (SYM). This choice is related to the cluster structure that is intrinsic to the kinematic configuration 3 space Confn(P ) of n external particles. -
Visibility-Monotonic Polygon Deflation
Volume 10, Number 1, Pages 1{21 ISSN 1715-0868 VISIBILITY-MONOTONIC POLYGON DEFLATION PROSENJIT BOSE, VIDA DUJMOVIC,´ NIMA HODA, AND PAT MORIN Abstract. A deflated polygon is a polygon with no visibility crossings. We answer a question posed by Devadoss et al. (2012) by presenting a polygon that cannot be deformed via continuous visibility-decreasing motion into a deflated polygon. We show that the least n for which there exists such an n-gon is seven. In order to demonstrate non-deflatability, we use a new combinatorial structure for polygons, the directed dual, which encodes the visibility properties of deflated polygons. We also show that any two deflated polygons with the same directed dual can be deformed, one into the other, through a visibility-preserving defor- mation. 1. Introduction Much work has been done on visibilities of polygons [6, 9] as well as on their convexification, including work on convexification through continuous motions [4]. Devadoss et al. [5] combine these two areas in asking the follow- ing two questions: (1) Can every polygon be convexified through a deforma- tion in which visibilities monotonically increase? (2) Can every polygon be deflated (i.e. lose all its visibility crossings) through a deformation in which visibilities monotonically decrease? The first of these questions was answered in the affirmative at CCCG 2011 by Aichholzer et al. [2]. In this paper, we resolve the second question in the negative by presenting a non-deflatable polygon, shown in Figure 10A. While it is possible to use ad hoc arguments to demonstrate the non-deflatability of this polygon, we develop a combinatorial structure, the directed dual, that allows us to prove non-deflatability for this and other examples using only combinatorial arguments. -
The Art Gallery Problem
The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery. Computational Geometry [csci 3250] The Art Gallery Problem Laura Toma Bowdoin College 1 2 3 The Art Gallery Problem The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery. inside the gallery. inside the gallery. What does the guard see? What does the guard see? What does the guard see? We say that two points a, b are visible if segment ab stays inside P (touching boundary is ok). We say that two points a, b are visible if segment ab stays inside P (touching boundary is ok). 4 5 6 The Art Gallery Problem(s) The Art Gallery Problem(s) The Art Gallery Problem(s) We say that a set of guards covers polygon P if every point in P is visible to at least one We say that a set of guards covers polygon P if every point in P is visible to at least one We say that a set of guards covers polygon P if every point in P is visible to at least one guard. guard. guard. Examples: Examples: Examples: Does the point guard the triangle? Can all triangles be guarded with one point? Does the point guard the quadrilateral? 7 8 9 The Art Gallery Problem(s) The Art Gallery Problem(s) The Art Gallery Problem(s) We say that a set of guards covers polygon P if every point in P is visible to at least one guard. -
30 POLYGONS Joseph O’Rourke, Subhash Suri, and Csaba D
30 POLYGONS Joseph O'Rourke, Subhash Suri, and Csaba D. T´oth INTRODUCTION Polygons are one of the fundamental building blocks in geometric modeling, and they are used to represent a wide variety of shapes and figures in computer graph- ics, vision, pattern recognition, robotics, and other computational fields. By a polygon we mean a region of the plane enclosed by a simple cycle of straight line segments; a simple cycle means that nonadjacent segments do not intersect and two adjacent segments intersect only at their common endpoint. This chapter de- scribes a collection of results on polygons with both combinatorial and algorithmic flavors. After classifying polygons in the opening section, Section 30.2 looks at sim- ple polygonizations, Section 30.3 covers polygon decomposition, and Section 30.4 polygon intersection. Sections 30.5 addresses polygon containment problems and Section 30.6 touches upon a few miscellaneous problems and results. 30.1 POLYGON CLASSIFICATION Polygons can be classified in several different ways depending on their domain of application. In chip-masking applications, for instance, the most commonly used polygons have their sides parallel to the coordinate axes. GLOSSARY Simple polygon: A closed region of the plane enclosed by a simple cycle of straight line segments. Convex polygon: The line segment joining any two points of the polygon lies within the polygon. Monotone polygon: Any line orthogonal to the direction of monotonicity inter- sects the polygon in a single connected piece. Star-shaped polygon: The entire polygon is visible from some point inside the polygon. Orthogonal polygon: A polygon with sides parallel to the (orthogonal) coordi- nate axes. -
Guarding and Searching Polyhedra
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Thesis and Dissertation Archive - Università di Pisa Universita` di Pisa Dipartimento di Informatica Dottorato di Ricerca in Informatica Ph.D. Thesis: XXIV Guarding and Searching Polyhedra Giovanni Viglietta Supervisor Referee Prof. Linda Pagli Prof. Peter Widmayer Referee Prof. Masafumi Yamashita Chair Prof. Fabrizio Broglia November 11, 2012 Abstract Guarding and searching problems have been of fundamental interest since the early years of Computational Geometry. Both are well-developed areas of research and have been thoroughly studied in planar polygonal settings. In this thesis we tackle the Art Gallery Problem and the Searchlight Scheduling Problem in 3-dimensional polyhedral environments, putting special emphasis on edge guards and orthogonal polyhedra. We solve the Art Gallery Problem with reflex edge guards in orthogonal polyhedra having reflex edges in just two directions: generalizing a classic theorem by O'Rourke, we prove that br=2c + 1 reflex edge guards are sufficient and occasionally necessary, where r is the number of reflex edges. We also show how to compute guard locations in O(n log n) time. Then we investigate the Art Gallery Problem with mutually parallel edge guards in orthogonal polyhedra with e edges, showing that b11e=72c edge guards are always sufficient and can be found in linear time, improving upon the previous state of the art, which was be=6c. We also give tight inequalities relating e with the number of reflex edges r, obtaining an upper bound on the guard number of b7r=12c + 1.