Polar Continental Shelf Program – Science Report 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
H a Guide to Sport Fishing in Nunavut
h a guide to sport fishing in nunavut SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT 1 PLUMMER’S ARCTIC LODGES PLUMMER’S Fly into an untouched, unspoiled landscape for the adventure of a lifetime. Fish for record-size lake trout and pike in the treeless but colourful barrenlands. Try for arctic grayling in our cold clear waters. And, of course, set your sights on an arctic char on the Tree River, the Coppermine River, or dozens of other rivers across Nunavut that flow to the Arctic seas. Spend a full 24 hours angling for the species of your choice under the rays of the midnight sun. PLUMMER’S ARCTIC LODGES PLUMMER’S Pristine, teeming with trophy fish, rare wildlife and Read on to explore more about this remarkable place: nature at its rawest, Nunavut is a cut above any ordinary about the Inuit and their 1000-year history of fishing in sport fishing destination. Brave the stark but stunning one of the toughest climates in the world; about the wilderness of the region. Rise to the unique challenges experienced guides and outfitters ready to make your of Nunavut. And come back with jaw-dropping trophy- adventure run smoothly. Read on to discover your next sized catches, as well as memories and stories that great sport fishing experience! you’ll never tire of. Welcome To Sport Fishing Paradise. 2 SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT PLUMMER’S ARCTIC LODGES PRIZE OF THE ARCTIC Arctic Char The arctic char is on every sport fisher’s bucket list. -
Arctic Seabirds and Shrinking Sea Ice: Egg Analyses Reveal the Importance
www.nature.com/scientificreports OPEN Arctic seabirds and shrinking sea ice: egg analyses reveal the importance of ice-derived resources Fanny Cusset1*, Jérôme Fort2, Mark Mallory3, Birgit Braune4, Philippe Massicotte1 & Guillaume Massé1,5 In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large efects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Highly Branched Isoprenoids (HBIs) with δ13C and δ15N to evaluate how much Arctic seabirds rely on sea-ice derived resources during the pre-laying period, and if changes in sea-ice extent and duration afect their investment in reproduction. Eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) were collected in the Canadian Arctic during four years of highly contrasting ice conditions, and analysed for HBIs, isotopic (carbon and nitrogen) and energetic composition. Murres heavily relied on ice-associated prey, and sea-ice was benefcial for this species which produced larger and more energy-dense eggs during icier years. In contrast, fulmars did not exhibit any clear association with sympagic communities and were not impacted by changes in sea ice. Murres, like other species more constrained in their response to sea-ice variations, therefore appear more sensitive to changes and may become the losers of future climate shifts in the Arctic, unlike more resilient species such as fulmars. Sea ice plays a central role in polar marine ecosystems; it drives the phenology of primary producers that con- stitute the base of marine food webs. -
High Arctic Holocene Temperature Record from the Agassiz Ice Cap and Greenland Ice Sheet Evolution
High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution Benoit S. Lecavaliera,1, David A. Fisherb, Glenn A. Milneb, Bo M. Vintherc, Lev Tarasova, Philippe Huybrechtsd, Denis Lacellee, Brittany Maine, James Zhengf, Jocelyne Bourgeoisg, and Arthur S. Dykeh,i aDepartment of Physics and Physical Oceanography, Memorial University, St. John’s, Canada, A1B 3X7; bDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5; cCentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2100; dEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium, 1050; eDepartment of Geography, University of Ottawa, Ottawa, Canada, K1N 6N5; fGeological Survey of Canada, Natural Resources Canada, Ottawa, Canada, K1A 0E8; gConsorminex Inc., Gatineau, Canada, J8R 3Y3; hDepartment of Earth Sciences, Dalhousie University, Halifax, Canada, B3H 4R2; and iDepartment of Anthropology, McGill University, Montreal, Canada, H3A 2T7 Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved April 18, 2017 (received for review October 2, 2016) We present a revised and extended high Arctic air temperature leading the authors to adopt a spatially homogeneous change in reconstruction from a single proxy that spans the past ∼12,000 y air temperature across the region spanned by these two ice caps. 18 (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Elles- By removing the temperature signal from the δ O record of mere Island, Canada) indicates an earlier and warmer Holocene other Greenland ice cores (Fig. 1A), the residual was used to thermal maximum with early Holocene temperatures that are estimate altitude changes of the ice surface through time. -
PALEOLIMNOLOGICAL SURVEY of COMBUSTION PARTICLES from LAKES and PONDS in the EASTERN ARCTIC, NUNAVUT, CANADA an Exploratory Clas
A PALEOLIMNOLOGICAL SURVEY OF COMBUSTION PARTICLES FROM LAKES AND PONDS IN THE EASTERN ARCTIC, NUNAVUT, CANADA An Exploratory Classification, Inventory and Interpretation at Selected Sites NANCY COLLEEN DOUBLEDAY A thesis submitted to the Department of Biology in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada December 1999 Copyright@ Nancy C. Doubleday, 1999 National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibf iographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada Your lYe Vorre réfhœ Our file Notre refdretua The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive pemettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, Ioan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othemise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son pemission. autorisation. ABSTRACT Recently international attention has been directed to investigation of anthropogenic contaminants in various biotic and abiotic components of arctic ecosystems. Combustion of coai, biomass (charcoal), petroleum and waste play an important role in industrial emissions, and are associated with most hurnan activities. -
Frederick J. Krabbé, Last Man to See HMS Investigator Afloat, May 1854
The Journal of the Hakluyt Society January 2017 Frederick J. Krabbé, last man to see HMS Investigator afloat, May 1854 William Barr1 and Glenn M. Stein2 Abstract Having ‘served his apprenticeship’ as Second Master on board HMS Assistance during Captain Horatio Austin’s expedition in search of the missing Franklin expedition in 1850–51, whereby he had made two quite impressive sledge trips, in the spring of 1852 Frederick John Krabbé was selected by Captain Leopold McClintock to serve under him as Master (navigation officer) on board the steam tender HMS Intrepid, part of Captain Sir Edward Belcher’s squadron, again searching for the Franklin expedition. After two winterings, the second off Cape Cockburn, southwest Bathurst Island, Krabbé was chosen by Captain Henry Kellett to lead a sledging party west to Mercy Bay, Banks Island, to check on the condition of HMS Investigator, abandoned by Commander Robert M’Clure, his officers and men, in the previous spring. Krabbé executed these orders and was thus the last person to see Investigator afloat. Since, following Belcher’s orders, Kellett had abandoned HMS Resolute and Intrepid, rather than their return journey ending near Cape Cockburn, Krabbé and his men had to continue for a further 140 nautical miles (260 km) to Beechey Island. This made the total length of their sledge trip 863½ nautical miles (1589 km), one of the longest man- hauled sledge trips in the history of the Arctic. Introduction On 22 July 2010 a party from the underwater archaeology division of Parks Canada flew into Mercy Bay in Aulavik National Park, on Banks Island, Northwest Territories – its mission to try to locate HMS Investigator, abandoned here by Commander Robert McClure in 1853.3 Two days later underwater archaeologists Ryan Harris and Jonathan Moore took to the water in a Zodiac to search the bay, towing a side-scan sonar towfish. -
Annual Report: October 1, 2014 Assessing the Impact of Small, Canadian Arctic River Flows to the Freshwater Budget of the Canadian Archipelago Matthew B
Annual Report: October 1, 2014 Assessing the impact of small, Canadian Arctic River flows to the freshwater budget of the Canadian Archipelago Matthew B. Alkire, University of Washington Assessing the impact of small, Canadian Arctic river flows to the freshwater budget of the Canadian Archipelago (or SCARFs) is a scientific research project funded by the National Science Foundation (USA). The purpose of this project is to collect water samples from seven different rivers and their adjoining estuaries throughout the Canadian Arctic Archipelago (see Fig. 1) in order to determine whether or not their chemical signatures differ from larger North American rivers such as the Mackenzie and Yukon Rivers. Five of the rivers are located within Nunavut, Canada: the Coppermine River (near Kugluktuk), Ellice River (~140 km southeast of Cambridge Bay), Back River (~180 km southeast of Gjoa Haven), Cunningham River (~77 km southeast of Resolute Bay on Somerset Island), and Kangiqtugaapik River (near Clyde River, Baffin Island). Two of the rivers are located within the Northwest Territories, Canada: the Kujjuua River (located approximately 67 km northeast of Ulukhaktok on Victoria Island) and Thomsen River (specifically near the mouth of the river where it empties into Castel Bay, on Banks Island). Figure 1. Map of the Canadian Arctic Archipelago. The red stars indicate the mouths of the rivers sampled during this study: (1) Coppermine R., (2) Ellice R., (3) Back R., (4) Kuujuua R. (Victoria Island), (5) Thomsen R. (Banks Island), (6) Cunningham R. (Somerset Island), and (7) Clyde R. (Baffin Island). The Coppermine, Ellice, and Back Rivers are located on the mainland of Nunavut. -
Geographical Report of the Crocker Land Expedition, 1913-1917
5.083 (701) Article VL-GEOGRAPHICAL REPORT OF THE CROCKER LAND EXPEDITION, 1913-1917. BY DONALD B. MACMILLAN CONTENTS PAGE INTRODUCTION......................................................... 379 SLEDGE TRIP ON NORTH POLAR SEA, SPRING, 1914 .......................... 384 ASTRONOMICAL OBSERVATIONS-ON NORTH POLAR SEA, 1914 ................ 401 ETAH TO POLAR SEA AND RETURN-MARCH AVERAGES .............. ........ 404 WINTER AND SPRING WORK, 1915-1916 ............. ......................... 404 SPRING WORK OF 1917 .................................... ............ 418 GENERAL SUMMARY ....................................................... 434 INTRODUCTJON The following report embraces the geographical work accomplished by the Crocker Land Expedition during -four years (Summer, 19.13, to Summer, 1917) spent at Etah, NortJaGreenland. Mr. Ekblaw, who was placed in charge of the 1916 expeditin, will present a separate report. The results of the expedition, naturally, depended upon the loca tion of its headquarters. The enforced selection of Etah, North Green- land, seriously handicapped the work of the expedition from start to finish, while the. expenses of the party were more than doubled. The. first accident, the grounding of the Diana upon the coast of Labrador, was a regrettable adventure. The consequent delay, due to unloading, chartering, and reloading, resulted in such a late arrival at Etah that our plans were disarranged. It curtailed in many ways the eageimess of the men to reach their objective point at the head of Flagler Bay, te proposed site of the winter quarters. The leader and his party being but passengers upon a chartered ship was another handicap, since the captain emphatically declared that he would not steam across Smith Sound. There was but one decision to be made, namely: to land upon the North Greenland shore within striking distance of Cape Sabine. -
Upper Ordovician Conodont Biostratigraphy and Revised Lithostratigraphy and Geological Map, Akpatok Island, Ungava Bay, Nunavut
Canadian Journal of Earth Sciences Upper Ordovician conodont biostratigraphy and revised lithostratigraphy and geological map, Akpatok Island, Ungava Bay, Nunavut Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2017-0145.R1 Manuscript Type: Article Date Submitted by the Author: 08-Sep-2017 Complete List of Authors: Zhang, Shunxin; Canada-Nunavut Geoscience Office, Is the invited manuscript for Draft consideration in a Special N/A Issue? : Upper Ordovician, conodont biostratigraphy, geological map, Akpatok Keyword: Island, Ungava Bay https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 55 Canadian Journal of Earth Sciences 1 2 Upper Ordovician conodont biostratigraphy and revised lithostratigraphy 3 and geological map, Akpatok Island, Ungava Bay, Nunavut 4 5 6 7 Shunxin Zhang 8 9 10 11 Canada - Nunavut Geoscience Office, PO Box 2319, 1106 Inuksugait IV, 1 st floor, Iqaluit, 12 Nunavut X0A 0H0, Canada; [email protected] 13 Draft 14 15 16 17 Correspondence author: 18 Shunxin Zhang 19 PO Box 2319, 1106 Inuksugait IV, 1 st floor, Iqaluit, Nunavut X0A 0H0, Canada; 20 Phone: (867) 975-4579 21 Fax: (867) 979-0708 22 Email: [email protected] 23 24 25 ESS contribution number: 20160440 26 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 55 27 Upper Ordovician conodont biostratigraphy and revised lithostratigraphy 28 and geological map, Akpatok Island, Ungava Bay, Nunavut 29 Shunxin Zhang 30 31 Abstract 32 Stratigraphic units exposed on Akpatok Island, Ungava Bay, Nunavut, were previously 33 recognized as Boas River and Akpatok formations; their biostratigraphic ages and correlations, 34 in particular the stratigraphic position and age of the organic rich “Boas River” Formation, were 35 largely based on limited data. -
Atlantic Walrus Odobenus Rosmarus Rosmarus
COSEWIC Assessment and Update Status Report on the Atlantic Walrus Odobenus rosmarus rosmarus in Canada SPECIAL CONCERN 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and update status report on the Atlantic walrus Odobenus rosmarus rosmarus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 65 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC 2000. COSEWIC assessment and status report on the Atlantic walrus Odobenus rosmarus rosmarus (Northwest Atlantic Population and Eastern Arctic Population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 23 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Richard, P. 1987. COSEWIC status report on the Atlantic walrus Odobenus rosmarus rosmarus (Northwest Atlantic Population and Eastern Arctic Population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-23 pp. Production note: COSEWIC would like to acknowledge D.B. Stewart for writing the status report on the Atlantic Walrus Odobenus rosmarus rosmarus in Canada, prepared under contract with Environment Canada, overseen and edited by Andrew Trites, Co-chair, COSEWIC Marine Mammals Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la situation du morse de l'Atlantique (Odobenus rosmarus rosmarus) au Canada – Mise à jour. -
ARCTIC CHANGE 2014 8-12 December - Shaw Centre - Ottawa, Canada
ARCTIC CHANGE 2014 8-12 December - Shaw Centre - Ottawa, Canada Oral Presentation Abstracts Arctic Change 2014 Oral Presentation Abstracts ORAL PRESENTATION ABSTRACTS TEMPORAL TREND ASSESSMENT OF CIRCULATING conducted when possible. Results: Maternal levels of Hg and MERCURY AND PCB 153 CONCENTRATIONS AMONG PCB 153 significantly decreased between 1992 and 2013. NUNAVIMMIUT PREGNANT WOMEN (1992-2013) Overall, concentrations of Hg and PCB 153 among pregnant women decreased respectively by 57% and 77% over the last Adamou, Therese Yero (12) ([email protected]), M. Riva (12), E. Dewailly (12), S. Dery (3), G. Muckle (12), R. two decades. In 2013, concentrations of Hg and PCB 153 were Dallaire (12), EA. Laouan Sidi (1) and P. Ayotte (1,2,4) respectively 5.2 µg/L and 40.36 µg/kg plasma lipids (geometric means). Discussion: Our results suggest a significant decrease (1) Axe santé des populations et pratiques optimales en santé, of Hg and PCB 153 maternal levels from 1992 to 2013. Centre de Recherche du Centre Hospitalier Universitaire de Geometric mean concentrations of Hg and PCB 153 measured Québec, Québec,Québec, G1V 2M2 in 2013 were below Health Canada guidelines. The decline (2) Université Laval, Québec, Québec, G1V 0A6 observed could be related to measures implemented at regional, (3) Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec national and international levels to reduce environmental (4) Institut National de Santé Publique du Québec (INSPQ), pollution by mercury and PCB and/or a significant decrease Québec, G1V 5B3 of seafood consumption by pregnant women. These results have to be interpreted with caution. -
Who Discovered the Northwest Passage? Janice Cavell1
ARCTIC VOL. 71, NO.3 (SEPTEMBER 2018) P.292 – 308 https://doi.org/10.14430/arctic4733 Who Discovered the Northwest Passage? Janice Cavell1 (Received 31 January 2018; accepted in revised form 1 May 2018) ABSTRACT. In 1855 a parliamentary committee concluded that Robert McClure deserved to be rewarded as the discoverer of a Northwest Passage. Since then, various writers have put forward rival claims on behalf of Sir John Franklin, John Rae, and Roald Amundsen. This article examines the process of 19th-century European exploration in the Arctic Archipelago, the definition of discovering a passage that prevailed at the time, and the arguments for and against the various contenders. It concludes that while no one explorer was “the” discoverer, McClure’s achievement deserves reconsideration. Key words: Northwest Passage; John Franklin; Robert McClure; John Rae; Roald Amundsen RÉSUMÉ. En 1855, un comité parlementaire a conclu que Robert McClure méritait de recevoir le titre de découvreur d’un passage du Nord-Ouest. Depuis lors, diverses personnes ont avancé des prétentions rivales à l’endroit de Sir John Franklin, de John Rae et de Roald Amundsen. Cet article se penche sur l’exploration européenne de l’archipel Arctique au XIXe siècle, sur la définition de la découverte d’un passage en vigueur à l’époque, de même que sur les arguments pour et contre les divers prétendants au titre. Nous concluons en affirmant que même si aucun des explorateurs n’a été « le » découvreur, les réalisations de Robert McClure méritent d’être considérées de nouveau. Mots clés : passage du Nord-Ouest; John Franklin; Robert McClure; John Rae; Roald Amundsen Traduit pour la revue Arctic par Nicole Giguère. -
Current Walks Program - for PDF Download
Current Walks Program - for PDF download See end of this program for Search & Rescue information. Note: Trips recently added or changed are shown in bold. Click here to download as PDF Jan 7 (Tue) OATLEY PARK Mortdale station to Oatley Park; walk around the wetlands, Lime Kiln Bay, Jew Fish Bay with the possibility of a swim in the river, return across the top and back to the station. A delightful spot on the Georges River. DISTANCE: SHORT. TRIP GRADE: EASY MAPS: Sydney Street Directory. LEADER: UTE FOSTER [email protected] 9559 2363 (H) TRANSPORT: TRAIN Jan 9 (Thu) MEADOWBANK - BOTANY BAY (RETURN) - Cycling Meadowbank, Olympic Park, South Strathfield, Cooks River Cyclway, Botany Bay & return. Time for a swim before lunch!. Please ring to confirm details etc. Helmets, Hi-Vis jackets, sunscreen, water, spare tube, pump & repair kit required. Party limit 8. DISTANCE: MEDIUM. TRIP GRADE: MEDIUM MAPS: Street Directory. LEADER: COL HALPIN 98761685 (H). Ring by Tuesday TRANSPORT: Bike Jan 14 (Tue) LANE COVE (q) Riverview, Tambourine Bay, Longueville, Woodford Bay, Northwood, Gore Creek Reserve, Shell Park, Greenwich Point, Greenwich Baths, Smoothey Park, Wollstoncraft Station. Swim at Greenwich Baths (High tide). DISTANCE: MEDIUM. TRIP GRADE: EASY/MEDIUM MAPS: STEP. LEADER: PHIL LAMBE [email protected] 9712 1925 (H) 0439 934 180 (M) TRANSPORT: Public. Jan 16 (Thu) SEVEN BRIDGES - SYDNEY HARBOUR CIRCUIT - Cycling Epping, Fig Tree Bridge, Tarban Ck Bridge, Gladesville Bridge, Iron Cove Bridge, Anzac Bridge, Pyrmont Bridge, Harbour Bridge & optional back to Epping via Gore Hill cycleway. Please ring to confirm details etc. Helmets, Hi-Vis jackets, sunscreen, water, spare tube, pump & repair kit required.