Geology of Green River Formation and Associated Eocene Rocks in South­ Western Wyoming and Adjacent Parts of Colorado and Utah by W

Total Page:16

File Type:pdf, Size:1020Kb

Geology of Green River Formation and Associated Eocene Rocks in South­ Western Wyoming and Adjacent Parts of Colorado and Utah by W Geology of Green River Formation and associated Eocene rocks in south­ western Wyoming and adjacent parts of Colorado and Utah By W. H. BRADLEY THE GREEN RIVER AND ASSOCIATED TERTIARY FORMATIONS GEOLOGICAL SURVEY PROFESSIONAL PAPER 496-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Bradley, Wilmot Hyde, 1899- Geology of Green River Formation and associated Eocene rocks in southwestern Wyoming and adjacent parts of Colo­ rado and Utah. Washington, U.S. Govt. Print. Off., 1964. iv, 86 p. illus., maps (3 fold. col. in pocket) diagrs., tables. 30 em. (U.S. Geological Survey. Professional Paper 496-A.) Bibliography: p. 81-84. 1. Geology-Wyoming-Green River Formation. 2. Geology, Strati- graphic-Eocene. (Series) For sale by the Superintendent of Docu.ments, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page A1 Stratigraphy-Continued IntroductionAbstract-------~----------------------------------- ______________________________________ _ 2 Wasatch Formation-Continued Orientation and purpose ________________________ _ 2 Stratigraphic units-Continued Location and extent of the area __________________ _ 3 Cathedral Bluffs Tongue ________________ _ A26 Earlier geologic surveys _________________________ _ 4 New Fork Tongue~--------------------- 27 Field work ____________ :.. ________________________ _ 5 Green River Formation ______________________ -- __ 28 Acknowledgments ______________________________ _ 5 Definition and age _______ ----------------_-- 28 Topography and drainage ___________________________ _ 6 Stratigraphic units ____________________ --- __ _ 28 Luman Tongue ________________________ _ Geologic structure _______ ~ _________________________ _ 9 28 Major structural units __________________________ _ 9 Tipton Tongue and Tipton Shale Member_ 31 Fontenelle Tongue _____________________ _ Faults----------------------------------------- 10 34 Wind River thrust fault ____________________ _ 11 Wilkins Peak Member __________________ _ 35 Uinta fault and Uinta flexure ________________ _ 11 Laney Shale Member __________ -- __ ---_-- 43 Henrys Fork fault _________________________ _ 12 Battle Spring Formation ________________________ _ 48 Continental fault __________________________ _ 13 Bridger Formation _______________ --------------- 48 Faulted zone south of Washakie Basin ________ _ 13 Definition and age ______ ----_------------ __ _ 48 Miscellaneous faults ________________________ _ 14 Clastic sediment _______________________ _ 49 Interpretation of the structure ___________________ _ 14 Pyroclastic sediment_------------------- 49 Pre-Tertiary deformation ___________________ _ 14 Stratigraphic units _________________________ _ 50 Early Eocene deformation __________________ _ 15 White layers ________________ - ______ - _-- 50 Faunal zones __________________________ _ Post-Eocene-pre-Miocene(?) deformation _____ _ 16 54 Post-Miocene deformation __________________ _ 16 Washakie Basin ________________ -- __ ----- _-- 54 Structural effect of original dip and compaction ________ _ 16 Uinta Formation ____________________ ---- ___ --_-- 54 Depositional dip _______________________________ _ 16 Undifferentiated Eocene formations ______________ _ 54 Gravitational compaction _______________________ _ 17 Bishop Conglomerate ________________ -- __ .:.- _-- _-- 55 Regional effect ____________________________ _ 17 Oligocene, Miocene, and Pliocene formations ______ _ 56 Local effects of gravitational compaction ______ _ 17 Undifferentiated Oligocene and Miocene ____ ---- 56 Stratigraphy ______________________________________ _ 18 Browns Park Formation ____________________ - 56 General relations between the Eocene formations __ _ 18 Split Rock Formation __________ -- ___ -------- 57 Lfthologic terms used ___________________________ _ 19 Igneousrocks--------------------------------~­ 57 Wasatch For~ation ____________________________ _ 20 Measured sections of the Green River, Wasatch, and ])efinition and age _________________________ _ 20 Bridger Formations ________________________ ---_-- 58 References ________________________________________ _ Stratigraphic units _________________________ _ 20 81 Index ____________________________________________ _ Niland Tongue ________________________ _ 23 83 ILLUSTRATIONS (Plates are in pocket] PLATE 1. Geologic map of part of southwestern Wyoming and adjacent States. 2. Geologic map of the area around Green River, Wyo., showing distribution of the members of the Green River Formation and the underlying Wasatch Formation. 3. Reconnaissance geologic map and structure sections of the Phil Pico Mountain area in northern Utah and extreme southern Wyoming. Page FIGURE 1. Index maP------------------------------------------------------------------------------------------- A3 2. Map showing Great Divide Basin perched on Continental Divide__________________________________________ 8 3. Henrys Fork fault on east flank of Phil Pico Mountain-------------------------------------------------- 12 4. Tertiary-pre-Tertiary relationships at south end of Phil Fico Mountain ___________________'_________________ 13 5. Shore features of Gosiute Lake on island of Jurassic rocks------------------------------------------------- 18 6. Diagram showing the relations of the Green River Formation to the enclosing Wasatch and Bridger Formations_ 18 III IV CONTENTS Page FIGURE 7. Banded gray and red mudstone near the top of the Wasatch Formation __ ---------------------------------- A21 8. White tuff in the Niland Tongue of the Wasatch Formation________________________________________________ 25 9. Typical exposure of the Tipton Shale Member of the Green River Formation________________________________ 34 10. Map showing Gosiute Lake's hydrographic basin and areal extent at several stages___________________________ -36 11. Photograph showing White Mountain and the Wilkins Peak Member of the Green River Formation___________ 37 12. Contact between the Wilkins Peak and Laney Shale Members of the Green River Formation__________________ 38 13. Crystal molds of an unknown salt from the Wilkins Peak Member of the Green River Formation______________ 39 14. Characteristic exposure of the Laney Shale Member of the Green River Formation___________________________ 46 15. Tuffaceous sandstone lens near the base of the Laney Shale Member of the Green River Formation____________ 47 16. Sketch showing extreme differential compaction around thick tuffaceous sandstone lens_______________________ 48 17. Characteristic exposure of the Bridger Formation in Twin Buttes-----------------,------------------------- 49 18. White bench-forming tuff layers in mudstone of the Bridger Formation_____________________________________ 51 19. Map showing outcrops of white layers in the Bridger Formation___________________________________________ 52 20. Petrified log with bark from the Bridger Formation __________________ _,___________________________________ 53 TABLES Page TABLE 1. Pollens, spores, and algae found in the Luman Tongue of the Green River Formation_________________________ A30 2. Chemical analyses of carbonate-rich tuffs from the Tipton Shale Member of the Green River Formation________ 33 3. Boreholes in the Green River Basin drilled to explore for trona or for oil or gas________________________________ 41 4. Chemical analyses of two tuffs from the Wilkins Peak Member of the Green River Formation__________________ 43 5. Chemical analysis of typical dolomitic organic marlstone from the lower part of the Laney Shale Member________ 44 6. Chemical analyses of a rhyolitic and an andesitic tuff from the upper and middle parts 'of the Laney Shale Member_ 47 THE GREEN RIVER AND ASSOCIATED TERTIARY FORMATIONS GEOLOGY OF GREEN RIVER FORMATION AND ASSOCIATED EOCENE ROCKS IN SOUTHWEST­ ERN WYOMING AND ADJACENT PARTS OF COLORADO AND UTAH By w. H. BRADLEY ABSTRACT Most of the Eocene rocks belong to three formations-Wasatch, Discussed in this report is the geology of the Eocene rocks in an Green River, and Bridger. The Green River Formation is of area of about 17,000 square miles. The purpose of the report lacustrine origin and has the form of a great lens, or pile of lenses, is to provide the geologic foundation necessary to understand within an enormous volume of fluviatile sediments. The fluvia­ unci reconstruct the conditions under· which the Green River, tile sediments have been divided into the Wasatch and Bridger Wasatch, nncl Bridger Formations came into being and to pro­ Formations. Though the Bridger Formation is predominantly vide a matrix in which geochemists and mineralogists studying fluviatile, it contains a considerable number of thin extensive parts of the area can set up their models. The report is .based layers of lacustrine sediments. Most of the Wasatch Formation hugely on the author's own fieldwork, which began in the early underlies the Green River Formation, and most of the Bridger 1920's, but it also brings together the findings of many other Formation overlies it; but locally around the margins, the geologists who have worked in the area. Bridger rests directly on the Wasatch. The green River inter­ Four huge structural units dominate the area. The first two fingers and intertongues with both fluviatile formations. Three nrc the Green River and Washakie Basins, each of which is a tongues of the .Wasatch, as well as the main body
Recommended publications
  • Zootaxa, a Species Level Revision of Bridgerian And
    ZOOTAXA 1837 A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Magnolia Press Auckland, New Zealand Bryn J. Mader A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops (Zootaxa 1837) 85 pp.; 30 cm. 30 July 2008 ISBN 978-1-86977-249-9 (paperback) ISBN 978-1-86977-250-5 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1837 © 2008 Magnolia Press MADER Zootaxa 1837: 1–85 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Department of Biological Sciences and Geology, Queensborough Community College, 222-05 56th Avenue, Bayside, NY, 11364-1497 Long Island Natural History Museum,
    [Show full text]
  • The Stratigraphic Importance of the Brontothere (Cf. Diplacodon Elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah
    Foss. Rec., 17, 69–74, 2014 www.foss-rec.net/17/69/2014/ doi:10.5194/fr-17-69-2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphic importance of the brontothere (cf. Diplacodon elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah B. J. Burger and L. Tackett II Department of Geology, Utah State University, Uintah Basin Regional Campus 320 North Aggie Blvd. Vernal, UT 84078, USA Correspondence to: B. J. Burger ([email protected]) Received: 10 June 2014 – Revised: 6 August 2014 – Accepted: 12 August 2014 – Published: 27 August 2014 Abstract. We report on the first occurrence of an early southern Mississippia (Gazin and Sullivan, 1942), and the horned brontothere in the Brennan Basin Member of the Pacific Northwest (Mihlbacher, 2007). But nowhere is the Duchesne River Formation in northeastern Utah. This is the record of brontotheres as diverse as the fossil record ob- first record of a brontothere from the Brennan Basin Member. tained from the middle Eocene depositional basins located in Previously, brontotheres have been reported from the higher northeastern Utah, southwestern Wyoming and northwestern stratigraphic La Point Member (Duchesneodus uintensis) Colorado (Lull, 1905; Cook, 1926; Douglass, 1909; Gregory, and the lower stratigraphic Uinta Formation (Sphenocoelus 1912; Gunnell and Yarborough, 2000; Hatcher, 1895; Lucas uintensis, Fossendorhinus diploconus, Metarhinus fluviatilis, et al., 2004; Lucas and Holbrook, 2004; Lucas and Schoch, Metarhinus abbotti, Sthenodectes incisivum, Metatelmath- 1982; Mader, 2000, 2009a, b, Mihlbacher, 2008, 2011; Os- erium ultimum, Protitanotherium emarginatum, Pollyosbor- born, 1889, 1895, 1908, 1913, 1929; Peterson, 1914a, b, nia altidens, Diplacodon elatus).
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Copper King Mine, Silver Crown District, Wyoming (Preliminary Report)
    2012 Copper King Mine, Silver Crown District, Wyoming (Preliminary Report) W. Dan Hausel Independent Geologist, Gilbert, Arizona 11/14/2012 COPPER KING MINE, SILVER CROWN DISTRICT W. Dan Hausel, Independent Geologist Gilbert, Arizona Introduction The Silver Crown district (also known as Hecla) lies 20 miles west of Cheyenne and immediately east of Curt Gowdy State Park along the eastern flank of the Laramie Range. The district is visible on Google Earth (search for ‘Hecla, Cheyenne, WY’) and lies within the boundaries of the Laramie 1:100,000 sheet. This area was initially investigated by Klein (1974) as a thesis project, and also by the Wyoming Geological Survey as a potential target for low-grade, large-tonnage, bulk minable gold and copper (Hausel and Jones, 1982). Nearly all mining and exploration activity in the district centered on the Copper King mine and the Hecla ghost-town with its mill constructed to support mining operations in the area (Figure 1). However, the mill was so poorly designed that rejected tailings often assayed higher than the mill concentrates (Figure 2) (Ferguson, 1965). This has been a common problem with many mines in the West – poorly designed mills. For example, four mills constructed nearby in the Colorado-Wyoming State Line district to extract diamonds, rather than copper and gold from 1979 to 1995, also had recovery problems. The last mill built at the Kelsey Lake mine (40o59’38”N; 105o30’05”W) was not only constructed on a portion of the ore body, but also lost many diamonds. After several months of processing, tailings were checked and the first test sample yielded several diamonds including a 6.2 carat stone.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Fort Davy Crockett: Browns Park National Wildlife Refuge (Colorado)
    U.S. FISH AND WILDLIFE SERVICE: REGION 6 - CULTURAL RECOURSE PROGRAM Fort Davy Crockett?: An Archaeological Mystery Browns Park National Wildlife Refuge – Northwest Colorado Summarized from: A Report on the Results of Limited Subsurface Testing at 5MF5478, a Proposed Site of Historic Fort Davy Crockett, Moffat County, Colorado Kristen D. Kent and Mona C. Charles, Department of Anthropology, Fort Lewis College, Durango, Colorado December 2004 Introduction The follow excerpts are from a 2004 report documenting archaeological testing at the possible location of Fort Davy Crocket on the Brown’s Park National Wildlife Refuge. Many studies and much research has been conducted over the years to try and determine if the remains found on a bluff overlooking the Green River on the Browns Park National Wildlife Refuge are indeed those of the Fort. This research adds additional insight into the mystery. Fort Davy Crockett In 1837 three fur trappers, Prewett Sinclair, Philip Thompson, and William Criag, formed a partnership and reportedly built Fort Davy Crockett that same year. The Fort was named after the famous Tennessee frontiersman who died at the Battle of the Alamo in Texas the previous year. Kit Carson, another famous frontiersman, trapper and scout is reported to have been employed by the owners of Fort Davy Crockett. In 1839 members of the Peoria Party on their way to Oregon reported staying at the Fort. A description of the Fort was provided in the recordings of Thomas Jefferson Farnham, leader of the Peoria Party. He described the Fort thus: The fort, as it is called, peered up in the centre, upon the winding banks of the Sheetskadee.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • SMC 136 Gazin 1958 1 1-112.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene.
    [Show full text]
  • Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming
    Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming By STEVEN S. ORIEL and JOSHUA I. TRACEY, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 635 New subdivisions of the J,ooo-Joot-thick continental Evanston, Wasatch, Green River, and Fowkes Formations facilitate understanding of sediment genesis and Jl7yoming thrust-belt tectonic events UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-604646 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 65 cents (paper cover) CONTENTS Page Wasatch Formation-Continued Abstract __________________________________________ _ 1 Fossils and age-Continued· Page Introduction ______________________________________ _ 2 Tunp Member______________________________ 28 Purpose ______________________________________ _ 2 Origin--------~-------------------------------- 28 Earlier work_ .. __ - __ - ___________________ - _-- _- __ 2 Tectonic implications ____________ -_-------------- 29 Acknowledgments __ . ___________________________ _ 2 Green River Formation ___ .. _______ ------------------ 30 General relations ___ -- _________________________ _ 5 Name and usage __________________ -------------- 30 Evanston Formation _______________________________ _ 5 Definition __________________ -_-------------- 30 N arne and usage _______________________________ _ 5 Lithologic heterogeneity.
    [Show full text]
  • Brighan Young University Geology Studies
    BRIGHAM GEOLOGY YOUNG STUDIES UNIVERSITY Volume 19: Part 1 - December 1972 CONTENTS An Ealy Cembrian Trilobite Faunule from Utah .................... .... ......................... R. A. Robism and L. F. Hintze 3 Cbeirscystelld antiqm gn. d sp. nev. from the Lower Ordovician of Western Utah, and Its Bearing en the Evsluti~nof the Cheirocrinidae (Rhombifera: Glyptocystitida) ................... ...... ......................... C. R. C. Paul 15 Gc~lta~of the Mill Fork Area, Utah ................................ W. C. Metrill 65 Geology ef the Thistle Quadrangle, Utah ........................ M. L. Pinnell 89 Study of Internal Structures of Fine-Grained Clastic Rocks by X-radiography ........................................... A. M. Jones 131 Publications and Maps of the Geology Department ............................. 159 Brigham Young University Geology Studies Volume 19, Part 1 - December, 1972 Contents An Early Cambrian Trilobite Faunule from Utah ........................................................ R. A. Robison and L. F. Hintze 3 Cheit.orystella a~ztiua gen. et sp. nov. from the Lower Ordovician o Y Western Utah, and Its Bearing on the Evolution of the Cheirocrinidae (Rhombifera: Glyptocystitida) ........................................................ C. R. C. Paul 15 Geology of the Mill Fork Area, Utah ................................ R. C. Merrill 65 Geology of the Thistle Quadrangle, Utah .......................... M. L. Pinnell 89 Study of Internal Structures of Fine-Grained Clastic Rocks by X-radiography ...........................................
    [Show full text]
  • EPA's Fish and Shellfish Program Newsletter
    Fish and Shellfish Program NEWSLETTER March 2018 This issue of the Fish and Shellfish Program Newsletter generally focuses on the Pacific EPA 823-N-18-003 Northwest. In This Issue Recent Advisory News Recent Advisory News ............... 1 Liberty Bay Commercial Shellfish Beds Open EPA News ................................. 2 for First Time in Decades Other News .............................. 4 On September 14, 2017, improved water quality prompted Washington health officials to Recently Awarded Research .... 13 open 760 acres of commercial shellfish beds in Liberty Bay near Poulsbo in Kitsap County. Recent Publications ............... 15 In an effort to address water quality issues that have plagued Liberty Bay for decades, Upcoming Meetings Kitsap County officials teamed up with stakeholders to apply progressive pollution and Conferences .................... 17 identification and correction strategies. The result is improved marine water quality that meets the strict standards for harvesting shellfish. Clean Water Kitsap (a partnership of Kitsap County, the Kitsap Public Health District, the Kitsap County Conservation District, and the Washington State University Extension), the Suquamish Tribe, the City of Poulsbo, and hundreds of property owners began working toward the collective goal of improving water quality over a decade ago. Determining the sources of pollution led to individual on-site sewage system repairs, the implementation of manure management practices, and improvements to Poulsbo’s wastewater collection system. While the water quality has improved, federal rules require harvest area closure from May This newsletter provides information through September each year due to the large number of boats in the bay. only. This newsletter does not impose legally binding requirements on the U.S.
    [Show full text]