29.9 Essays MH

Total Page:16

File Type:pdf, Size:1020Kb

29.9 Essays MH NATURE|Vol 437|29 September 2005 ESSAY Thinking big Fritz London’s single-minded thinking led him to surpass even Einstein, as he believed correctly that quantum mechanics was right at all scales, including the macroscopic. Philip W. Anderson immediately begins to realize that the real problem of quantum measurement is not in Fritz London began his career in physics as understanding the simple electron that is one of the originators of quantum theory being measured, but the large and compli- during 1925–27. His training as a philoso- cated apparatus used to measure it. This pher, before taking up physics, no doubt apparatus has all kinds of properties that are enhanced his contribution to the ‘copen- not obvious consequences of quantum hagen interpretation’ — the first general mechanics: rigid slits, for instance, and a attempt to understand the world of photographic plate that darkens irreversibly atoms according to quantum mechanics. where an electron hits it. But London did much more than create the These properties are a real intellectual first theory of the chemical bond, and has challenge to understand from first princi- not had the recognition he deserves. ples; the first thing one realizes is that time, He was among the few pioneers who for the measurerCOLLECTION andTODAY the photographicARCHIVES/PHYSICS VISUAL SEGRÉ E. deliberately chose, once atoms and mol- plate, has a sign — earlier or later. This sign ecules were understood, not to focus his is not contained in the quantum theory and research on further subdividing the atom has to be the result of the organizing princi- into its ultimate constituents, but on explor- ples of quantum particles assembled into ing how quantum theory could work, and very large macroscopic objects. This and be observed, on the macroscopic scale. the fact that the apparatus has a definite For a few years, London worked at trying position in space require that a quantum to found chemistry on quantum theory, description of it can only be given in terms but in the end was overwhelmed by Linus of a superposition of an unimaginably large Pauling’s more heuristic approach; he never Lone thinker: Fritz London took an opposite number of different quantum states. published his book on the subject. He then tack from both Albert Einstein and Niels Bohr. The electron interacting with it attaches became intrigued by the twin phenomena (entangles) one part of its wave function to of superfluidity and superconductivity, In reading about these debates I have the one batch of these states, the other part to a which, he was convinced, were macroscopic sensation of being a small boy who spots different batch. And these batches differ in manifestations of quantum mechanics. not one, but two undressed emperors. Niels so many ways that they can never be made In 1935, London was the first to propose Bohr’s ‘complementarity principle’ — that to cohere again; they represent two entirely that superfluidity was Bose–Einstein con- there are two incompatible but equally cor- separate macroscopic histories of the appa- densation, and then in the late 1930s, with rect ways of looking at things — was merely ratus. The message is that what is needed is his brother Heinz, he developed the first a way of using his prestige to promulgate an understanding of the macroscopic world heuristic theory of superconductivity. His a dubious philosophical view that would in terms of quantum mechanics. This is the pair of books on these subjects appeared keep physicists working with the wonder- direction that London chose. around 1950 and admirably framed the ful apparatus of quantum theory. Albert And that brings me to superfluid solids. questions that were soon to be answered — Einstein comes off a little better because he Moses Chan and his student Eun-Seong in the one case by Oliver Penrose, Lars at least saw that what Bohr had to say was Kim have recently shown that helium (and Onsager and Richard Feynman, and in the philosophically nonsense. But Einstein’s probably hydrogen), if solidified below a other by John Bardeen, Leon Cooper and greatest mistake was that he assumed that tenth of a degree Kelvin, flow through their Robert Schrieffer. But London fell ill in 1950 Bohr was right — that there is no alterna- own crystal lattice like a superfluid. (This and died in 1954, so he did not live to see the tive to complementarity and therefore that has yet to be confirmed, but I believe it.) triumphs of his intuitions. quantum mechanics must be wrong. This This means that a rigid object — the most He had paid, however, for his unpopular was a far greater mistake, as we now know, primitive of our physical intuitions — is not choice of subject matter — quantum theory than the cosmological constant. a system in a simple, single quantum- on the macroscopic scale — by having to At this point London took an opposite mechanical ground state, but only arises as settle for a job in the pre-war South. This tack from either Bohr or Einstein. He found a consequence of thermal fluctuations. meant being out of mainstream physics, it difficult to believe Bohr’s idea that there Thus, Albert Einstein’s clocks and rigid and may have resulted in him being was a real ‘complementarity’ even though measuring rods, which play such a key excluded from the Manhattan bomb project he had been an early contributor to that line role in the theory of relativity, must be on which all his early associates worked. of thinking. Instead he took the then radical not primitive but derived in a very com- In 1939, in an obscure paper called ‘The step of assuming that quantum mechanics plex way from the underlying quantum observation problem in quantum mechan- was not wrong, but right at all scales, includ- laws of microscopic physics. At which ics’, London and Edmond Bauer took on the ing the macroscopic. This explains why point I could immodestly take the oppor- notorious Bohr–Einstein debates. This is London was intrigued by the realization tunity to announce that after all, “more is the earliest paper I know of that expresses that in the ‘super’ forms of matter, he was different!” ■ the most common-sense approach to the seeing quantum theory showing itself on Philip W. Anderson is in the Department of uncertainty principle and the philosophy of the (relatively) everyday scale. Physics, Princeton University, Princeton, quantum measurement. Taking London’s point of view, one New Jersey 08544, USA. ESSAY 625 © 2005Nature PublishingGroup.
Recommended publications
  • 2007-2008 Physics at Brown Newsletter
    Physics at Brown NEWS FOR ALUM N I an D FRIE N DS 2007 ISSUE GREETINGS FROM THE CHAIR - SP RING 2008 elcome to another issue of the Brown Physics newsletter. the rank of Associate Professor with tenure. We also report on WI wrote three years ago, during my first term as the some notable faculty achievements for the past year. department chair--with a committed faculty, dedicated staff, enthusiastic students, supportive administration, and engaged e continue the tradition of highlighting the research of alumni and friends--that the future of physics at Brown looked Wour 2007 Galkin Foundation Fellow on page 2. Also bright. Many things have taken place since then. Here we the effort in enriching our physics instruction continues. Three highlight some of the activities of the past year. new courses are offered this year and proposals for three new physics concentrations are under way. Other noteworthy 007 marked the 50th anniversary of the BCS Theory activities include WiSE, Poster Session, UTRA Awards, 2of Superconductivity. We honored Prof. Leon Resource Center, etc. In addition, community outreach Cooper with a two-day symposium on April remains a priority for the Department with a weekly 12-13. A brief description of this event is open house at Ladd and a greatly expanded five- provided on page 3. year NSF supported GK-12 program. e also report on the establishment hanks to a generous gift from his family, an Wof the Institute for Molecular and TAnthony Houghton Prize will be awarded Nanoscale Innovation, which represents an annually for the best theoretical thesis.
    [Show full text]
  • J. Robert Schrieffer Strange Quantum Numbers in Condensed Matter
    Wednesday, May 1, 2002 3:00 pm APS Auditorium, Building 402, Argonne National Laboratory APS Colloquium home J. Robert Schrieffer Nobel Laureate National High Magnetic Field Laboratory Florida State University, Tallahassee [email protected] http://www.physics.fsu.edu/research/NHMFL.htm Strange Quantum Numbers in Condensed Matter Physics The origin of peculiar quantum numbers in condensed matter physics will be reviewed. The source of spin-charge separation and fractional charge in conducting polymers has to do with solitons in broken symmetry states. For superconductors with an energy gap, which is odd under time reversal, reverse spin-orbital angular momentum pairing occurs. In the fractional quantum Hall effect, quasi particles of fractional charge occur. In superfluid helium 3, a one-way branch of excitations exists if a domain wall occurs in the system. Many of these phenomena occur due to vacuum flow of particles without crossing the excitation of the energy gap. John Robert Schrieffer received his bachelor's degree from Massachusetts Institute of Technology in 1953 and his Ph.D. from the University of Illinois in 1957. In addition, he holds honorary Doctor of Science degrees from universities in Germany, Switzerland, and Israel, and from the University of Pennsylvania, the University of Cincinnati, and the University of Alabama. Since 1992, Dr. Schrieffer has been a professor of Physics at Florida State University and the University of Florida and the Chief Scientist of the National High Magnetic Field Laboratory. He also holds the FSU Eminent Scholar Chair in Physics. Before moving to Florida in 1991, he served as director for the Institute for Theoretical Physics from 1984-1989 and was the Chancellor's Professor at the University of California in Santa Barbara from 1984-1991.
    [Show full text]
  • Fritz London a Scientific Biography
    Fritz London a scientific biography Kostas Gavroglu University of Athens, Greece CAMBRIDGE UNIVERSITY PRESS Contents Preface page xni Acknowledgements xxi 1 From philosophy to physics 1 The years that left nothing unaffected 2 The appeal of ideas 5 Goethe as a scientist 7 How absolute is our knowledge? 8 Acquiring knowledge 10 London's teachers in philosophy: Alexander Pfander and Erich Becher 11 Husserl's teachings 12 Abhorrence of reductionist schemata 14 The philosophy thesis 15 Tolman's principle of similitude 23 The necessary clarifications 25 Work on quantum theory 26 Transformation theory 28 Unsuccessful attempts at unification 31 2 The years in Berlin and the beginnings of quantum chemistry 38 The mysterious bond 39 London in Zurich 42 Binding forces 44 The Pauli exclusion principle 48 [ix] X FRITZ LONDON The early years in Berlin 49 Reactions to the Heitler—London paper 51 Polyelectronic molecules and the application of group theory to problems of chemical valence 53 Chemists as physicists? 57 London's first contacts in Berlin 59 Marriage 61 Job offers 64 Intermolecular forces 66 The book which could not be written 69 Leningrad and Rome 71 Difficulties with group theory 74 Linus Pauling's resonance structures 75 Robert Mulliken's molecular orbitals 78 Trying to save what could not be saved 82 3 Oxford and superconductivity 96 The rise of the Nazis 97 The changes at the University 102 Going to Oxford 105 Lindemann, Simon and Heinz London 106 Electricity in the very cold 110 The end of old certainties 113 The thermodynamic treatment
    [Show full text]
  • James Rainwater 1 9 1 7 — 1 9 8 6
    NATIONAL ACADEMY OF SCIENCES JAMES RAINWATER 1 9 1 7 — 1 9 8 6 A Biographical Memoir by VAL L. FITCH Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2009 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Courtesy AIP Emilio Segré Archives. JAMES RAINWATER December 9, 1917–May 31, 1986 BY VAL L . FITCH . I. RABI, THE COLUMBIA University physics department’s lead- Iing researcher, chairman, and then after his retirement, wise old man, disliked the notion that physicists had divided themselves into two groups: experimental and theoretical. “There is only Physics,” he said, “with a capital P.” His strong feeling always manifested itself in his insistence that those who did experimental theses have a rigorous grounding in theoretical subjects and that theorists know something about experiment. He had two outstanding examples of such people in the department. One was Willis Lamb, who had done his thesis with Robert Oppenheimer and after a series of notable theoretical papers had won the Nobel Prize for an experiment. Rabi never forgave Lamb for leaving Columbia and going back to his native California. And then there was Jim Rainwater, the subject of this memoir, who had done his thesis with John Dunning, a consummate experimental- ist, and had gone on to win the Nobel Prize for theoretical work. Rainwater spent his entire career at Columbia, first as a graduate student and then as a member of the faculty. He enjoyed Rabi’s highest accolades.
    [Show full text]
  • The London Equations Aria Yom Abstract: the London Equations Were the First Successful Attempt at Characterizing the Electrodynamic Behavior of Superconductors
    The London Equations Aria Yom Abstract: The London Equations were the first successful attempt at characterizing the electrodynamic behavior of superconductors. In this paper we review the motivation, derivation, and modification of the London equations since 1935. We also mention further developments by Pippard and others. The shaping influences of experiments on theory are investigated. Introduction: Following the discovery of superconductivity in supercooled mercury by Heike Onnes in 1911, and its subsequent discovery in various other metals, the early pioneers of condensed matter physics were faced with a mystery which continues to be unraveled today. Early experiments showed that below a critical temperature, a conventional conductor could abruptly transition into a superconducting state, wherein currents seemed to flow without resistance. This motivated a simple model of a superconductor as one in which charges were influenced only by the Lorentz force from an external field, and not by any dissipative interactions. This would lead to the following equation: 푚 푑퐽 = 퐸 (1) 푛푒2 푑푡 Where m, e, and n are the mass, charge, and density of the charge carriers, commonly taken to be electrons at the time this equation was being considered. In the following we combine these variables into a new constant both for convenience and because the mass, charge, and density of the charge carriers are often subtle concepts. 푚 Λ = 푛푒2 This equation, however, seems to imply that the crystal lattice which supports superconductivity is somehow invisible to the superconducting charges themselves. Further, to suggest that the charges flow without friction implies, as the Londons put it, “a premature theory.” Instead, the Londons desired a theory more in line with what Gorter and Casimir had conceived [3], whereby a persistent current is spontaneously generated to minimize the free energy of the system.
    [Show full text]
  • The Original Remark of Fritz London in 1938 ' Linking the Phenomenon of Superfluidity in He II with Boee-Einetein Con
    IC/65A63 INTERNAL REPORT (Limited distribution) The original remark of Fritz London in 1938 ' linking the phenomenon of superfluidity in He II with Boee-Einetein con- •-International Atomic Energy Agency densation ( BEC ) has inspired a great deal of theory and ana experiment. On the other hand, the excitation spectrum was put I '!:-f. .Uni,ted^.Kati>ifis Educational Scientific and Cultural Organization on a solid microscopic basis by the remarkable variational 2 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS calculation of Peynman and Cohen ( PC ), which connected the excitation Bpectrum with the dynamic structure factor obtained from inelastic neutron acatteringt and at the same BIOPHYSICS AND THE MICROSCOPIC THEORY OF He II * time pointed out the relevance of backflow. In spite of the importance of the FC variational calculation, which was later J. Chela-Florea ** improved upon by the Monte Carlo calculation of the excitation International Centre for Theoretical Physics, Trieste, Italy spectrum of He II, a few questions remain unanswered. Chief among these are: and (a) What ie the microscopic nature of He II? In particular, H.B. Ghassit what is the nature of the roton? Department of Physics, University of Jordan, Amman, Jordan (b) Are there any new excitations contributing to the disper- and International Centre for Theoretical Physics, Trieste, Italy sion relation? (c) How good is the PC wave function? (d) What is the connection between BEC and superfluidity? ABSTRACT The difficulty in obtaining completely satisfactory ans- Bose-Einstein condensation and solitonic propagation have recently wers to the above questions lieB partly in two experimental teen uhovn to be intimately related in "biosysteras.
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • Physics Illinois News
    PHYSICS ILLINOIS NEWS THE DEPARTMENT OF PHYSICS AT THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • 2003 NUMBER 2 Tony Leggett Named 2003 Nobel Laureate in Physics directions for research in the quantum transmitted this information to several When Leggett came to Illinois physics of macroscopic systems and theorists, including Leggett. According as the John D. and Catherine T. the use of condensed matter systems to Richardson, Leggett came up with MacArthur Chair in 1983, he was to test the foundations of quantum the explanation in less than three already widely recognized as a world mechanics. He is a master at under- weeks, working out the complete leader in the theory of low-tempera- standing how the most fundamental theory from their data. ture physics. According to Ralph laws of nature—the weird world of That discovery was indeed worthy Simmons, professor emeritus and head quantum mechanics that tells us how of a Nobel Prize, and in 1996, the of the Department of Physics at that atoms work—apply to the everyday award was given to the original three time, the MacArthur Foundation had world we live in. He has added experimenters. In the announcement settled on 10 universities that were to immeasurably to the rich intellectual of the 1996 Nobel Prize in Physics, be given endowments for professor- development of condensed matter Leggett was cited for assisting the prize ships. The University of Illinois was physics at the University of Illinois, winners in their interpretation of the one of only two public universities and he has unlocked the door to experiments that led to a breakthrough on the list.
    [Show full text]
  • John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel
    John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel Citation: Physics Today 73, 1, 63 (2020); doi: 10.1063/PT.3.4395 View online: https://doi.org/10.1063/PT.3.4395 View Table of Contents: https://physicstoday.scitation.org/toc/pto/73/1 Published by the American Institute of Physics ARTICLES YOU MAY BE INTERESTED IN Gaurang Bhaskar Yodh Physics Today 73, 64 (2020); https://doi.org/10.1063/PT.3.4396 Johannes Kepler’s pursuit of harmony Physics Today 73, 36 (2020); https://doi.org/10.1063/PT.3.4388 Rare earths in a nutshell Physics Today 73, 66 (2020); https://doi.org/10.1063/PT.3.4397 The sounds around us Physics Today 73, 28 (2020); https://doi.org/10.1063/PT.3.4387 Charles Kittel Physics Today 72, 73 (2019); https://doi.org/10.1063/PT.3.4326 The usefulness of GRE scores Physics Today 73, 10 (2020); https://doi.org/10.1063/PT.3.4376 OBITUARIES made when Cooper solved the problem John Robert Schrieffer of two electrons above a quiescent Fermi towering figure in theoretical con- sea. He took into account the effective at- densed-matter physics, John Robert tractive interaction mediated by phonons, ASchrieffer died on 27 July 2019 in Tal- which resulted in a bound state of elec- lahassee, Florida. He is best known for trons. Schrieffer’s focus crystallized on his crucial contributions to the theory of finding a many-electron theory that superconductivity, a problem that since could incorporate Cooper’s bound pairs, its discovery in 1911 had vexed physi- which, though not quite bosons, some- cists searching for a microscopic expla- how needed to be condensed.
    [Show full text]
  • 50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants
    APS March Meeting 2007 50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants D. Scalapino: Ancestors and BCS J. Rowell : A “tunneling” branch of the family G. Baym: From Atoms and Nuclei to the Cosmos Supraconductivity 1911 H. Kamerlingh Onnes `(Gilles Holst) finds a sudden drop in the resistance of Hg at ~ 4.2K. R(ohms) T 1933 Meissner and Ochsenfeld discover that superconductors are perfect diamagnets --flux expulsion Robert Ochsenfeld 1901 - 1993 Phenomenolog` y • 1934 Casimir and Gorter ‘s two-fluid phenomenological model of thermodynamic properties. • 1934 Heinz and Fritz London’s phenomenological electrodynamics. F. London’s suggestion of the rigidity of the wave function. • 1948 Fritz London, “Quantum mechanics on a macroscopic scale, long range order in momentum.” Fritz London (1900-1954) 1950 Ginzburg-Landau Theory n∗ ! e∗ β f(x) = Ψ(x) + A(x)Ψ(x) 2 + α Ψ(x) 2 + Ψ(x) 4 2m∗ | i ∇ c | | | 2 | | β +α Ψ(x) 2 + Ψ(x) 4 | | 2 | | V. Ginzburg L. Landau 1957 Type II Superconductivity Aleksei Abrikosov But the question remained: “How does it work?” R.P. Feynman ,1956 Seattle Conference But the question remained: “How does it work?” A long list of the leading theoretical physicists in the world had taken up the challenge of developing a microscopic theory of superconductivity. A.Einstein,“Theoretische Bemerkungen zur Supraleitung der Metalle” Gedenkboek Kamerlingh Onnes, p.435 ( 1922 ) translated by B. Schmekel cond-mat/050731 “...metallic conduction is caused by atoms exchanging their peripheral electrons. It seems unavoidable that supercurrents are carried by closed chains of molecules” “Given our ignorance of quantum mechanics of composite systems, we are far away from being able to convert these vague ideas into a theory.” Felix Bloch is said to have joked that ”superconductivity is impossible”.
    [Show full text]
  • Physics at Brown
    Physics at Brown News for Alumni and Friends 2006 Issue Welcome to another issue of the Brown Physics Newsletter. Much has happened during the past year. Under the leadership of President Ruth Simmons and Provost Robert Zimmer, Brown has entered a new phase in the implementation of its Plan for Academic Enrichment (http:// www.brown.edu/web/pae/), with an official kick-off last November of a capital campaign. Physics is participating actively in the Plan for Academic Enrichment by working with Chemistry and Engineering on an expansion into the area of NanoScience and Soft Matter. 2005 was designated as the Year of Physics in celebration of the centennial of Einstein’s Miraculous year of 1905. Like most other physics institutions, we engaged in a yearlong sequence of public lectures. Our own Nobel Laureate Professor Leon Cooper delivered the first lecture. Chung-I Tan President Simmons and Provost Zimmer inaugurated this wonderful series of public lectures. In this issue we highlight our growing biophysics program. In particular, we focus on the accomplishments of Professor Jay Tang, who came to Brown in 2002, having previously served as an Assistant Professor at Indiana University. Jay is our first biophysicist, who has developed new interdisciplinary Table of Contents courses on biological physics for advanced undergraduates, as well as for graduate students. We continue to highlight the research of our recent Galkin Foundation Fellow, Sootaek Greetings from the Chair...............1 Lee, who did his thesis work with Professor Brad Marston. The Physics Department has Biophysics Blossoms.....................1 also been supporting the effort of the Dean of the College in offering freshman seminar Galkin Fellow: Sootaek Lee..........2 Kyungsik Kang Retires..................3 courses.
    [Show full text]
  • Nobel Laureates
    Nobel Prize Winners Affiliated with the Institute for Advanced Study as of February 27, 2012 f First Term s Second Term NOBEL PRIZE IN PHYSICS 1914 Max von Laue (Member, School of Mathematics, 1935f, 1948f) Germany 1921 Albert Einstein (Professor, School of Mathematics, 1933–55) Germany 1922 Niels H. D. Bohr (Member, School of Mathematics, 1939s, 1948s, 1950s, 1954f, 1958s) Denmark 1933 Paul A. M. Dirac (Member, School of Mathematics, 1934–35, 1946f, 1947– 48, 1958–59, 1962–63) United Kingdom 1944 Isidor Isaac Rabi (Member, School of Mathematics, 1938f) United States 1945 Wolfgang Pauli (Member, School of Mathematics, 1935–36, 1940–46, 1949– 50, 1954s, 1956s) Austria 1949 Hideki Yukawa (Member, School of Mathematics, 1948–49) Japan 1957 Tsung-Dao Lee (Member, School of Mathematics, 1951–53, 1957–58, Professor 1960–62) China Chen Ning Yang (Member, School of Mathematics, 1949–54, Professor, 1955–66) China 1963 Johannes Hans Daniel Jensen (Member, School of Mathematics, 1952s) Germany 1965 Sin-Itiro Tomonaga (Member, School of Mathematics, 1949–50) Japan 1969 Murray Gell-Mann (Member, School of Mathematics, 1951s, 1951f, 1955s; Member, School of Natural Sciences, 1967–68) United States Office of Public Affairs Phone (609) 951-4458 • Fax (609) 951-4451 • www.ias.edu 1972 Leon Cooper (Member, School of Mathematics, 1954–55) United States 1975 Aage N. Bohr (Member, School of Mathematics, 1948s) Denmark 1979 Abdus Salam (Member, School of Mathematics, 1951s) Pakistan 1982 Kenneth G. Wilson (Member, School of Natural Sciences, 1972s) United States 1983 Subrahmanyan Chandrasekhar (Member, School of Mathematics, 1941f; Member, School of Natural Sciences, 1976s) United States 1988 Jack Steinberger (Member, School of Mathematics, 1948–49, 1959–60) United States 1999 Gerardus 't Hooft (Long-Term Visitor, School of Natural Sciences, 1973, 1976, 1980, 1982, 2005) The Netherlands 2004 David J.
    [Show full text]