Fatty Acid Oxidation and Ketogenesis in Energy Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

Fatty Acid Oxidation and Ketogenesis in Energy Homeostasis Research Collection Doctoral Thesis Fatty acid oxidation and ketogenesis in energy homeostasis Author(s): Fedele, Shahana Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000266357 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 24833 Fatty acid oxidation and ketogenesis in energy homeostasis A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SHAHANA FEDELE Laurea Specialistica in Biologia applicata alle scienze della nutrizione, Università degli Studi di Milano (Milan, Italy) born on 01.04.1988 citizen of Italy and Australia Prof. Dr. Wolfgang Langhans, examiner Prof. Dr. Barry Levin, co-examiner Prof. Dr. Thomas Lutz, co-examiner Dr. Abdelhak Mansouri, co-examiner 2018 Acknowledgements Acknowledgements I have been staring at this white page for a while now and I am still not sure where to start, because without all the people who may be reading this section and without many other who are not reading it, I would not be here compiling this thesis. Therefore, this is my first sentence: THANK YOU ALL. The biggest thank you goes to you Wolfgang, not only for welcoming me in your lab, but foremost for turning me into a thinking scientist. I have always felt incredibly lucky in experiencing the perfect balance between supervision and freedom, the former guided me, the latter pushed me into that constant vortex of questioning, analyzing and thinking. I do not think I could, at the end of this journey in your lab, ask to feel any more enriched than I do. Abdelhak, I do not think I ever felt as much part of a team as in these final months with you, actually, this holds true for the past (nearly) four years. Your constant support and patience in listening to all my ideas has been priceless. Barry, Thomas, I am grateful for the meetings and discussions we had throughout the years, they certainly have further pushed me to develop critical thinking skills. I always had the impression you were actually interested in my research, and that, I always treasured. I am not sure I should thank you for the additional workload you gave me in this last year (), but I have never felt as excited about research as with this last project: thank you. There was this saying in our lab: “at the end of your first year of PhD at some point you will be lost, you go to Urs and then you’ll know what to do and where to head”. It couldn’t be any truer. Thank you for “saving” me when I was lost, Urs. A special thank you to you Myrtha, not only half of my projects would not have been possible without your amazing surgery skills, but, mostly, you set my standards for precision and organization. Jp, Deepti, Rosi, Sharon (in no particular order) I will not pinpoint specific aspects for which I am thankful to you guys, I feel it would be reductive. You have just simply been everything one could wish for: not only colleagues, you have been friends, mentors and my lab family. You all are great minds, but mostly, you have great hearts. (ah yes, Jp&Rosi: thank you for leaving me your coffee machine when you left!). Angelica, it has been short, but it was great having you here! Melanie, Marie, Nino, Nadja, Shin 1 Acknowledgements and the rest of the former and present Langhans team: it has been a real pleasure. To Sabrina and Valentina: you were amazing students. “Switching corridors”, a big thank you to all present and former “Wolfrums”, but it would be an incomplete section of acknowledgments without specifically thanking three people. Salvo: you are an incredible scientist and I was so lucky to be able to learn even just a little bit from you: grazie! Gerald, I am sure you don’t need to read these lines to know how much I treasure all our scientific - and non – conversations, you have been part of my lab (and extended) family. And finally, one of the most heartfelt ‘thank you’ among them all, to you, Bernd, steady nucleus of my life while I bounce around as a crazy electron. A thank you also to all the rest of SLA team, no one excluded. Elena, Arianna and Mara: you have been my non-lab family throughout these years here in Zurich, life without you would have been much sadder. A thank you also goes to all my friends spread throughout the world, and to all the people I met and that somehow left me something, made me a better person, inspired me, guided me, taught me. In this respect a special thank you goes to my former mentor, Dr. Fernando Viteri and to “the boss” Dr. Cinzia Menchise. Two additional thank you: one goes to a very old man I once met on a tram in Milan who gave me his secret for longevity: “never get upset or angry, no matter what happens, never get upset” (some of the meaning is lost in translation). The second one to a woman I recently met who made me realize the importance of the “taking and giving back” cycle: “I have been helped so much in the past, now it’s my time to help someone else”, that is what she said. And here comes my last thank you, to my actual family. I will never be able to express in words how thankful I am; I just would not be here without you. A thank you to my mother, the most elegant and loving woman I ever met, she had this power of always knowing what was best for me before I even did. To my dad and my brother, I know you do not like “wishy-washy” stuff, but you are the two people I think most highly of in the whole planet. …you may also be relieved in knowing that I think I am finally done studying! 2 Table of contents Table of contents Aknowledgments 1 List of abbreviations 5 Summary 8 Riassunto 10 CHAPTER 1: General introduction 13 1. Obesity and overweight 13 1.1 The control of energy intake 14 1.1.1 The hypothalamic circuitry 14 1.1.2 The hindbrain circuitry 15 1.1.3 The mesolimbic circuitry 16 2. Gut-brain axis 17 2.1 Parasympathetic innervation 18 2.2 Sympathetic innervation 18 2.3 Enteric nervous system (ENS) 18 3. Peripheral signals modulating food intake 19 3.1 Gastrointestinal peptides 19 3.2 Adiposity signals 20 4. The endocannabinoid and endocannabinoid-like signaling 21 4.1 Oleoylethanolamide 22 5. Intestinal fatty acid oxidation and ketogenesis 23 6. Central nervous system (CNS) fatty acid oxidation and ketogenesis 24 7. The aims of the thesis 26 3 Table of contents CHAPTER 2: Oleoylethanolamide-induced anorexia in rats is 35 associated with locomotor impairment CHAPTER3: Expression of a mutated form of carnitine 61 palmitoyltransferase-1A in astrocytes CHAPTER 4: Knockdown of HMGCS2 in the basomedial hypothalamus 93 affects energy homeostasis in rats CHAPTER 5: General discussion 125 1. Overview of the findings 126 2. Oleoylethanolamide – connecting the dots 128 3. Ketone bodies: versatile effectors 132 4. Fatty acids in the brain: friends or foes? 135 5. At last: food for thought 137 Curriculum Vitae 145 4 List of abbreviations List of abbreviations 2-AG: 2-arachidonoylglycerol 2-DG: 2-deoxy-D-glucose α-MSH= alpha- melanocyte-stimulating hormone AAV= adeno-associate virus AcAc= acetoacetate ACC= acetyl-CoA carboxylase ACSA2= astrocyte cell surface antigen-2 ACSF= artificial cerebrospinal fluid AEA= N-arachidonoylethanolamine = Anandamide AgRP= agouti-related peptide AMPk= AMP-activated protein kinase Ant= antimycin AP= area postrema Arc= arcuate nucleus BBB= brain blood barrier BHB= β-hydroxybutyrate BPTES= Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulphide C8= octanoic acid CART= cocaine and amphetamine related transcript Cat= catalase CB= cannabinoid Receptor CCK= cholecystokinin CD36= cluster differentiation 36 CGX= celiac-mesenteric-superior ganglionectomy CMV= cytomegalovirus CNS= central nervous system CPT= carnitine palmitoyltransferase CPTmt= carnitine palmitoyltransferase mutated DA= dopamine DGAT-1= diacylglycerol acyltransferase-1 DMH= dorsal medial hypothalamus DMV= dorsal motor nucleus of the vagus nerve DRG= dorsal root ganglia eCBs= endocannabinoids EC= endocannabinoid system ECAR= extracellular acidification rate EE= energy expenditure EEC= enteroendocrine cells Eno2= neuron specific enolase ENS= enteric nervous system ERT2= estrogen receptor variant Eto= etomoxir FA= fatty acids FABP= fatty acid binding protein FAO= fatty acid oxidation FAS= fatty acid synthesis FATP= fatty acid transport protein FBS= fetal bovine serum 5 List of abbreviations FCCP= carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone GABA= γ-aminobutyric acid GAD= glutamate decarboxylase GFAP= glial fibrillary acidic protein GFP= green fluorescent protein GLP-1= glucagon-like peptide-1 GLUT1= glucose transporter 1 GPR= G-protein coupled receptor GPX4= glutathione peroxidase 4 GS= glutamine synthetase GSS= glutathione synthetase HEK= human embrionic kidney cells HFD= high fat diet HK1= hesokinase1 HMGCS2= 3-Hydroxy-3-Methylglutaryl-CoA Synthase 2 HRP= horseradish peroxidase Icv= intracerebroventricular ID= inner diameter IP= intraperitoneal IpGTT= intraperitoneal glucose tolerance test KATP= ATP sensitive potassium channels KB= ketone bodies Kd= knockdown LCAD= long chain acyl-coA dehydrogenase LCFA= long chain fatty acids LDH= lactate dehydrogenase LFD= low fat diet LH= lateral hypothalamus LV= lentivirus MCFA= medium-chain fatty acids MCH= melanin-concentrating hormone MCR= melanocortin receptor MCT= monocarboxylate transporter NAc= nucleus accumbens nAChR= nicotinic acetylcholine receptors NAEs= N-Acetylamides NE= norepinephrine NEFA= non-esterified
Recommended publications
  • "This Is the Peer Reviewed Version of the Following Article: Murray, M., Dyari, H
    "This is the peer reviewed version of the following article: Murray, M., Dyari, H. R. E., Allison, S. E. and Rawling, T. (2014), Lipid analogues as potential drugs for the regulation of mitochondrial cell death. British Journal of Pharmacology, 171: 2051–2066. doi: 10.1111/bph.12417 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/bph.12417/abstract;jsessionid= 1A6A774DBD2AA9859B823125976041F6.f03t01 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." 1 Revised manuscript 2013-BJP-0609-RCT-G Lipid analogues as potential drugs for the regulation of mitochondrial cell death Michael Murray1, Herryawan Ryadi Eziwar Dyari1, Sarah E. Allison1 and Tristan Rawling2 1Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, University of Sydney, NSW 2006, Australia, and 2School of Pharmacy, Graduate School of Health, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia. Address for correspondence: Dr Michael Murray Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, Medical Foundation Building, Room 105, University of Sydney, NSW 2006, Australia Tel: (61-2-9036-3259) Fax (61-2-9036-3244) Email: [email protected] Running title: Lipids drugs to target mitochondrial cell death 2 Abstract The mitochondrion has fundamental roles in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well recognized component of the pathogenesis of diseases such as cancer.
    [Show full text]
  • 2015 Annual Meeting Abstract Supplement Late-Breaking Abstract Submissions
    2015 Annual Meeting Abstract Supplement Late-Breaking Abstract Submissions All Late-Breaking Abstracts will be presented on Thursday, March 26, from 8:30 am–12:00 noon. These abstracts will be available via the mobile event app, online planner, and a downloadable PDF from the SOT website. 54th Annual Meeting and ToxExpoTM San Diego, California March 22–26, 2015 www.toxicology.org THURSDAY POSTER SESSION MAP March 2015—8:30 AM to 12:00 Noon—Sails Pavilion Poster Set Up—7:00 AM to 8:30 AM 260 259 258 257 256 301 302 303 304 305 660 659 658 657 656 251 252 253 254 255 310 309 308 307 306 651 652 653 654 655 250 249 248 247 246 311 312 313 314 315 650 649 648 647 646 241 242 243 244 245 320 319 318 317 316 641 642 643 644 645 240 239 238 237 236 321 322 323 324 325 640 639 638 637 636 231 232 233 234 235 330 329 328 327 326 631 632 633 634 635 230 229 228 227 226 331 332 333 334 335 630 629 628 627 626 221 222 223 224 225 340 339 338 337 336 621 622 623 624 625 220 219 218 217 216 341 342 343 344 345 620 619 618 617 616 211 212 213 214 215 350 349 348 347 346 611 612 613 614 615 210 209 208 207 206 351 352 353 354 355 610 609 608 607 606 201 202 203 204 205 360 359 358 357 356 601 602 603 604 605 170 169 168 167 166 401 402 403 404 405 570 569 568 567 566 161 162 163 164 165 410 409 408 407 406 561 562 563 564 565 160 159 158 157 156 411 412 413 414 415 560 559 558 557 556 151 152 153 154 155 420 419 418 417 416 551 552 553 554 555 150 149 148 147 146 421 422 423 424 425 550 549 548 547 546 141 142 143 144 145 430 429 428 427 426 541 542
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 0211150 The role of fatty acids and related analogs in mediating peroxisome proliferation in primary cultures of rat hepatocytes Intrasuksri, Urusa, Ph.D.
    [Show full text]
  • Etomoxir, Sodium 2-[6-(4Chlorophenoxy)Hexyl]Oxirane-2-Carboxylate, Increases Uncoupling Protein-3 Mrna Levels in Primary Culture
    Diabetes Publish Ahead of Print, published online April 28, 2008 PPARβ/δ prevents NF-κB activation in adipocytes Activation of Peroxisome Proliferator-Activated Receptor β/δ (PPARβ/δ) Inhibits LPS-induced Cytokine Production in Adipocytes by Lowering NF-κB Activity via ERK1/2 Ricardo Rodríguez-Calvo1, Lucía Serrano1, Teresa Coll1, Norman Moullan2, Rosa M. Sánchez1, Manuel Merlos1, Xavier Palomer1, Juan C. Laguna1, Liliane Michalik2, Walter Wahli2 and Manuel Vázquez-Carrera1. 1Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, IBUB (Institut de Biomedicina de la UB), and CIBERDEM-Instituto de Salud Carlos III, Diagonal 643, E-08028 Barcelona, Spain and 2Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, CH-1015 Lausanne, Switzerland. Corresponding author: Manuel Vázquez-Carrera Unitat de Farmacologia. Facultat de Farmàcia. Diagonal 643. E-08028 Barcelona. Spain E-mail: [email protected] Received for publication 07 February 2008 and accepted in revised form 21 April 2008. Copyright American Diabetes Association, Inc., 2008 PPARβ/δ prevents NF-κB activation in adipocytes Objective: Chronic activation of the nuclear factor (NF)-κB in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether Peroxisome Proliferator-Activated Receptor (PPAR)β/δ activation prevents inflammation in adipocytes. Research Design and Methods and Results: Firstly, we examined whether the PPARβ/δ agonist GW501516 prevents LPS-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the STAT3-SOCS3 pathway.
    [Show full text]
  • Role of PPAR and Its Agonist in Renal Diseases
    Hindawi Publishing Corporation PPAR Research Volume 2010, Article ID 345098, 6 pages doi:10.1155/2010/345098 Review Article Role of PPARα and Its Agonist in Renal Diseases Ching-Feng Cheng,1, 2 Hsi-Hsien Chen,3 and Heng Lin4 1 Department of Medical Research, Tzu Chi General Hospital and Department of Pediatrics, Tzu Chi University, Hualien 970, Taiwan 2 Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan 3 Graduate Institute of Clinical Medicine, Taipei Medical University and Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan 4 Graduate Institute of Pharmacology and Toxicology, Tzu Chi University, 701 Chung Yang Road, Section 3, Hualien 970, Taiwan Correspondence should be addressed to Heng Lin, [email protected] Received 17 June 2010; Accepted 17 October 2010 Academic Editor: Beatrice´ Desvergne Copyright © 2010 Ching-Feng Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity, and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of diabetes and inflammation-induced nephropathy.
    [Show full text]
  • Targeting Fatty Acid Oxidation to Promote Anoikis and Inhibit Ovarian Cancer Progression 2 3 4 Brandon T
    Author Manuscript Published OnlineFirst on March 20, 2020; DOI: 10.1158/1541-7786.MCR-19-1057 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Targeting fatty acid oxidation to promote anoikis and inhibit ovarian cancer progression 2 3 4 Brandon T. Sawyer1, Lubna Qamar2, Tomomi M. Yamamoto2, Alexandra McMellen2, Zachary L. 5 Watson2, Jennifer K. Richer4, Kian Behbakht1, Isabel R. Schlaepfer#3, Benjamin G. Bitler#1,2 6 7 1Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of 8 Colorado School of Medicine, Aurora, CO, USA 9 2Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of 10 Colorado School of Medicine, Aurora, CO, USA 11 3Division of Medical Oncology, Department of Medicine, University of Colorado School of 12 Medicine, Aurora, CO, USA 13 4Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA 14 15 Running Title: FAO contributes to ovarian cancer dissemination 16 17 # Corresponding Authors: 18 19 Benjamin G. Bitler 20 Department of Obstetrics and Gynecology 21 University of Colorado Anschutz Medical Campus 22 12700 E. 19th Ave 23 MS 8613 24 Aurora, CO 80045 25 Phone: 303-724-0574 26 [email protected] 27 28 Isabel Schlaepfer 29 Department of Medical Oncology 30 University of Colorado Anschutz Medical Campus 31 12900 E. 19th Ave 32 MS 8117 33 Aurora, CO 80045 34 Phone: 303-724-4430 35 [email protected] 36 37 38 The authors declare no potential conflicts of interest. 39 40 Keywords: Ovarian cancer, Carnitine Palmitoyltransferase 1A, fatty acid beta oxidation, anoikis 41 resistance 42 43 Word Count: 5,535 44 45 Number of tables/figures: 4 figures 1 Downloaded from mcr.aacrjournals.org on September 28, 2021.
    [Show full text]
  • Targeting Ppars
    Natura Aonss Targeting PPARs: Coacatos Phamaceca Aonss Coeessos Anaonss/Paa Aonss A guide to function and structure PPAR α, δ, γ RR While PPARs display a high degree of homology at the protein level, each subtype exhibits distinct, noninter- PPRE DNA changeable roles in energy metabolism that range from energy burning to energy storage. Learn more about DA nn Hne Tage Gene ranscon their functions as fatty acid sensors and regulators of energy homeostasis at www.caymanchem.com/PPARs. www.caymanchem.com oman reon an nn oman A-1 A-2 NH2 COOH A/ C D E F MUSCLE PPARδ PPARα P se · ↑ Fatty acid oxidation · ↑ Fatty acid oxidation · ↑ Oxidative muscle fibers · ↑ Obesity resistance PPARγ PPARα* PPARδ PPARγ* · ↑ Insulin-mediated 1 99 173 239 466 468 1 71 145 211 439 441 1 136 210 238 503 505 · ↑ Insulin sensitivity glucose uptake A/ C D E F A/ C D E F A/ C D E F · ↑ Energy uncoupling Reesens sofom he canonca seence n nProt Reesens sofom he canonca seence n nProt FAAR NR1C2 Synonyms NR1C1 NR1C3 NUC1 LIVER PPARα PPARγ PPARβ · ↑ Fatty acid oxidation · ↑ Fatty acid storage · ↑ Ketogenesis · ↑ Lipogenesis CREBBP EP300 · ↓ Plasma triglycerides CITED2 FAM120B CREBBP MED1 (PBP/DRIP205/TRAP220) · ↑ Plasma HDL EP300 EP300 NCOA1 (RIP160/SRC-1) NCOA1 (RIP160/SRC-1) MED1 (PBP/DRIP205/TRAP220) NCOA2 (SRC-2) NCOA2 (SRC-2) Coactivators NCOA1 (RIP160/SRC-1) NCOA3 (SRC-3) NCOA3 (SRC-3) NCOA2 (SRC-2) NCOA4 PGC-1α NCOA3 (SRC-3) NCOA6 PGC-1α NCOA7 VESSEL WALL PPARα & PPARγ PGC-1β PGC-1α · ↓ Inflammation PRIC295 PGC-1β · ↑ Reverse cholesterol transport PGC-2 NCOR1
    [Show full text]
  • Role of Pparα and Its Agonist in Renal Diseases
    Hindawi Publishing Corporation PPAR Research Volume 2010, Article ID 345098, 6 pages doi:10.1155/2010/345098 Review Article Role of PPARα and Its Agonist in Renal Diseases Ching-Feng Cheng,1, 2 Hsi-Hsien Chen,3 and Heng Lin4 1 Department of Medical Research, Tzu Chi General Hospital and Department of Pediatrics, Tzu Chi University, Hualien 970, Taiwan 2 Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan 3 Graduate Institute of Clinical Medicine, Taipei Medical University and Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan 4 Graduate Institute of Pharmacology and Toxicology, Tzu Chi University, 701 Chung Yang Road, Section 3, Hualien 970, Taiwan Correspondence should be addressed to Heng Lin, [email protected] Received 17 June 2010; Accepted 17 October 2010 Academic Editor: Beatrice´ Desvergne Copyright © 2010 Ching-Feng Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity, and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of diabetes and inflammation-induced nephropathy.
    [Show full text]
  • Novel Mechanisms of CNS Fuel Sensing
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Novel fuel sensing mechanisms in the regulation of food intake A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) in the Graduate Program in Neuroscience of the College of Medicine May 22, 2006 by Karine Proulx B.S., Université Laval, 2000 M.S., McGill University, 2002 Committee Chair: Randy J. Seeley, Ph.D. ABSTRACT An emerging model is that CNS fuel sensors, such as AMP kinase (AMPK) and the mammalian target of rapamycin (mTOR), integrate signals from stored and immediately available fuels, and in turn regulate food intake. The experiments described in this dissertation focus on novel CNS fuel sensing mechanisms by which fatty acid derivatives and compounds that affect fatty acid metabolism modulate food intake. Oleoylethanolamide (OEA), a derivative of oleic acid synthesized in the intestine following refeeding, reduces food intake. OEA shares similarities with other nutrient- derived hormones that signal energy status to the CNS, but its mechanisms of action remain unclear. We tested whether OEA-induced anorexia occurs through specific interactions with hormones that modulate food intake through CNS pathways involved in energy homeostasis, or is rather due to unspecific behaviors. Our results indicate that OEA suppresses feeding without causing visceral illness, and that neither ghrelin, PYY, GLP-1, apo A-IV nor CCK play a critical role in this effect.
    [Show full text]
  • Peroxisome Proliferator-Activated Receptors (Ppars): Novel Therapeutic Targets in Renal Disease
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Kidney International, Vol. 60 (2001), pp. 14–30 PERSPECTIVES IN BASIC SCIENCE Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease YOUFEI GUAN and MATTHEW D. BREYER Division of Nephrology, and Departments of Molecular Physiology and Biophysics, Veterans Administration Medical Center, and Vanderbilt University School of Medicine, Nashville, Tennessee, USA Peroxisome proliferator-activated receptors (PPARs): Novel inducers of hepatic peroxisomal proliferation. In rodents, therapeutic targets in renal disease. Peroxisome proliferator- chronic exposure to peroxisome proliferators results in activated receptors (PPARs) are members of the nuclear hor- nongenotoxic liver tumors [1] and alters gene expression mone receptor superfamily of ligand-dependent transcription ␤ factors. PPARs play an important role in the general transcrip- involved in lipid -oxidation, cell differentiation and in- tional control of numerous cellular processes, including lipid flammation [2]. These effects are now known to be medi- metabolism, glucose homeostasis, cell cycle progression, cell ated through binding of peroxisome proliferators to a differentiation, inflammation and extracellular matrix remodel- specific subset of nuclear receptor and transcription fac- ␣ ␤ ing. Three PPAR isoforms, designated PPAR , PPAR and tor superfamily, designated peroxisome proliferator- PPAR␥, have been cloned and are differentially expressed in several tissues including the kidney. PPAR␣ primary regulates activated receptors (PPARs). Since the identification of lipid metabolism and modulates inflammation. PPAR␣ is the the first PPAR receptor in mouse [3], three isoforms— molecular target of the hypolipidemic fibrates including be- designated PPAR␣, PPAR␤/␦ and PPAR␥—have been zafibrate and clofibrate. PPAR␤ participates in embryonic de- cloned and characterized by their distinct expression pat- ␥ velopment, implantation and bone formation.
    [Show full text]
  • Fatty Acid Signaling in the -Cell and Insulin Secretion
    Fatty Acid Signaling in the ␤-Cell and Insulin Secretion Christopher J. Nolan,1 Murthy S.R. Madiraju,2 Viviane Delghingaro-Augusto,2 Marie-Line Peyot,2 and Marc Prentki2 Fatty acids (FAs) and other lipid molecules are important for many cellular functions, including vesicle exocytosis. For the pancreatic ␤-cell, while the presence of some FAs is ree fatty acids (FFAs) are important to the essential for glucose-stimulated insulin secretion, FAs pancreatic ␤-cell for its normal function, its have enormous capacity to amplify glucose-stimulated in- capacity to compensate for insulin resistance, sulin secretion, which is particularly operative in situa- and its failure in type 2 diabetes (1–3). Fatty acid tions of ␤-cell compensation for insulin resistance. In this F (FA) deprivation of islet tissue causes loss of glucose- review, we propose that FAs do this via three interdepen- dent processes, which we have assigned to a “trident stimulated insulin secretion (GSIS), a process rapidly model” of ␤-cell lipid signaling. The first two arms of the reversible by replacement with exogenous FFAs (4). In model implicate intracellular metabolism of FAs, whereas contrast, elevated FFA supply augments GSIS (5,6); how- the third is related to membrane free fatty acid receptor ever, if chronically in excess, particularly in association (FFAR) activation. The first arm involves the AMP-acti- with elevated glucose (7), saturated FFAs can reduce vated protein kinase/malonyl-CoA/long-chain acyl-CoA insulin biosynthesis (8) and secretion (3) and induce ␤-cell (LC-CoA) signaling network in which glucose, together apoptosis (2,3,7,9). with other anaplerotic fuels, increases cytosolic malonyl- In this review, we consider the lipid signaling pathways CoA, which inhibits FA partitioning into oxidation, thus involved in the FFA modulation of GSIS in healthy ␤-cells.
    [Show full text]