Saxitoxin Binding Proteins: Biological Perspectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
Amyloodinium Ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts
Gulf and Caribbean Research Volume 6 Issue 4 January 1980 Studies on Amyloodinium ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts Adrian R. Lawler Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Lawler, A. R. 1980. Studies on Amyloodinium ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts. Gulf Research Reports 6 (4): 403-413. Retrieved from https://aquila.usm.edu/gcr/vol6/iss4/8 DOI: https://doi.org/10.18785/grr.0604.08 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports, Vol. 6,No. 4,403-413, 1980. STUDIES ON AMYLOODINIUM OCELLA TUM (DINOFLAGELLATA) IN MISSISSIPPI SOUND: NATURAL AND EXPERIMENTAL HOSTS' ADRIAN R. LAWLER Parasitology Section, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 ABSTRACT Four species of parasitic dinoflagellates have been found to occur naturally on the gills and fins of Missis- sippi Sound fishes: Amyloodinium ocellatum (Brown 1931) Brown and Hovasse 1946, Oodinium cyprinodontum Lawler 1967, and two undescribed species. Sixteen of 43 species of fishes examined had natural gill infections of A. ocellatum. Seventy-one of 79 species of fishes exposed to A. ocellatum dinospores were susceptible, and succumbed, to the dinoflagel- late. Eight did not die even though exposed to numerous dinospores. The most common signs in an infested fish were spasmodic gasping and uncoordinated movements. -
Fish Larvae and Recruitment Patterns in Floodplain Lagoons of the Australian Wet Tropics
Fish larvae and recruitment patterns in floodplain lagoons of the Australian Wet Tropics Author Godfrey, Paul C, Arthington, Angela H, Pearson, Richard G, Karim, Fazlul, Wallace, Jim Published 2017 Journal Title Marine and Freshwater Research Version Accepted Manuscript (AM) DOI https://doi.org/10.1071/MF15421 Copyright Statement © 2016 CSIRO. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/100866 Griffith Research Online https://research-repository.griffith.edu.au Fish larvae and recruitment patterns in floodplain lagoons of the Australian Wet Tropics Paul C. GodfreyAB, Angela H. ArthingtonAF, Richard G. PearsonCD, Fazlul KarimE and Jim WallaceD AAustralian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia. BNRA Environmental Consultants; Cairns, Queensland, Australia 4870 CCollege of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia. DCentre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Queensland 4811, Australia. ELand and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, ACT 2601, Australia. FCorresponding author. Email: [email protected] Running Head Fish larvae in tropical floodplain lagoons Abstract Floodplain lagoons in the Queensland Wet Tropics bioregion, Australia, are important and threatened habitats for fish. As part of studies to assess their ecological condition and functions, we examined patterns of occurrence of fish larvae, juveniles and adults in 10 permanent lagoons on the Tully-Murray floodplain. Lagoons contained early life-history stages of 15 of the 21 native species present, including 11 species that complete their life cycle in fresh waters and 4 that require access to saline habitats for larval development. -
Fisheries Resources of Balaclava Island, Fitzroy River Central Queensland 2014
Fisheries Resources of Balaclava Island, Fitzroy River Central Queensland 2014 Prepared by: Queensland Parks and Wildlife Service, Marine Resources Management, Department of National Parks, Recreation, Sport and Racing The preparation of this report was funded by the Gladstone Ports Corporation's offsets program. © State of Queensland, 2014. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. -
Fisheries Data on Northern·Kingfish
BIOLOGICAL @-'. FISHERIES DATA ON NORTHERN·KINGFISH .. Menticirrhus s'axatilis (Bloch and Schneider) JULY 1982 Biological and Fisheries Data on the Northern Kingfish, Menticirrhus saxatilis Daniel E. Ralph U. S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Sandy Hook Laboratory Highlands, New Jersey 07732 Technical Series Report No. 27 CONTENTS 1. IDENTITY 1.1 Nomenclature................................................. 1 1.1.1 Valid Name.. 1 1. 1.2 Synonymy... ........................................... 1 1. 2 Taxonomy... .................................................. 1 1.2.1 Affinities.................. 1 1.2.2 Taxonomic Status...................................... 5 1.2.3 Subspecies 5 1. 2.4 Common Names.......................................... 5 1.3 Morphology............ 5 1.3.1 Externa1 Morphology................................... 5 1.3.2 Cytomorphology.............. 6 1.3.3 Protein Specificity... 6 2. DISTRIBUTION 2.1 Total Area................................................... 6 2.2 Differential Distribution....... 6 2.3 Determinants of Distribution............... 8 2.4 Hybridization.,... 8 3. BIONOMICS AND LIFE HISTORY 3.1 Reproduction................................................. 8 3.1.1 Sexuality 8 3.1.2 Maturity.............................................. 8 3.1.3 Mating................................................ 9 3.1.4 Fertilization...... 9 3.1.5 Gonads 9 3.1.6 Spawning.............................................. 9 3.1.7 -
MARKET FISHES of INDONESIA Market Fishes
MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. -
Chromerid Genomes Reveal the Evolutionary Path From
RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany, -
Phasmida (Stick and Leaf Insects)
● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
MBI Volume 70 Issue 2 Cover and Back Matter
MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM RESEARCH AWARDS Applications are invited for research awards to enable scientists from the United Kingdom, or from abroad, to work at the Association's Citadel Hill Laboratory, either as independent visitors or to collaborate in work currently being undertaken as part of the Association's Research Programme. Two levels of award are available: RESEARCH BURSARIES available for visitors at all levels of experience from graduate students to senior scientists. Several awards are made each year with a maximum value of £2,500. RAY LANKESTERINVESTIGATORSHIP available to postdoctoral research workers with several years of research experience in some aspect of marine biology or marine physiology. One award is made each year to a value of £5,000 to enable visitors to work at the Laboratory for a minimum of 5 months over an 18-month period. Applications or enquiries are invited for 1990 and 1991. Successful applicants will be expected to become members of the Association. Further details may be obtained from: Dr Gerald Boalch, The Bursar Marine Biological Association of the United Kingdom The Laboratory Citadel Hill Plymouth PL1 2PB UK or by telephoning: 0752-222772 ext. 211 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 26 Sep 2021 at 17:38:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315400035359 Cover: The photograph on the outside of the cover was taken by David Nicholson at Pedney Beach, Cornwall. Inside front cover: Second zoea of velvet fiddler crab Portunus puber (L.) (height 3 mm). -
Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes. -
Working Group Reports
2.0 WORKING GROUPS REPORTS Expenditures by SCOR Working Groups (1996-2005), p. 2-1 2.1 Disbanded Working Groups, p. 2-2 2.1.1 WG 78 on Determination of Photosynthetic Pigments in Seawater, p. 2-2 Urban 2.2 Current Working Groups— The Executive Committee Reporter for each working group will present an update on working group activities and progress, and will make recommendations on actions to be taken. Working groups expire at each General Meeting, but can be renewed at the meeting and can be disbanded whenever appropriate. 2.2.1 WG 111—Coupling Winds, Waves and Currents in Coastal Models, p. 2-16 Wainer 2.2.2 WG 115—Standards for the Survey and Analysis of Plankton, p. 2-18 Pierrot-Bults 2.2.3 WG 116—Sediment Traps and 234Th Methods for Carbon Export Flux Determination, p. 2-29 Labeyrie 2.2.4 WG 119—Quantitative Ecosystems Indicators for Fisheries Management, p. 2-31 Taniguchi 2.2.5 WG 120—Marine Phytoplankton and Global Climate Regulation: The Phaeocystis spp. Cluster As Model, p. 2-33 Hall 2.2.6 WG 121—Ocean Mixing, p. 2-35 Akulichev 2.2.7 WG 122—Mechanisms of Sediment Retention in Estuaries, p. 2-39 Labeyrie 2.2.8 WG 123—Reconstruction of Past Ocean Circulation (PACE), p. 2-40 Labeyrie 2.2.9 WG 124—Analyzing the Links Between Present Oceanic Processes and Paleo-Records (LINKS), p. 2-43 Wainer 2.2.10 WG 125—Global Comparisons of Zooplankton Time Series, p. 2-52 Pierrot-Bults 2.2.11 WG 126—Role of Viruses in Marine Ecosystems, p.