Galaxies and the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Galaxies and the Universe Unit 5: Galaxies and the Universe This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ​ ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion ​ ​ ​ ​ ​ questions at the end of each topic in this Unit. These should give more background on ​ each subject and spark further classroom ideas. We would be happy to help you ​ expand on each topic and develop your own ideas for your students. Contact us at ​ the [email protected]. ​ ​ Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ​ ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them. ● Explore the “Ideas for extending this section” and “Resources” sections at the end of each topic in this Unit - they aren’t just for teachers! Learning Objectives ● The BC curriculum requires students to learn about the “The overall scale, structure, and age of the universe.” This unit covers that information. ● To use ratios to estimate distances. Learning Outcomes ● To put our Milky Way into perspective in terms of scale with other galaxies. Friends of the DAO - ExoExplorations - https://centreoftheuniverse.org/exoexplorations 1 ​ ● To understand that galaxies are not distributed uniformly: they come in clusters and there is large scale structure ● To understand that the Milky Way is one of trillions of galaxies ● To understand that spacetime is created between galaxies, causing them to move apart ● To understand that galaxies move, and sometimes orbit and collide ● To know that the universe has a finite age, and that this is determined in a couple of different ways that agree reasonably well ● To understand that galaxies vary in size, number of stars, dark matter content Materials and tools needed for the activities ● Activity 1: ○ Two different sized coins (like a dime and a loonie) and a ruler (30 cm) ● Activities 2 and 4: Stellarium ○ You should make sure that you’ve installed Stellarium and know some of the basics as we’ve described in our Stellarium Introduction document. We will use it ​ ​ frequently in this unit. ● Activity 5: ○ 3 sheets of paper and pencil crayons Time Required ● Lesson time - 90 minutes ● Activity time ○ Activities 1 and 5: 10 to 15 minutes ○ Activities 2 and 4: 10 minutes each ○ Activity 3: Minimum of 5 minutes Contents The activities are marked in yellow. ​ ● Is the Milky Way the whole Universe? ○ Activity One: Things that are different sizes can look like they are the same size ● Finding stars in the fuzz ○ Activity Two: Find the Andromeda Galaxy in Stellarium ● Not all galaxies are like ours ○ Activity Three: Help researchers classify galaxies ● Where are galaxies in the sky? ○ Activity Four: Find the Virgo and Coma clusters in Stellarium ● Do galaxies move? ○ Activity Five: Model the expansion of the Universe ● How many galaxies are there? ● How old is the universe? Friends of the DAO - ExoExplorations - https://centreoftheuniverse.org/exoexplorations 2 ​ I s the Milky Way the whole Universe? We learned in the previous unit how enormous the Milky Way Galaxy is both in terms of size and the number of stars in it. As we also learned, that would seem like it would be enough to satisfy anyone’s imagination. The word for “everything there is” is “universe” or “cosmos”. In 1920, one hundred years ago from when this unit was written, two famous astronomers by the name of Shapley and Curtis debated whether some of the dim, fuzzy blobs they saw in telescopes could be other Milky Ways or new solar systems. There were thousands of them, whatever they were. Astronomers called this the “The Great Debate” as answering the question would say important things about the universe. Many of these fuzzy objects had been discovered with telescopes about 150 years earlier and astronomers kept wondering what they were. They referred to them as nebulous, meaning cloudy, as they couldn’t see any detail in them, although they could tell some were spiral in shape. They called these the “Spiral Nebulae”. Figure 1: A drawing of a “spiral nebula” in 1845 by Lord Rosse before astronomers knew what they were. Was it a solar system forming or another Milky Way? Friends of the DAO - ExoExplorations - https://centreoftheuniverse.org/exoexplorations 3 ​ It’s surprising now that astronomers were wondering in 1920 if they were looking at baby solar systems because no one knew back then that other solar systems existed. But in 1796, an astronomer and mathematician named Pierre-Simon de Laplace proposed that when solar ​ ​ systems formed they might look like cloudy swirls at first. One thing that they knew would be obviously different between solar systems and galaxies was size: solar systems, like ours, are puny compared to galaxies. Were these fuzzy spirals something as small as a solar system or something as huge as the Milky Way? That led to the question of whether these were small things nearby or big things far away. You might wonder why figuring out whether these fuzzy blobs were near or far was such a tricky problem. If an adult appears tiny you usually assume they are far away. That’s because there is a limited range in the size of people. You can’t have people 100 meters tall, for example, or 5 cm tall. They are probably going to be around 1.7 meters tall, on average for an adult. But what if you don’t know what it is? You can see in Figure 2 that two unknown objects can appear to be the same size when in actuality they are just at different distances. Normally, as we saw in Unit 1 with the parallax thumb activity, we can tell how far away something is using our eyes. But with these fuzzy blobs there was no parallax effect, and because they were fuzzy it would be harder to measure than with a star. Even if they had been as close as nearby stars it would be hard to tell. “Close” in astronomy can still mean way out in the Milky Way, many tens or hundreds of trillions of kilometers away. Figure 2: Top: Two fuzzy objects in the sky, from an observer’s perspective look like they are the same size. Bottom: The same two fuzzy objects are actually different sizes, but one is closer and the other is farther. Friends of the DAO - ExoExplorations - https://centreoftheuniverse.org/exoexplorations 4 ​ Activity 1 - Things that are different sizes can look like they are the same size If we do know the size of something, we can measure the distance to it by measuring how big it looks. Let’s try that using coins. Make sure the coins are a noticeably different size, like a dime and a loonie. Measure the size of each coin. You can use a ruler to measure the distance from one side of the coin to the opposite side. It will help to write down your measurements. Place the bigger coin on a surface so you can look straight down on it. One end of the ruler should be near the coin and the other end near your eye (be careful). Close the eye furthest from the ruler. Now hold the smaller coin above the bigger coin to see how it can look bigger when it is closer to you, and look smaller when it is farther away. Figure 3 shows a picture of how we did this. If you hold it at the right distance from your eye, the smaller coin will appear to be the same size as the larger coin. Figure 3: The bigger coin (loonie) on a table 30cm from our eye, and a dime held closer. To find out what that distance is, we will need to do some calculations. A ruler is usually about 30 cm long, so we’re going to make that the distance (the ruler will point straight up from the big coin). If you divide the size of the coin by the distance to it, you will get a size-to-distance ratio. This new number tells you how big the coin looks from that distance. That means if another coin appears to be the same size, it will have that same ratio! In fact, you can see this at work in the diagram in Figure 2. Friends of the DAO - ExoExplorations - https://centreoftheuniverse.org/exoexplorations 5 ​ To find out how far away from your eye the small coin needs to be to appear the same size, we just take the size of the small coin, and divide it by the size-to-distance ratio. Now, when you hold the small coin at that distance you just calculated, you will see that it will appear to be the same size.
Recommended publications
  • The NICMOS Snapshot Survey of Nearby Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The NICMOS snapshot survey of nearby galaxies T. B¨oker1, D. Calzetti, W. Sparks, D. Axon1, L. E. Bergeron, H. Bushouse, L. Colina1, D. Daou, D. Gilmore, S. Holfeltz, J. MacKenty, L. Mazzuca, B. Monroe, J. Najita, K. Noll, A. Nota1,C. Ritchie, A. Schultz, M. Sosey, A. Storrs, A. Suchkov (the STScI NICMOS group) Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, U.S.A. ABSTRACT We present “snapshot” observations with the NearInfrared Camera and MultiObject Spectrometer (NICMOS) on board the Hubble Space Telescope (HST) of 94 nearby galaxies from the Revised Shapley Ames Catalog. Images with 0.200 resolution were obtained in two filters, a broad-band continuum filter (F160W, roughly equivalent to the H-band) and a narrow band filter centered on the Pa α line (F187N or F190N, depending on the galaxy redshift) with the 5100 5100 field of view of the NICMOS camera 3. A first- order continuum subtraction is performed,× and the resulting line maps and integrated Pa α line fluxes are presented. A statistical analysis indicates that the average Pa α surface brightness in the central regions is highest in early-type (Sa-Sb) spirals. Subject headings: infrared:galaxies—infrared:ISM:lines and bands—galaxies:nuclei— galaxies:starburst—galaxies:statistics 1Affiliated with the Astrophysics Division, Space Science Department, European Space Agency 1 1. Introduction with the NIC3 F190N filter. The velocity range was chosen such that the Pa α line falls well inside the NICMOS is a second generation HST instrument, high transmission region of the respective filter, with installed during the HST servicing mission in Febru- only minor corrections ( 5%) needed to account for ary 1997.
    [Show full text]
  • The Birth of Stars and Planets
    Unit 6: The Birth of Stars and Planets This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ​ ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion ​ ​ ​ ​ ​ questions at the end of each topic in this Unit. These should give more background on ​ each subject and spark further classroom ideas. We would be happy to help you ​ expand on each topic and develop your own ideas for your students. Contact us at ​ the [email protected]. ​ ​ Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ​ ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†ˆ€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H NGC 7192 GALXY IND 22 06.8 -64 19 11.2 1.9 m 1.8 m Elliptical pB,S,R,pmbM 134 NGC 7219 GALXY TUC 22 13.1 -64 51 12.5 1.7 m 1 m 27 SBa pB,S,R,2st nr 134 NGC 7329 GALXY TUC 22 40.4 -66 29 11.3 3.7 m 2.7 m 107 SBbc Ring pB,pS,mE90 134 NGC 7417 GALXY TUC 22 57.8 -65 02 12.3 1.9 m 1.3 m 2 SBab Ring pB,cS,R,gpmbM 134 NGC 7637 GALXY OCT 23 26.5 -81 55 12.5 2.1 m 1.9 m Sc vF,pL,R,vlbM,* nr 134 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H Mel 227 OPNCL OCT 20 12.1 -79 19 5.3 50.0 m II 2 p 135 NGC 6872 GALXY PAV 20 17.0 -70 46 11.8 6.3 m 2.2 m 66 SBb/P F,pS,lE,glbM,1st of 4 135 NGC 6876 GALXY PAV 20 18.3 -70 52 11.1 3 m 2.6 m 80 E3 pB,S,R,eS* sf,2nd of 4 135 NGC 6877 GALXY PAV 20 18.6 -70 51 12.2 2 m 1 m 169 E6 vF,vS,R,3rd of 4 135 NGC 6880 GALXY PAV 20 19.5 -70 52 12.2 2.1 m 1.3 m 35 SBO-a F,S,R,r,vS* att,4 of 4 135 NGC 6920 GALXY OCT 20 44.0 -80 00 12.5 1.8 m 1.5 m SO pB,cS,R,psmbM 135 NGC 6943 GALXY PAV 20 44.6 -68 45 11.4 4 m 2.2 m 130 SBc pF,L,mE,vglbM vS* 135 IC 5052 GALXY PAV 20 52.1 -69 12 11.2 5.9 m 0.9 m 143 SBcd F,L,eE 140 deg 135 NGC 7020 GALXY PAV 21 11.3 -64 02 11.8 3.5 m 1.6 m 165 SBO-a Ring pB,cS,lE,pgbM 135 NGC 7083 GALXY IND 21 35.7 -63 54 11.2 3.6 m 2.1 m 5 Sbc pF,cL,vlE,vgpmbM,r 135 NGC 7096 GALXY IND 21 41.3 -63 55 11.9 1.8 m 1.6 m 130 Sa vF,S,R,vS** nf 135 NGC 7098 GALXY OCT 21 44.3 -75 07 11.3 4 m 2.6 m 74 SB Ring pF,R,g,psmbM,am st 135 NGC 7095 GALXY OCT 21 52.4 -81 32 11.5 4 m 3.3 m Sc F,pL,R,vglbM,*13 inv 135 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Arxiv:1007.4547V2 [Astro-Ph.CO]
    ApJS, in press Preprint typeset using LATEX style emulateapj v. 11/10/09 OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES John Moustakas1, Robert C. Kennicutt, Jr.2,3, Christy A. Tremonti4, Daniel A. Dale5, John-David T. Smith6, Daniela Calzetti7 ApJS, in press ABSTRACT We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnu- clear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically cali- brated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publically available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGN), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star-forming versus AGN is a strong function of the integrated light enclosed by the spec- troscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H ii regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H ii- region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally-averaged) gas-phase oxygen abundances of all 75 SINGS galaxies.
    [Show full text]
  • Cosmic Times Teachers' Guide Table of Contents
    Cosmic Times Teachers’ Guide Table of Contents Cosmic Times Teachers’ Guide ....................................................................................... 1 1919 Cosmic Times ........................................................................................................... 3 Summary of the 1919 Articles...................................................................................................4 Sun’s Gravity Bends Starlight .................................................................................................4 Sidebar: Why a Total Eclipse?.................................................................................................4 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............4 Expanding or Contracting? ......................................................................................................4 In Their Own Words................................................................................................................4 Notes on the 1919 Articles .........................................................................................................5 Sun's Gravity Bends Starlight..................................................................................................5 Sidebar: Why a Total Eclipse?.................................................................................................7 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............7 Expanding or Contracting? ......................................................................................................8
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • An Ultraviolet-To-Radio Broadband Spectral Atlas of Nearby Galaxies
    June 30, 2006 Version 2.0 An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies D.A. Dale1, A. Gil de Paz2, K.D. Gordon3, L. Armus4, G.J. Bendo5, L. Bianchi6, S. Boissier7, D. Calzetti8, C.W. Engelbracht3, H.M. Hanson1, G. Helou9, R.C. Kennicutt10;3, B.F. Madore7, D.C. Martin11, M.J. Meyer8, M.W. Regan8, J.D.T. Smith3, M.L. Sosey8 et al. ABSTRACT The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey. A principal component analysis of the sample shows that most of the sample's spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope). Similar to previous ¯ndings on normal star-forming galaxies, compared to starbursting galaxies the SINGS sample shows a larger dispersion in a plot of infrared-to-ultraviolet versus ultraviolet spectral slope. Much of this dispersion derives from the quiescent, early- type galaxies in the SINGS sample, which show signi¯cantly redder ultraviolet spectral slopes than do starbursts at a given infrared-to-ultraviolet ratio. A new discovery shows that the 24 ¹m morphology (smooth, clumpy, or point-like) can be a useful tool for parametrizing the global dust temperature and ultraviolet extinction in nearby galaxies. Subject headings: infrared: galaxies | infrared: ISM 1Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071; [email protected] 2Departamento de Astro¯sica, Universidad Complutense, Avenida de la Complutense s/n, Madrid, E-28040, Spain 3Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 4Spitzer Science Center, California Institute of Technology, M.S.
    [Show full text]
  • Curtis/Shapley Debate – 1920 (This Text Is Taken from the Web –
    Curtis/Shapley Debate – 1920 (this text is taken from the Web – http://antwrp.gsfc.nasa.gov/diamond_jubilee/debate20.html) A Mediocre Discussion? “The Size and Shape of the Galaxy/Cosmos And the Existence of other Galaxies” Does it really matter that two astronomers debated each other in the beginning of the 20th century? It is now clear that a once little heard-of discussion was at the crux of a major change of humanity's view of our place in the universe. The events that happened in the first quarter of our century were together much more than a debate - this is a story of hu- manity's discovery of the vastness of our universe, a story of a seemingly small academic disagreement whose dramatic resolution staggered the world. It is a story of human drama - two champion astronomers struggling at the focus of a raging controversy whose solution represents an inspiring synthesis of old and new ideas. It is the story of monumen- tal insight and tragic error. It is a story of an astronomical legend. Does this sound melodramatic? It s all true. And it happened this century. In 1920 Harlow Shapley was a young ambitious astronomer. He had published a series of papers marking several fas- cinating astronomical discoveries - many times involving properties of stars in binary systems or globular clusters. He was a rising star himself - a golden boy of astronomy. In 1920 Heber D. Curtis was a bit older, more established, and very well respected in his own right. He had published a series of solid papers on good astronomical results - many times on the properties of spiral nebulae.
    [Show full text]
  • Arxiv:1011.4295V2 [Astro-Ph.GA] 24 Feb 2011 Nheacia Oddr Atrmdl Eg Ec Ta.20) the 2004)
    Discovery of Nuclear X-ray Sources in SINGS Galaxies C. J. Grier1, S. Mathur1, H. Ghosh2, L. Ferrarese3 ABSTRACT We present the results of a search for nuclear X-ray activity in nearby galaxies using Chandra archival data in a sample of 62 galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). We detect 37 nuclear X-ray sources; seven of these are new detections. Most of the nuclear X-ray sources are likely to be AGNs. The fraction of galaxies hosting AGNs is thus about 60%, much higher than that found with optical searches, and demonstrates the efficacy of X-ray observations to find hidden AGNs in optically normal galaxies. We find that the nuclear X-ray sources are preferentially present in earlier type galaxies. Unlike what is observed at high redshift for high-luminosity AGNs, we do not find a strong correlation between the AGN luminosity and the 24µm luminosity of the host galaxy; we find a strong correlation with the 3.6µm luminosity instead. This suggests that at the present epoch the accretion rate depends on the total mass of the galaxy, as perhaps does the black hole mass. Subject headings: galaxies: active — galaxies: nuclei — X-rays: galaxies 1. INTRODUCTION The past decade has seen extraordinary growth in our understanding of supermassive black holes (SMBHs), with secure detections, mass measurements and new demographic information (see Ferrarese & Ford 2005 and references therein; FF05 hereafter). Knowledge arXiv:1011.4295v2 [astro-ph.GA] 24 Feb 2011 of the mass function of SMBHs directly affects our understanding of SMBH formation and growth, nuclear activity, and the relation of SMBHs to the formation and evolution of galaxies in hierarchical cold dark matter models (e.g.
    [Show full text]
  • Extra Credit: a Peer Panel Evaluation (Up to +2% on Final Grade)
    Extra Credit: A Peer Panel Evaluation (up to +2% on final grade) * You will need to decide which area of research you are focusing on and which telescope you are arguing for BY THE END OF THIS WEEK and let me know via a survey response (await email for this). * you will need to have a first, complete draft done by END OF NEXT WEEK * you will need to read a few others’ essays and offer a useful critique with a set of your peers, suggest improvements, and give a grade according to the rubric (you will need to schedule this outside of class and return comments to the proposers BY TUESDAY, NOVEMBER 29. * your final essay is due DECEMBER 1 at the beginning of class. THE DRAKE EQUATION. ARE WE ALONE? ARE WE ALONE? How many sun-like stars (with planets) have a planet in the habitable zone? Petigura et al. (2013) How many sun-like stars (with planets) have a planet in the habitable zone? Petigura et al. (2013) We didn’t have any clue until Kepler came along, just a few years ago. The best current estimate is that 20+10% of all sun-like stars have planets in their habitable zones. The Kepler Orrery: the incredible diversity of planetary systems. Shout out to Dan Fabrycky! The Kepler Orrery: the incredible diversity of planetary systems. Shout out to Dan Fabrycky! Time to zoom WAYYYY out… Time to zoom WAYYYY out… To do that, we better know how to measure distances to things well. “We are probably nearing the limit of all we can know about astronomy.” -1888 Simon Newcomb “We are probably nearing the limit of all we can know about astronomy.” -1888 “Flight by machines heavier than air is unpractical and insignificant, if not utterly impossible.” -1902 Simon Newcomb We already know a few ways of measuring distances… But that’s it so far! Or is it? We already know a few ways of measuring distances… 2.
    [Show full text]
  • Arxiv:1010.5129V1 [Astro-Ph.CO] 25 Oct 2010 Ricue[Ne Include AGN
    Accepted for publication in ApJ on 10 October 2010 A Preprint typeset using LTEX style emulateapj v. 2/16/10 THE MID-INFRARED HIGH-IONIZATION LINES FROM ACTIVE GALACTIC NUCLEI AND STAR FORMING GALAXIES⋆ Miguel Pereira-Santaella1,2, Aleksandar M. Diamond-Stanic3, Almudena Alonso-Herrero1,2,4, and George H. Rieke3 Accepted for publication in ApJ on 10 October 2010 ABSTRACT We used Spitzer/IRS spectroscopic data on 426 galaxies including quasars, Seyferts, LINER and H ii galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 µm and 24.3 µm (97.1 eV) and the [O IV]25.9 µm (54.9 eV) high- ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 µm (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the AGN dominates the [O IV] emission in most Seyfert galaxies, whereas star-formation adequately explains the observed [O IV] emission in optically classified H ii galaxies. Finally we computed photoionization models to determine the physical conditions of the narrow line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U −2 < -2.5 and the total hydrogen column density range is 20 < log nH (cm ) < 21.
    [Show full text]