The Electrical Structure of Two Supercell Storms During STEPS

Total Page:16

File Type:pdf, Size:1020Kb

The Electrical Structure of Two Supercell Storms During STEPS SEPTEMBER 2005 M A C GORMAN ET AL. 2583 The Electrical Structure of Two Supercell Storms during STEPS DONALD R. MACGORMAN AND W. DAVID RUST NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma PAUL KREHBIEL AND WILLIAM RISON New Mexico Institute of Mining and Technology, Socorro, New Mexico ERIC BRUNING Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma KYLE WIENS Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado (Manuscript received 30 July 2004, in final form 1 March 2005) ABSTRACT Balloon soundings were made through two supercell storms during the Severe Thunderstorm Electrifi- cation and Precipitation Study (STEPS) in summer 2000. Instruments measured the vector electric field, temperature, pressure, relative humidity, and balloon location. For the first time, soundings penetrated both the strong updraft and the rainy downdraft region of the same supercell storm. In both storms, the strong updraft had fewer vertically separated charge regions than found near the rainy downdraft, and the up- draft’s lowest charge was elevated higher, its bottom being near the 40-dBZ boundary of the weak-echo vault. The simpler, elevated charge structure is consistent with the noninductive graupel–ice mechanism dominating charge generation in updrafts. In the weak-echo vault, the amount of frozen precipitation and the time for particle interactions are too small for significant charging. Inductive charging mechanisms and lightning may contribute to the additional charge regions found at lower altitudes outside the updraft. Lightning mapping showed that the in-cloud channels of a positive ground flash could be in any one of the three vertically separated positive charge regions found outside the updraft, but were in the middle region, at 6–8 km MSL, for most positive ground flashes. The observations are consistent with the electrical structure of these storms having been inverted in polarity from that of most storms elsewhere. It is hy- pothesized that the observed inverted-polarity cloud flashes and positive ground flashes were caused by inverted-polarity storm structure, possibly due to a larger than usual rime accretion rate for graupel in a strong updraft. 1. Introduction was observed instead. These measurements, made at the ground, tended to be dominated by charge in the The distribution of charge is one of the fundamental lower part of storms. electrical properties of thunderstorms and was the sub- By 1950, the dominant paradigm of the thunderstorm ject of some of the earliest investigations of electricity. charge distribution was that it typically consists of three The earliest measurements were made in the eigh- vertically stacked charge regions: a large upper region teenth century by Benjamin Franklin and others, who of positive charge, a large middle region of negative demonstrated that negative charge usually was present charge, and a sporadic lower region containing a lesser in thunderstorms, though sometimes positive charge amount of positive charge (e.g., Wilson 1920; Simpson and Robinson 1941; Williams 1989). It was usually un- Corresponding author address: Don MacGorman, University of derstood that this described only the overall, gross Oklahoma/CIMMS, 100 E. Boyd, Rm. 1110, Norman, OK 73019. character of the distribution. Several years later, theory E-mail: [email protected] and airborne measurements indicated that a negative © 2005 American Meteorological Society Unauthenticated | Downloaded 09/29/21 02:31 PM UTC MWR2994 2584 MONTHLY WEATHER REVIEW VOLUME 133 screening layer charge typically forms on the upper evated higher than usual. Marshall et al. (1995) also cloud boundary, due to the discontinuity in electrical found a tendency for the height of the lowest charge in conductivity between cloud and clear air (e.g., Von- the strong updraft to increase with increasing updraft negut et al. 1962; Marshall and Rust 1991). speed. Outside the strong updrafts of supercell storms A more detailed analysis of electric-field soundings (as for other types of storms), the electric-field obser- through thunderstorms suggested that this paradigm vations showed more vertically stacked charge regions was too simple (Rust and Marshall 1996). A synthesis than in the strong updraft and showed charge extending of many electric-field soundings (Stolzenburg et al. down to lower altitudes. 1998b) suggested that the previous paradigm might be All published supercell soundings of the electric field sufficient for regions of strong updraft speeds (which thus far have consisted of only a single ascending Stolzenburg et al. defined as Ն10 m sϪ1). However, in sounding into either the strong updraft or weak updraft regions of weak updraft, the charge distribution was of each storm. None has included multiple soundings of more complex, with additional charge regions typically the same supercell storm to look at the change in elec- occurring below the lowest height of charge in the trical structure with time, and none has sampled the strong updraft core. Similar complexity of electrical rainy downdraft region and low-level precipitation structure was observed in the stratiform precipitation core. (The free ascent rate of the balloons is 3–5msϪ1 region of mesoscale convective systems (Stolzenburg et just after launch. Regions with downdraft speeds larger al. 1994, 1998b). than this, such as the rainy downdraft, cannot be The electrical properties of supercell storms have sampled by ascending balloons, but only by instruments been of interest since at least the 1950s [e.g., see review descending from above.) For none has a global posi- by MacGorman (1993)]. Lightning flash rates tend to tioning system (GPS) been available to provide more be much larger in supercell storms than in ordinary accurate tracking of balloons. Also, in no published su- isolated thunderstorms, and other unusual electrical percell case have polarimetric radar data been acquired phenomena have been reported for supercell storms or lightning flashes been mapped in three dimensions (e.g., Vonnegut and Weyer 1966). One issue, raised by for the storms into which soundings were flown. Rust et al. (1981) and others, is whether the electrical Data to begin addressing these issues were obtained properties of supercell storms represent a simple scal- during summer 2000 from the Severe Thunderstorm ing with size of the properties of normal thunderstorms, Electrification and Precipitation Study (STEPS) field or whether there are any basic differences in the elec- program (Lang et al. 2004) in Kansas, Colorado, and trical structure and evolution of supercell storms. Nebraska. The present study analyzes a total of four MacGorman et al. (1989) observed that the mesocy- balloon-borne electric-field soundings of two supercell clone region of a supercell storm had few, if any, cloud- storms that occurred during STEPS. One storm oc- to-ground flashes, though total flash rates were larger curred during the evening of 29–30 June, and the other, than in most other types of isolated storms. Ground during the evening of 5–6 July. flash rates increased as the mesocyclone weakened and the precipitation at middle levels of the mesocyclone 2. Instrumentation and analysis techniques descended. MacGorman et al. hypothesized that the lowest charge region in the updraft was elevated higher One of the primary sources of data for this study was than usual by the very large updraft speeds and rotation a balloon-borne electric-field meter of the type that has of the supercell storm and that this caused fewer been used for more than two decades (Winn et al. 1978; ground flashes than usual. The subsequent increase of MacGorman and Rust 1998, 127–131). Balloons were ground flash rates, they suggested, was caused by the launched into storms from a mobile laboratory, as de- descent of the main negative charge on precipitation scribed by Rust (1989) and Rust and Marshall (1989). and the formation of a small positive charge in precipi- The location of the balloon and simultaneous measure- tation below the negative charge. ments of temperature, pressure, humidity, and wind Simulations of supercell storms (Ziegler and were provided by radiosondes. These radiosondes were MacGorman 1994; Mansell 2000) showed elevated modified by the National Center for Atmospheric Re- charge structure in the updraft and showed charge re- search (NCAR) to have full GPS capability, and so gions occurring lower in the precipitation core than in provided more reliable tracking inside storms than pro- the updraft, consistent with the hypothesis. Similarly, vided by previously available radiosondes. Electric- from electric-field soundings, Marshall et al. (1995) and field data were processed to give the three-dimensional Stolzenburg et al. (1998a) found that charge in the electric-field vector as a function of time and location strong updrafts of supercell storms did tend to be el- along the balloon track, a new capability. The balloons Unauthenticated | Downloaded 09/29/21 02:31 PM UTC SEPTEMBER 2005 M A C GORMAN ET AL. 2585 used in STEPS were made of 15-␮m (0.6-mil) thick the horizontal components is zero. The technique tends plastic film, instead of the latex that had been used to indicate spurious charge regions as the balloon previously, so that the balloons would be more resistant moves toward or away from relatively small charge re- to hail damage and would
Recommended publications
  • Severe Storms in the Midwest
    Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References .......................................................................................................................
    [Show full text]
  • Infinity Summer Rain Safety Data Sheet
    Infinity Summer Rain Safety Data Sheet SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture Product name : Infinity Summer Rain Product code : 11414 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Deodorizer 1.3. Details of the supplier of the safety data sheet Val-U-Chem Inc. PO Box 82310 Phoenix, AZ 85071 - USA T 602-957-2808 - F 602-957-2980 1.4. Emergency telephone number Emergency number : 800-255-3924 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Eye Irrit. 2A H319 Skin Sens. 1 H317 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms : GHS07 Signal word : Warning Hazard statements : May cause an allergic skin reaction. Causes serious eye irritation. Precautionary statements : Avoid breathing mist, vapors. Wash hands and forearms thoroughly after handling. Contaminated work clothing must not be allowed out of the workplace. Wear eye protection, protective gloves. If on skin: Wash with plenty of water. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If skin irritation or rash occurs: Get medical advice/attention. If eye irritation persists: Get medical advice/attention. Take off contaminated clothing and wash it before reuse. Dispose of contents/container in accordance with Local, State, and Federal regulations. 2.3. Hazard not otherwise classified (HNOC) No additional information available 2.4. Unknown acute toxicity (GHS-US) No data available SECTION 3: Composition/information on ingredients 3.1.
    [Show full text]
  • Quantifying the Impact of Synoptic Weather Types and Patterns On
    1 Quantifying the impact of synoptic weather types and patterns 2 on energy fluxes of a marginal snowpack 3 Andrew Schwartz1, Hamish McGowan1, Alison Theobald2, Nik Callow3 4 1Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia 5 2Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia 6 3School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia 7 8 Correspondence to: Andrew J. Schwartz ([email protected]) 9 10 Abstract. 11 Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack 12 in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified 13 common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. 14 The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the 15 passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the 16 front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual 17 synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be 18 highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and 19 reflection/emission of longwave fluxes. As single-site energy balance measurements of the snowpack were used 20 for this study, caution should be exercised before applying the results to the broader Australian Alps region. 21 However, this research is an important step towards understanding changes in surface energy flux as a result of 22 shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter 23 snowpacks.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • The Interactions Between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred During the Summer Season
    502 MONTHLY WEATHER REVIEW VOLUME 126 NOTES AND CORRESPONDENCE The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season ANTHONY R. LUPO AND PHILLIP J. SMITH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 20 September 1996 and 2 May 1997 ABSTRACT Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analyses and the Zwack±Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data ®elds into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point.
    [Show full text]
  • Syringa Reticulata 'Summer Snow' 'Summer Snow' Japanese Tree Lilac
    Fact Sheet ST-612 October 1994 Syringa reticulata ‘Summer Snow’ ‘Summer Snow’ Japanese Tree Lilac1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Although a Lilac, this member of the species is quite different in appearance than those with which gardeners are more familiar (Fig. 1). Its rounded habit varies from symmetrical to irregular. Cultivars including ‘Ivory Silk’ and ‘Summer Snow’ could be used instead of the species due to the more consistent habit and more flowers. ‘Summer Snow’ is spectacular in flower and the persistent seed pods carry ornamental interest into the fall. This is a very large shrub or small tree, reaching a height of about 20 to 30 feet with a 20 to 25-foot-spread. The huge clusters of creamy white flowers, borne in early summer for about two weeks, are the main ornamental feature but lack the fragrance of the spring-blooming Lilacs -- this Lilac’s fragrance is more suggestive of privet. GENERAL INFORMATION Scientific name: Syringa reticulata ‘Summer Snow’ Pronunciation: sih-RING-guh reh-tick-yoo-LAY-tuh Common name(s): ‘Summer Snow’ Japanese Tree Lilac Family: Oleaceae USDA hardiness zones: 3A through 7A (Fig. 2) Figure 1. Mature ‘Summer Snow’ Japanese Tree Lilac. Origin: not native to North America Uses: container or above-ground planter; large has been successfully grown in urban areas where air parking lot islands (> 200 square feet in size); wide pollution, poor drainage, compacted soil, and/or tree lawns (>6 feet wide); medium-sized tree lawns drought are common (4-6 feet wide); recommended for buffer strips around Availability: somewhat available, may have to go out parking lots or for median strip plantings in the of the region to find the tree highway; near a deck or patio; screen; trainable as a standard; narrow tree lawns (3-4 feet wide); specimen; sidewalk cutout (tree pit); residential street tree; tree 1.
    [Show full text]
  • THE FOUR SEASONS These Four Sculptures—Spring, Summer
    THE FOUR SEASONS Matthew Geddes—Dean, College of Performing and Visual Arts hese four sculptures—Spring, Summer, Autumn, and Winter—are Ta current expression of themes and forms I have been exploring for years. I have long been intrigued by the idea of a figure sculpted from a wheel-thrown cylinder of clay. One inspiration came from the classical Greek Caryatids, architectural columns that have become human figures. Spring, Summer, I began my studio art as a potter, throwing forms and vessels on the wheel. Autumn, and Winter. I find myself evolving into a sculptor interested primarily in the human figure, so it seems natural that as I develop my interest I would rely on Bronze sculptures by a variation of a method I know well. Matthew Geddes. Though I have made figures from thrown vessels before, The Four Seasons marks new territory for me in three ways: I am working in series; I am exploring the new medium of bronze, and I am playing with ideas of color. The virtue of series work is that the individual pieces are in dialogue with one another. They invite comparison. They comment on each other. For example, I have worked seasonal icons—flower, sun, leaf, snow—into the pieces. Also, the attitude of each seasonal figure is a variation of that of her sisters: summer looks up in a stance of joy whereas autumn looks back in a contemplative mood. These pieces may stand individually, but I intend them to be grouped into a whole. As I worked with the seasonal the power of art • 85 sisters, many ideas came to me, ideas I have explored in my sketchbook and which may in turn evolve into future sculptural projects: Continents (Europe, Asia, America, Africa) and Attributes (graces, virtues, vices).
    [Show full text]
  • Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland
    182 WEATHER AND FORECASTING VOLUME 30 Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland ARI-JUHANI PUNKKA Finnish Meteorological Institute, Helsinki, Finland MARJA BISTER Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Helsinki, Finland (Manuscript received 9 December 2013, in final form 14 October 2014) ABSTRACT The environments within which high-latitude intense and nonintense mesoscale convective systems (iMCSs and niMCSs) and smaller thunderstorm clusters (sub-MCSs) develop were studied using proximity soundings. MCS statistics covering 8 years were created by analyzing composite radar imagery. One-third of all systems were intense in Finland and the frequency of MCSs was highest in July. On average, MCSs had a duration of 10.8 h and traveled toward the northeast. Many of the linear MCSs had a southwest–northeast line orienta- tion. Interestingly, a few MCSs were observed to travel toward the west, which is a geographically specific feature of the MCS characteristics. The midlevel lapse rate failed to distinguish the environments of the different event types from each other. However, in MCSs, CAPE and the low-level mixing ratio were higher, the deep-layer-mean wind was stronger, and the lifting condensation level (LCL) was lower than in sub- MCSs. CAPE, low-level mixing ratio, and LCL height were the best discriminators between iMCSs and niMCSs. The mean wind over deep layers distinguished the severe wind–producing events from the nonsevere events better than did the vertical equivalent potential temperature difference or the wind shear in shallow layers. No evidence was found to support the hypothesis that dry air at low- and midlevels would increase the likelihood of severe convective winds.
    [Show full text]
  • Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
    From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream.
    [Show full text]
  • Natick Recreation and Parks 2021 Summer Brochure
    Natick Recreation and Parks 2021 Summer Brochure Striving to meet the needs of all families in Natick Photo by resident Jackie Ding taken at Jennings Pond. Registration begins April 15, 2021 at 12:00 pm and is open for Natick residents ONLY unless otherwise specified. Register online at https://register.communitypass.net/natick or for questions prior to registration, please call 508-647-6530. Hello Residents, Recreation and Parks is committed to ensuring all Natick residents have the opportunity to experience physical and mental wellness through quality recreation programing. I am sure you will find something within our summer 2021 offerings to enhance your lives in Natick. It is a privilege to serve this wonderful community and I take great pride in offering equitable and inclusive programs to our citizens. Follow us on Facebook, Instagram, and Youtube to make sure you don’t miss out on our daily happenings! **Please note, as the Massachusetts reopening plans progress and change, so will our programs. Each program will comply with the current state guidelines that are in effect during the dates of each program. -Karen Partanen, Recreation & Parks Director RECREATION AND PARKS DEPARTMENT Business Hours: 179 Boden Lane Monday – Friday Natick Ma, 01760 8:00 am – 5:00 pm Phone: 508-647-6530 Every program and activity in the Recreation and Parks Fax: 508-647-6535 Department is open to all, regardless of race, religion, Website: www.natickma.gov/recreation color, sex, marital status, national origin, or persons with Facebook: facebook.com/NatickRecParks
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]
  • Mesoscale Convective Systems
    OCTOBER 2007 S T E I G E R E T A L . 3303 Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part II: Mesoscale Convective Systems SCOTT M. STEIGER Department of Earth Sciences, State University of New York at Oswego, Oswego, New York RICHARD E. ORVILLE AND LAWRENCE D. CAREY Department of Atmospheric Sciences, Texas A&M University, College Station, Texas (Manuscript received 4 April 2006, in final form 25 January 2007) ABSTRACT Total lightning data from the Lightning Detection and Ranging (LDAR II) research network in addition to cloud-to-ground flash data from the National Lightning Detection Network (NLDN) and data from the Dallas–Fort Worth, Texas, Weather Surveillance Radar-1988 Doppler (WSR-88D) station (KFWS) were examined from individual cells within mesoscale convective systems that crossed the Dallas–Fort Worth region on 13 October 2001, 27 May 2002, and 16 June 2002. LDAR II source density contours were comma shaped, in association with severe wind events within mesoscale convective systems (MCSs) on 13 October 2001 and 27 May 2002. This signature is similar to the radar reflectivity bow echo. The source density comma shape was apparent 15 min prior to a severe wind report and lasted more than 20 min during the 13 October storm. Consistent relationships between severe straight-line winds, radar, and lightning storm cell characteristics (e.g., lightning heights) were not found for cells within MCSs as was the case for severe weather in supercells in Part I of this study. Cell interactions within MCSs are believed to weaken these relationships as reflectivity and lightning from nearby storms contaminate the cells of interest.
    [Show full text]