The Electrical Structure of Two Supercell Storms During STEPS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Severe Storms in the Midwest
Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References ....................................................................................................................... -
Infinity Summer Rain Safety Data Sheet
Infinity Summer Rain Safety Data Sheet SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture Product name : Infinity Summer Rain Product code : 11414 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Deodorizer 1.3. Details of the supplier of the safety data sheet Val-U-Chem Inc. PO Box 82310 Phoenix, AZ 85071 - USA T 602-957-2808 - F 602-957-2980 1.4. Emergency telephone number Emergency number : 800-255-3924 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Eye Irrit. 2A H319 Skin Sens. 1 H317 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms : GHS07 Signal word : Warning Hazard statements : May cause an allergic skin reaction. Causes serious eye irritation. Precautionary statements : Avoid breathing mist, vapors. Wash hands and forearms thoroughly after handling. Contaminated work clothing must not be allowed out of the workplace. Wear eye protection, protective gloves. If on skin: Wash with plenty of water. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If skin irritation or rash occurs: Get medical advice/attention. If eye irritation persists: Get medical advice/attention. Take off contaminated clothing and wash it before reuse. Dispose of contents/container in accordance with Local, State, and Federal regulations. 2.3. Hazard not otherwise classified (HNOC) No additional information available 2.4. Unknown acute toxicity (GHS-US) No data available SECTION 3: Composition/information on ingredients 3.1. -
Quantifying the Impact of Synoptic Weather Types and Patterns On
1 Quantifying the impact of synoptic weather types and patterns 2 on energy fluxes of a marginal snowpack 3 Andrew Schwartz1, Hamish McGowan1, Alison Theobald2, Nik Callow3 4 1Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia 5 2Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia 6 3School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia 7 8 Correspondence to: Andrew J. Schwartz ([email protected]) 9 10 Abstract. 11 Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack 12 in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified 13 common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. 14 The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the 15 passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the 16 front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual 17 synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be 18 highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and 19 reflection/emission of longwave fluxes. As single-site energy balance measurements of the snowpack were used 20 for this study, caution should be exercised before applying the results to the broader Australian Alps region. 21 However, this research is an important step towards understanding changes in surface energy flux as a result of 22 shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter 23 snowpacks. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
The Interactions Between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred During the Summer Season
502 MONTHLY WEATHER REVIEW VOLUME 126 NOTES AND CORRESPONDENCE The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season ANTHONY R. LUPO AND PHILLIP J. SMITH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 20 September 1996 and 2 May 1997 ABSTRACT Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analyses and the Zwack±Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data ®elds into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point. -
Syringa Reticulata 'Summer Snow' 'Summer Snow' Japanese Tree Lilac
Fact Sheet ST-612 October 1994 Syringa reticulata ‘Summer Snow’ ‘Summer Snow’ Japanese Tree Lilac1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Although a Lilac, this member of the species is quite different in appearance than those with which gardeners are more familiar (Fig. 1). Its rounded habit varies from symmetrical to irregular. Cultivars including ‘Ivory Silk’ and ‘Summer Snow’ could be used instead of the species due to the more consistent habit and more flowers. ‘Summer Snow’ is spectacular in flower and the persistent seed pods carry ornamental interest into the fall. This is a very large shrub or small tree, reaching a height of about 20 to 30 feet with a 20 to 25-foot-spread. The huge clusters of creamy white flowers, borne in early summer for about two weeks, are the main ornamental feature but lack the fragrance of the spring-blooming Lilacs -- this Lilac’s fragrance is more suggestive of privet. GENERAL INFORMATION Scientific name: Syringa reticulata ‘Summer Snow’ Pronunciation: sih-RING-guh reh-tick-yoo-LAY-tuh Common name(s): ‘Summer Snow’ Japanese Tree Lilac Family: Oleaceae USDA hardiness zones: 3A through 7A (Fig. 2) Figure 1. Mature ‘Summer Snow’ Japanese Tree Lilac. Origin: not native to North America Uses: container or above-ground planter; large has been successfully grown in urban areas where air parking lot islands (> 200 square feet in size); wide pollution, poor drainage, compacted soil, and/or tree lawns (>6 feet wide); medium-sized tree lawns drought are common (4-6 feet wide); recommended for buffer strips around Availability: somewhat available, may have to go out parking lots or for median strip plantings in the of the region to find the tree highway; near a deck or patio; screen; trainable as a standard; narrow tree lawns (3-4 feet wide); specimen; sidewalk cutout (tree pit); residential street tree; tree 1. -
THE FOUR SEASONS These Four Sculptures—Spring, Summer
THE FOUR SEASONS Matthew Geddes—Dean, College of Performing and Visual Arts hese four sculptures—Spring, Summer, Autumn, and Winter—are Ta current expression of themes and forms I have been exploring for years. I have long been intrigued by the idea of a figure sculpted from a wheel-thrown cylinder of clay. One inspiration came from the classical Greek Caryatids, architectural columns that have become human figures. Spring, Summer, I began my studio art as a potter, throwing forms and vessels on the wheel. Autumn, and Winter. I find myself evolving into a sculptor interested primarily in the human figure, so it seems natural that as I develop my interest I would rely on Bronze sculptures by a variation of a method I know well. Matthew Geddes. Though I have made figures from thrown vessels before, The Four Seasons marks new territory for me in three ways: I am working in series; I am exploring the new medium of bronze, and I am playing with ideas of color. The virtue of series work is that the individual pieces are in dialogue with one another. They invite comparison. They comment on each other. For example, I have worked seasonal icons—flower, sun, leaf, snow—into the pieces. Also, the attitude of each seasonal figure is a variation of that of her sisters: summer looks up in a stance of joy whereas autumn looks back in a contemplative mood. These pieces may stand individually, but I intend them to be grouped into a whole. As I worked with the seasonal the power of art • 85 sisters, many ideas came to me, ideas I have explored in my sketchbook and which may in turn evolve into future sculptural projects: Continents (Europe, Asia, America, Africa) and Attributes (graces, virtues, vices). -
Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland
182 WEATHER AND FORECASTING VOLUME 30 Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland ARI-JUHANI PUNKKA Finnish Meteorological Institute, Helsinki, Finland MARJA BISTER Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Helsinki, Finland (Manuscript received 9 December 2013, in final form 14 October 2014) ABSTRACT The environments within which high-latitude intense and nonintense mesoscale convective systems (iMCSs and niMCSs) and smaller thunderstorm clusters (sub-MCSs) develop were studied using proximity soundings. MCS statistics covering 8 years were created by analyzing composite radar imagery. One-third of all systems were intense in Finland and the frequency of MCSs was highest in July. On average, MCSs had a duration of 10.8 h and traveled toward the northeast. Many of the linear MCSs had a southwest–northeast line orienta- tion. Interestingly, a few MCSs were observed to travel toward the west, which is a geographically specific feature of the MCS characteristics. The midlevel lapse rate failed to distinguish the environments of the different event types from each other. However, in MCSs, CAPE and the low-level mixing ratio were higher, the deep-layer-mean wind was stronger, and the lifting condensation level (LCL) was lower than in sub- MCSs. CAPE, low-level mixing ratio, and LCL height were the best discriminators between iMCSs and niMCSs. The mean wind over deep layers distinguished the severe wind–producing events from the nonsevere events better than did the vertical equivalent potential temperature difference or the wind shear in shallow layers. No evidence was found to support the hypothesis that dry air at low- and midlevels would increase the likelihood of severe convective winds. -
Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream. -
Natick Recreation and Parks 2021 Summer Brochure
Natick Recreation and Parks 2021 Summer Brochure Striving to meet the needs of all families in Natick Photo by resident Jackie Ding taken at Jennings Pond. Registration begins April 15, 2021 at 12:00 pm and is open for Natick residents ONLY unless otherwise specified. Register online at https://register.communitypass.net/natick or for questions prior to registration, please call 508-647-6530. Hello Residents, Recreation and Parks is committed to ensuring all Natick residents have the opportunity to experience physical and mental wellness through quality recreation programing. I am sure you will find something within our summer 2021 offerings to enhance your lives in Natick. It is a privilege to serve this wonderful community and I take great pride in offering equitable and inclusive programs to our citizens. Follow us on Facebook, Instagram, and Youtube to make sure you don’t miss out on our daily happenings! **Please note, as the Massachusetts reopening plans progress and change, so will our programs. Each program will comply with the current state guidelines that are in effect during the dates of each program. -Karen Partanen, Recreation & Parks Director RECREATION AND PARKS DEPARTMENT Business Hours: 179 Boden Lane Monday – Friday Natick Ma, 01760 8:00 am – 5:00 pm Phone: 508-647-6530 Every program and activity in the Recreation and Parks Fax: 508-647-6535 Department is open to all, regardless of race, religion, Website: www.natickma.gov/recreation color, sex, marital status, national origin, or persons with Facebook: facebook.com/NatickRecParks -
Massachusetts Tropical Cyclone Profile August 2021
Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide. -
Mesoscale Convective Systems
OCTOBER 2007 S T E I G E R E T A L . 3303 Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part II: Mesoscale Convective Systems SCOTT M. STEIGER Department of Earth Sciences, State University of New York at Oswego, Oswego, New York RICHARD E. ORVILLE AND LAWRENCE D. CAREY Department of Atmospheric Sciences, Texas A&M University, College Station, Texas (Manuscript received 4 April 2006, in final form 25 January 2007) ABSTRACT Total lightning data from the Lightning Detection and Ranging (LDAR II) research network in addition to cloud-to-ground flash data from the National Lightning Detection Network (NLDN) and data from the Dallas–Fort Worth, Texas, Weather Surveillance Radar-1988 Doppler (WSR-88D) station (KFWS) were examined from individual cells within mesoscale convective systems that crossed the Dallas–Fort Worth region on 13 October 2001, 27 May 2002, and 16 June 2002. LDAR II source density contours were comma shaped, in association with severe wind events within mesoscale convective systems (MCSs) on 13 October 2001 and 27 May 2002. This signature is similar to the radar reflectivity bow echo. The source density comma shape was apparent 15 min prior to a severe wind report and lasted more than 20 min during the 13 October storm. Consistent relationships between severe straight-line winds, radar, and lightning storm cell characteristics (e.g., lightning heights) were not found for cells within MCSs as was the case for severe weather in supercells in Part I of this study. Cell interactions within MCSs are believed to weaken these relationships as reflectivity and lightning from nearby storms contaminate the cells of interest.