December 2007 Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

December 2007 Table of Contents Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Quadratic Diophantine Equations Fibonacci’s De Practica T. Andreescu , University of Dallas, Dallas, TX, USA; D. Andrica , Geometrie University Cluj-Napoca, Romania B. Hughes , Sherman Oaks, CA, USA This text treats the classical theory of quadratic diophantine Leonardo da Pisa, better known as of the American Mathematical Society equations and guides the reader through the last two decades of Fibonacci, selected the most useful parts December 2007 Volume 54, Number 11 computational techniques and progress in the area. The of Greco-Arabic geometry for the book De presentation features two basic methods to investigate and Practica Geometrie. This translation is a motivate the study of quadratic diophantine equations: the theories reconstruction of the book as the author of continued fractions and quadratic fi elds. It also discusses Pell’s judges Fibonacci wrote it, thereby equation and its generalizations, and presents some important correcting inaccuracies found in modern histories. It is a high quality quadratic diophantine equations and applications. The inclusion of translation with supplemental text to explain text that has been examples makes this book useful for both research and classroom more freely translated. A bibliography of primary and secondary settings. resources, completed by an index of names and special words is included. 2008. Approx. 250 p. 20 illus. (Springer Monographs in Mathematics) Softcover 2008. Approx. 320 p. 416 illus. (Sources and Studies in the History of ISBN 978-0-387-35156-8 7 approx. $59.95 Mathematics and Physical Sciences) Hardcover ISBN 978-0-387-72930-5 7 approx. $129.00 Topological Methods in Group Theory History of Mathematics R. Geoghegan , State University of New A Supplement York at Binghamton, NY, USA C. Smoryński , Westmont, IL, USA This book is about the interplay between Craig Smoryński’s History of Mathematics algebraic topology and the theory of off ers a narrow but deeper coverage of a infi nite discrete groups, with a focus on the few select topics, providing students with theory of ends. While early chapters cover material that encourages more critical standard topics from a 1st year algebraic thinking. It also includes the proofs of topology course, the author has also included unique topics such as important results which are typically Starting with Bass-Serre theory, Coxeter groups, Thompson groups, Whitehead’s neglected in the modern history of mathematics curriculum, as well the Group contractible 3-manifold, Davis’s exotic contractible manifolds in as many other unique features. dimensions greater than three, the Bestvina-Brady Theorem, and SL (R) the Bieri-Neumann-Strebel invariant. 2008. Approx. 275 p. 42 illus. Hardcover 2 ISBN 978-0-387-75480-2 7 $49.95 2008. Approx. 480 p. 41 illus. (Graduate Texts in Mathematics, page 1458 Volume 243) Hardcover Mathematics as ISBN 978-0-387-74611-1 approx. $59.95 7 Volume 54, Number 11, Pages 1449–1592, December 2007 Problem Solving New to Irving Kaplansky Springer A. Soifer , University of Colorado, Colorado (1917–2006) Springs, CO, USA This insightful book explores various problem-solving techniques page 1477 and enhances the readers’ level of understanding of algebraic, geometric, and combinatoric problems. Great reviews from YELLOW SALE 2007: Big savings on 250 excellent prominent mathematicians distinguish this book as a “mathematical titles spanning the spectrum of Mathematics! gem”, outlining classical solutions and open problems that appeal to a broad audience. Mathematics as Problem-Solving encourages To order readers to approach problems from diff erent angles in order to 7 VISIT your local bookstore experience their own “mathematical discovery.” 7 Go To springer.com/sales 7 Alexander Soifer has opened up his heart – and in the process his 7 Call 1-800-SPRINGER great love for mathematics, his creative ability, his respect for and skill in teaching, his joy in living all shine through 7 Philip L. Engel (Sale prices valid only in the Americas and expire 12/31/2007) 1st ed. 1987. 2nd printing 2008. Approx. 130 p. 67 illus. Softcover ISBN 978-0-387-74646-3 7 $19.95 Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER 7 Fax: +1(201)348-4505 7 Email: [email protected] or for outside the Americas 7 Write: Springer Distribution Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 Email: [email protected] Prices are subject to change without notice. All prices are net prices. 7 7 013369x From the Museum of Associahedra (see page 1516) Trim: 8.25" x 10.75" 144 pages on 40 lb Cougar Opaque • Spine: 1/4" • Print Cover on 9pt Carolina ,!4%8 ,!4%8 ,!4%8 Pro New & Forthcoming from Birkhäuser Winner of the Ferran Sunyer i Balaguer Prize 2007 Spectral Theory of Infi nite- The Theory of the Top Area Hyperbolic Surfaces Volume I: Introduction to the Kinematics Determinantal Ideals DAVID BORTHWICK, Emory University, Atlanta, GA, USA and Kinetics of the Top ROSA M. MIRÓ-ROIG, Universitat de Barcelona, Spain FELIX KLEIN; ARNOLD SOMMERFELD This book introduces geometric spectral theory This comprehensive overview of determinantal ideals in the context of infi nite-area Riemann surfaces, Translated by RAYMOND J. NAGEM and GUIDO SANDRI, both Boston University, MA, USA includes an analysis of the latest results in the fi eld. providing a comprehensive account of dramatic The author develops new insights into addressing and recent developments in the fi eld. The spectral theory The lecture series on The Theory of the Top was solving open problems in liaison theory and Hilbert of hyperbolic surfaces is a point of intersection for originally given as a dedication to Göttingen University schemes. Three principal problems are addressed a great variety of areas, including quantum physics, by Felix Klein in 1895, but has since found broader in the book: CI-liaison class and G-liaison class discrete groups, differential geometry, number theory, appeal. This volume is the fi rst of a series of four self- of standard determinantal ideals; the multiplicity complex analysis, spectral theory, and ergodic theory. contained English translations that provide insights conjecture for standard determinantal ideals; and The book highlights these connections, at a level into kinetic theory and kinematics, with a focus on unobstructedness and dimension of families of accessible to graduate students and researchers from providing background material and basic theoretical standard determinantal ideals. a wide range of fi elds. concepts. 2008/APPROX. 155 PP./HARDCOVER Topics covered include an introduction to the 2008/APPROX. 315 PP., 159 ILLUS./HARDCOVER ISBN 9783764385347/$54.95 geometry of hyperbolic surfaces, analysis of the ISBN 9780817647209/$59.95 TENT. PROGRESS IN MATHEMATICS, VOL. 264 resolvent of the Laplacian, characterization of the spectrum, scattering theory, resonances and scattering Winner of the Ferran Sunyer i poles, the Selberg zeta function, the Poisson formula, The Maximum Principle Balaguer Prize 2006 distribution of resonances, the inverse scattering PATRIZIA PUCCI, Università degli Studi di Perugia, Italy; problem, Patterson–Sullivan theory, and the dynamical JAMES SERRIN, University of Minnesota, MN, USA Holomorphic Morse Inequalities approach to the zeta function. Maximum principles are fundamental results in and Bergman Kernels 2008/XII, 356 PP., 10 ILLUS./HARDCOVER the theory of second order elliptic equations. This XIAONAN MA, Ecole Polytechnique, Paris, France; ISBN 9780817645243/$59.95 principle lends itself to a quite remarkable number GEORGE MARINESCU, University of Köln, Germany PROGRESS IN MATHEMATICS, VOL. 256 of subtle uses when combined appropriately with other notions. Intended for a wide audience, this book This book is a self-contained and unifi ed approach to provides a clear and comprehensive explanation of the holomorphic Morse inequalities and the asymptotic Nonlinear Oscillations of various maximum principles available in elliptic theory, expansion of the Bergman kernel on manifolds utilizing Hamiltonian PDEs beginning for linear equations and progressing to the heat kernel. The main tool used in the work is the MASSIMILIANO BERTI, Università degli Studi di Napoli recent work on nonlinear and singular equations. analytic localization technique in local index theory ‘Federico II’, Italia developed by Bismut–Lebeau. Highlighting the most 2007/X, 234 PP./HARDCOVER recent results in the fi eld for the fi rst time, the author This monograph presents recent existence results ISBN 9783764381448/$64.95 presents various applications and provides new of nonlinear oscillations of Hamiltonian PDEs, PROGRESS IN NONLINEAR DIFFERENTIAL EQUATIONS perspectives on several active areas of research in particularly of periodic solutions for completely AND THEIR APPLICATIONS, VOL. 73 complex, Kähler and symplectic geometry. resonant nonlinear wave equations. After introducing the reader to classical fi nite- 2007/XIII, 422 PP./HARDCOVER Walks on Ordinals and Their ISBN 9783764380960/$79.95 dimensional dynamical system theory, including the Characteristics Weinstein–Moser and Fadell–Rabinowitz bifurcation PROGRESS IN MATHEMATICS, VOL. 254 STEVO TODORCEVIC, Université Paris VII - CNRS, Paris, results, the author develops an analogous theory for France and University of Toronto,
Recommended publications
  • F:\RSS\Me\Society's Mathemarica
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods.
    [Show full text]
  • Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
    TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice.
    [Show full text]
  • 4.Murtomäki 2017.10192 Words
    Sibelius in the Context of the Finnish-German History Veijo Murtomäki Introduction The life and career of a composer cannot be considered as an isolated case without taking into account the wider context. The history of ideas and ideologies is always part of any serious enquiry into an artist’s personal history. Therefore we must bear in mind at least four points when considering the actions of artist and his or her country. Firstly, as the eminent Finnish historian Matti Klinge has observed, "the biggest challenge for understanding history is trying to situate oneself in the preconditions of the time-period under scrutiny while remembering that it did not know what the posterity knows."[1] Writing history is not primarily a task whereby the historian provides lines for actors to speak, but rather is an attempt to understand and explain why something happened, and to construct a context including all of the possible factors involved in a certain historical process. Secondly, supporting (or not opposing) an ideology prevailing at a certain time does not mean that the supporter (or non-opponent) is committing a crime. We could easily condemn half of the European intellectuals for supporting Fascism, Nazism, Communism or Maoism, or just for having become too easily attracted by these – in their mind – fascinating, visionary ideologies to shape European or world history. Thirdly, history has always been written by the winners – and thus, historiography tends to be distorted by exaggerating the evil of the enemy and the goodness of the victor. A moral verdict must be reached when we are dealing with absolute evil, but it is rare to find exclusively good or bad persons or civilizations; therefore history is rarely an issue of black and white.
    [Show full text]
  • Of the American Mathematical Society August 2017 Volume 64, Number 7
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves
    [Show full text]
  • An Analytical Introduction to Descriptive Geometry
    An analytical introduction to Descriptive Geometry Adrian B. Biran, Technion { Faculty of Mechanical Engineering Ruben Lopez-Pulido, CEHINAV, Polytechnic University of Madrid, Model Basin, and Spanish Association of Naval Architects Avraham Banai Technion { Faculty of Mathematics Prepared for Elsevier (Butterworth-Heinemann), Oxford, UK Samples - August 2005 Contents Preface x 1 Geometric constructions 1 1.1 Introduction . 2 1.2 Drawing instruments . 2 1.3 A few geometric constructions . 2 1.3.1 Drawing parallels . 2 1.3.2 Dividing a segment into two . 2 1.3.3 Bisecting an angle . 2 1.3.4 Raising a perpendicular on a given segment . 2 1.3.5 Drawing a triangle given its three sides . 2 1.4 The intersection of two lines . 2 1.4.1 Introduction . 2 1.4.2 Examples from practice . 2 1.4.3 Situations to avoid . 2 1.5 Manual drawing and computer-aided drawing . 2 i ii CONTENTS 1.6 Exercises . 2 Notations 1 2 Introduction 3 2.1 How we see an object . 3 2.2 Central projection . 4 2.2.1 De¯nition . 4 2.2.2 Properties . 5 2.2.3 Vanishing points . 17 2.2.4 Conclusions . 20 2.3 Parallel projection . 23 2.3.1 De¯nition . 23 2.3.2 A few properties . 24 2.3.3 The concept of scale . 25 2.4 Orthographic projection . 27 2.4.1 De¯nition . 27 2.4.2 The projection of a right angle . 28 2.5 The two-sheet method of Monge . 36 2.6 Summary . 39 2.7 Examples . 43 2.8 Exercises .
    [Show full text]
  • The Origins of the Propagation of Smallness Property and Its Utility in Controllability Problems
    The Origins of the Propagation of Smallness Property and its Utility in Controllability Problems. Jone Apraiz University of the Basque Country, Spain Seminario control en tiempos de crisis May 4th 2020 Jone Apraiz (UPV/EHU) Control en tiempos de crisis 04/05/2020 1 / 37 Index 1 Definition of the propagation of smallness property 2 Origin of the propagation of smallness property Harmonic measure Two-constants and Hamard three-circles theorems Phragmén-Lindelöf theorem and Hadamard three-lines lemma 3 Applications to Control Theory Higher dimensions: three-balls and three-regions theorems Null-control for some parabolic problems Jone Apraiz (UPV/EHU) Control en tiempos de crisis 04/05/2020 2 / 37 Definition of the propagation of smallness property Index 1 Definition of the propagation of smallness property 2 Origin of the propagation of smallness property Harmonic measure Two-constants and Hamard three-circles theorems Phragmén-Lindelöf theorem and Hadamard three-lines lemma 3 Applications to Control Theory Higher dimensions: three-balls and three-regions theorems Null-control for some parabolic problems Jone Apraiz (UPV/EHU) Control en tiempos de crisis 04/05/2020 3 / 37 Definition of the propagation of smallness property Definition of the propagation of smallness property Definition (Propagation of smallness) n Given three subsets of R , E, B1 and B2, verifying E ⊂ B1 ⊂ B2 and a class of functions A ⊂ C(B2), we say that E is a propagation of smallness set for A if, for any u 2 A, there exists α = α(E; B1; B2) 2 (0; 1) such that jjujj ≤ jjujjα jjujj1−α : 1;B1 1;E 1;B2 The “information of the function” on the smaller domain is propagating or affecting over bigger domains in some sense.
    [Show full text]
  • The Next Digital Decade Essays on the Future of the Internet
    THE NEXT DIGITAL DECADE ESSAYS ON THE FUTURE OF THE INTERNET Edited by Berin Szoka & Adam Marcus THE NEXT DIGITAL DECADE ESSAYS ON THE FUTURE OF THE INTERNET Edited by Berin Szoka & Adam Marcus NextDigitalDecade.com TechFreedom techfreedom.org Washington, D.C. This work was published by TechFreedom (TechFreedom.org), a non-profit public policy think tank based in Washington, D.C. TechFreedom’s mission is to unleash the progress of technology that improves the human condition and expands individual capacity to choose. We gratefully acknowledge the generous and unconditional support for this project provided by VeriSign, Inc. More information about this book is available at NextDigitalDecade.com ISBN 978-1-4357-6786-7 © 2010 by TechFreedom, Washington, D.C. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Cover Designed by Jeff Fielding. THE NEXT DIGITAL DECADE: ESSAYS ON THE FUTURE OF THE INTERNET 3 TABLE OF CONTENTS Foreword 7 Berin Szoka 25 Years After .COM: Ten Questions 9 Berin Szoka Contributors 29 Part I: The Big Picture & New Frameworks CHAPTER 1: The Internet’s Impact on Culture & Society: Good or Bad? 49 Why We Must Resist the Temptation of Web 2.0 51 Andrew Keen The Case for Internet Optimism, Part 1: Saving the Net from Its Detractors 57 Adam Thierer CHAPTER 2: Is the Generative
    [Show full text]
  • NEWSLETTER Issue: 491 - November 2020
    i “NLMS_491” — 2020/10/28 — 11:56 — page 1 — #1 i i i NEWSLETTER Issue: 491 - November 2020 COXETER THE ROYAL INSTITUTION FRIEZES AND PROBABILIST’S CHRISTMAS GEOMETRY URN LECTURER i i i i i “NLMS_491” — 2020/10/28 — 11:56 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Eleanor Lingham (Sheeld Hallam University) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or David Chillingworth (University of Southampton) photographer for the rights to reproduce. Jessica Enright (University of Glasgow) The LMS cannot accept responsibility for the Jonathan Fraser (University of St Andrews) accuracy of information in the Newsletter. Views Jelena Grbic´ (University of Southampton) expressed do not necessarily represent the Cathy Hobbs (UWE) views or policy of the Editorial Team or London Christopher Hollings (Oxford) Mathematical Society. Stephen Huggett Adam Johansen (University of Warwick) ISSN: 2516-3841 (Print) Susan Oakes (London Mathematical Society) ISSN: 2516-385X (Online) Andrew Wade (Durham University) DOI: 10.1112/NLMS Mike Whittaker (University of Glasgow) Early Career Content Editor: Jelena Grbic´ NEWSLETTER WEBSITE News Editor: Susan Oakes Reviews Editor: Christopher Hollings The Newsletter is freely available electronically at lms.ac.uk/publications/lms-newsletter. CORRESPONDENTS AND STAFF MEMBERSHIP LMS/EMS Correspondent: David Chillingworth Joining the LMS is a straightforward process. For Policy Digest: John Johnston membership details see lms.ac.uk/membership.
    [Show full text]
  • David Eugene Smith Collection
    Ms Coll\Smith,D.E.\Historical Smith, David Eugene, 1860-1944, collector. Historical papers, [ca. 1400-1899] 17.5 linear ft.(ca. 10,100 items in 31 boxes) Biography: Mathematician. Professor of mathematics at the State Normal School, Cortland, N.Y., 1884-1891; at Michigan State Normal College, 1891-1898; at New York State Normal School, Brockport, N.Y., 1898-1901; and at Teachers College, Columbia University, 1901-1944. He was the editor of the Bulletin of the American Mathematical Society, the American Mathematical Monthly, and Scripta Mathematica, a member of the International Commission on the Teaching of Mathematics, 1908-1944; and librarian of Teachers College, 1902-1920. He was the author of Rara Mathemativca (1907), The History of Mathematics (1924), and many other works on the history of mathematics as well as over forty mathematical textbooks and numerous journal articles. He also collected manuscript materials relating to the history of mathematics. Summary: Correspondence, manuscripts, and documents of mathematicians and other scientists, often dealing with politics and fields other than mathematics. Many of these concern the French Revolution. Organization: Cataloged. * Alembert letters are available on microfilm (MN#2000-1207). Lalande letters are available on microfilm (MN#3605-4). Guillaume Libri letters are available in photocopy form. William John Clarke Miller are available on microfilm (MN#95-7023 to 95-2027). Gaspard Monge letters are available on microfilm (MN#80-1582). Selected Isaac Newton letters are available on microfilm (MN#3617-5). Selected Quetelet letters are available on microfilm (MN#3623-7). Finding aids: Contents list, 19p. Donor: Gift of David Eugene Smith, 1931.
    [Show full text]
  • On Dynamical Gaskets Generated by Rational Maps, Kleinian Groups, and Schwarz Reflections
    ON DYNAMICAL GASKETS GENERATED BY RATIONAL MAPS, KLEINIAN GROUPS, AND SCHWARZ REFLECTIONS RUSSELL LODGE, MIKHAIL LYUBICH, SERGEI MERENKOV, AND SABYASACHI MUKHERJEE Abstract. According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group H whose limit set is an Apollonian- like gasket ΛH . We design a surgery that relates H to a rational map g whose Julia set Jg is (non-quasiconformally) homeomorphic to ΛH . We show for a large class of triangulations, however, the groups of quasisymmetries of ΛH and Jg are isomorphic and coincide with the corresponding groups of self- homeomorphisms. Moreover, in the case of H, this group is equal to the group of M¨obiussymmetries of ΛH , which is the semi-direct product of H itself and the group of M¨obiussymmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when ΛH is the classical Apollonian gasket), we give a piecewise affine model for the above actions which is quasiconformally equivalent to g and produces H by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle. Contents 1. Introduction 2 2. Round Gaskets from Triangulations 4 3. Round Gasket Symmetries 6 4. Nielsen Maps Induced by Reflection Groups 12 5. Topological Surgery: From Nielsen Map to a Branched Covering 16 6. Gasket Julia Sets 18 arXiv:1912.13438v1 [math.DS] 31 Dec 2019 7.
    [Show full text]
  • Reflections on a Career in Mathematics Masamichi Takesaki
    Reflections on a career in Mathematics Masamichi Takesaki Professor of Mathematics, Emeritus, Department of Mathematics, UCLA Los Angeles, California, USA My Personal History As erroneous information about my career has been posted on the internet, I will begin by correcting the record. ⦁ 1956, Spring: Graduated from Mathematical Institute, Tohoku University, earning a Bachelor’s Degree. ⦁ 1956-1958: Master’s Degree Student at Mathematical Institute, Tohoku University, earning a Master’s Degree in Mathematics. ⦁ 1958, April through June: Ph D Student at Mathematical Institute, Tohoku University, withdrawing from the Ph D course in order to take a position at the Tokyo Institute Technology. ⦁ 1958, July through 1963, June: Research Assistant at Department of Mathematics, Tokyo Institute of Technology. ⦁ 1963, July through 1970 June 30: Associate Professor of Mathematics, Mathematical Institute, Tohoku University. ⦁ 1965, May: PhD of Mathematics granted from Tohoku University. ⦁ 1968 September 1- 1969, June 30: Visiting Associate Professor, Department of Mathematics, University of Pennsylvania. ⦁ 1969, July 1 - 1970, to June 30: Visiting Associate Professor, Department of Mathematics, UCLA. Leave of Absence from Tohoku University for 1968 - 1970. ⦁ 1970, July 1 through 2004, June 30: Professor of Mathematics, Department of Mathematics, UCLA. ⦁ 2004 July – present: Professor of Mathematics, Emeritus, Department of Mathematics, UCLA. ⦁ Various Visiting Positions throughout my career at UCLA. Introduction I would like to talk about my experiences as an operator algebraist and make some observations based on those experiences. The period 1956 through 1958, when I was working toward my Master’s degree, marked a quiet but very significant decision in the US science program, the importance of which was not widely recognized in Japan.
    [Show full text]
  • The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space
    The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space Adam Smith Shuang Song Abhradeep Thakurta Boston University Google Research, Brain Team Google Research, Brain Team [email protected] [email protected] [email protected] Abstract We revisit the problem of counting the number of distinct elements F0(D) in a data stream D, over a domain [u]. We propose an ("; δ)-differentially private algorithm that approximates F0(D) within a factor of (1 ± γ), and with additive error of p O( ln(1/δ)="), using space O(ln(ln(u)/γ)/γ2). We improve on the prior work at least quadratically and up to exponentially, in terms of both space and additive p error. Our additive error guarantee is optimal up to a factor of O( ln(1/δ)), n ln(u) 1 o and the space bound is optimal up to a factor of O min ln γ ; γ2 . We assume the existence of an ideal uniform random hash function, and ignore the space required to store it. We later relax this requirement by assuming pseudo- random functions and appealing to a computational variant of differential privacy, SIM-CDP. Our algorithm is built on top of the celebrated Flajolet-Martin (FM) sketch. We show that FM-sketch is differentially private as is, as long as there are p ≈ ln(1/δ)=(εγ) distinct elements in the data set. Along the way, we prove a structural result showing that the maximum of k i.i.d. random variables is statisti- cally close (in the sense of "-differential privacy) to the maximum of (k + 1) i.i.d.
    [Show full text]