FLAVOUR AND FRAGRANCE JOURNAL, VOL. 12, 177±183 (1997)

Volatile Leaf Oils of some South-western and Southern Australian Species of the Genus Eucalyptus (Series I). Part XIV. Subgenus Monocalyptus

C. M. Bignell1, P. J. Dunlop1, J. J. Brophy2 and C. J. R. Fookes3 1Department of Chemistry, University of Adelaide, South Australia 5005, Australia 2Department of Organic Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia 3CSIRO, Division of Coal and Energy Technology, PMB 7, Bangor, New South Wales 2234, Australia

The volatile leaf oils of Eucalyptus jacksonii Maiden, E. patens Benth., E. diversifolia Bonpl., E. pachyloma Benth., E. suberea Brooker & Hopper, E. insularis Brooker, E. buprestium F. Muell., E. erectifolia Brooker & Hopper, E. lateritica Brooker & Hopper, E. todtiana F. Muell., E. johnsoniana Brooker & Blaxell, E. exilis Brooker, E. pendens Brooker, E. sepulcralis F. Muell., E. ligulata Brooker, E. aquilina Brooker, E. coronata Gardner, E. preissiana Schauer, E. acies Brooker, E. marginata Donn ex. Smith subsp. marginata, E. marginata Donn ex. Smith subsp. thalassica Brooker & Hopper, E. staeri (Maiden) Kessell & Gardner, E. baxteri (Benth.) Maiden & Blakely ex. J. Black, E. obliqua L'He r. and E. remota Blakely, isolated by vacuum distillation, were analysed by GC and by GC±MS. Many species contained a-pinene (0±20.0%), limonene (0±22.2%), 1,8-cineole (0±62.3%), p-cymene (0±12.6%), aroma- dendrene (0±6.4%), allo-aromadendrene (0±3.7%), bicyclogermacrene (0±21.8%), globulol (0±4.3%), viridi¯orol (0±2.5%), spathulenol (0.1±14.2%), g-eudesmol (0±5.5%), a-eudesmol (0±14.8%), b-eudesmol (0±32.0%) and torquatone (0.1±7.5%) as principal leaf oil components. In several species the b-triketones agglomerone, tasmanone and lateriticone, together with the terpenoid ketone jacksonone, were detected at concentrations much greater than 10%. # 1997 by John Wiley & Sons, Ltd.

Flavour Fragr. J., 12, 177±183 (1997) (No. of Figures: 1 No. of Tables: 3 No. of Refs: 15)

KEY WORDS: Eucalyptus jacksonii Maiden; Eucalyptus patens Benth.; Bonpl.; Benth.; Eucalyptus suberea Brooker & Hopper; Eucalyptus insularis Brooker; Euca- lyptus buprestium F. Muell.; Eucalyptus erectifolia Brooker & Hopper; Brooker & Hopper; F. Muell.; Brooker & Blaxell; Eucalyptus exilis Brooker; Brooker; Eucalyptus sepulcralis F. Muell.; Eucalyptus ligulata Brooker; Eucalyptus aquilina Brooker; Eucalyptus coronata C. Gardner; Eucalyptus preissiana Schauer; Eucalyptus acies Brooker; Eucalyptus marginata Donn ex. Smith subsp. marginata; Eucalyptus marginata Donn ex. Smith subsp. thalassica Brooker & Hopper; Eucalyptus staeri (Maiden) Kessell & C. Gardner; Eucalyptus baxteri (Benth.) Maiden & Blakely ex. J. Black; Eucalyptus obliqua L'He r.; Eucalyptus remota Blakely; ; jacksonone; 8-acetoxy- p-menth-1-en-6-one; lateriticone; 1-isovaleroyl-4-methoxy-3,5,5-trimethylcyclohex-3-en-2,6-dione; tasmanone; 1-isobutyroyl-4-methyoxy-3,5,5-trimethylcyclohex-3-en-2,6-dione; agglomerone; 1-iso- butyroyl-4-methoxy-5,5-dimethylcyclohex-3-en-2,6-dione; torquatone; insect repellent; leaf essen- tial oil composition; mono- and sesquiterpenoids; GC±MS

INTRODUCTION this study we have followed the system of M. I. H. Brooker and D. A. Kleinig2 and the botanic Continuing our investigation of indigenous nomenclature of the .3 Locations Australian eucalypts1 we have examined the leaf of all species, which are native to south-western oils of 25 species of subgenus Monocalyptus. In and southern Australia, are listed in Table 1. A more detailed description of the occurrence of Correspondence to: P. J. Dunlop. these eucalypts has been given elsewhere.2 Contract grant sponsor: Australian Council for International To our knowledge, analyses of the oils of 4 4 Agricultural Research. E. marginata subsp. marginata, E. diversifolia,

CCC 0882±5734/97/030177±07$17.50 Received 27 April 1996 # 1997 by John Wiley & Sons, Ltd. Accepted 1 July 1996 178 C. M. BIGNELL ET AL.

Table 1. Oil yields from the Eucalyptus species, subgenus E. baxteri,5 E. obliqua,4;6 and E. remota5 have Monocalyptusa been published previously. Species and locality Oil yield wt% (dry weight) Eucalyptus jacksonii Maidenb 1.03 EXPERIMENTAL (S35858'48@/E116853'12@) E. patens Benth. tr. Samples of clean, mature leaves were picked from Toodyay, single trees and, after freezing with liquid nitrogen, E. diversifolia Bonpl. 0.57 Waite Arboretum, South Australia were reduced to a ®ne powder using a stainless steel E. pachyloma Benth.b 0.67 Waring Blender (Model No. SS110). This proce- (S34819'31@/E118805'40@) dure was necessary to rupture the oil glands. The E. suberea Brooker & Hopper 1.35 dry powder was then vacuum-distilled so that the Badgingarra, Western Australia E. insularis Brookerb tr. leaf oil condensed on to a gold-plated copper rod (S33858'24@/E122807'53@) maintained at approximately 758C. Complete E. buprestium F. Muell.b 0.18 details of this procedure have been published (S34819'31@/E118805'40@) previously.7 All oils obtained were colourless to E. erectifolia Brooker & Hopperb 0.33 Stirling National Park, Western Australia pale yellow and lighter than water. Table 1 lists the (S34821'32@/E118804'29@) oil yields (wt%, leaves dried in an oven at 388C) E. lateritica Brooker & Hopper 0.87 for the 25 species studied. Mount Lesueur, Western Australia The GC analyses were performed with a HP5890 E. todtiana F. Muell. tr. Moora, Western Australia Series II unit operated in conjunction with a E. johnsoniana Brooker & Blaxell 0.80 HP3396 Series II integrator. The `on-column' Badgingarra, Western Australia injection technique was used with a SGE BP20 E. exilis Brooker 0.07 capillary column (25 m  0:33 mm i.d., ®lm thick- Badgingarra, Western Australia E. pendens Brooker tr. ness 0:5 mm). The carrier gas was hydrogen, with Badgingarra, Western Australia an inlet pressure of 25 kPa: the ¯ow rate was E. sepulcralis F. Muell.b 0.42 2:0 cm3=min. The oven was programmed to rise Fitzgerald River National Park, Western Australia from 808C to 2208C at 58C/min, and the inlet (S33854'18@/E119856'59@) E. ligulata Brooker 0.11 temperature set to 838C and increased at the same Currency Creek Arboretum, South Australia rate as the column. Using these conditions with a E. aquilina Brooker 1.44 1:0 ml sample of 0.4% solution in oil in puri®ed dry Currency Creek Arboretum, South Australia diethyl ether, essentially all the components were E. coronata C. Gardnerb 0.80 Mt. Barren, Western Australia recorded by the integrator in 31 minutes. GC±MS (S33855'34@/E120801'32@) was performed on a VG Quattro mass spectro- E. preissiana Schauer 0.57 meter operating at 70 eV ionization energy. The Waite Arboretum, South Australia E. acies Brookerb 0.23 GC column in this case was a DB-Wax (S34853'04@/E118824'22@) (60 m  0:32 mm). Compounds were identi®ed by E. marginata Donn ex. Smith subsp. marginata 0.45 the GC retention indices to known compounds and Perth, Western Australia by comparison of their mass spectra with either E. marginata Donn ex. Smith subsp. thalassica tr. 8 ±10 Brooker & Hopper known compounds or published spectra. Toodyay, Western Australia Only four of the species (E. jacksonii, E. suberea, E. staeri (Maiden) Kessell & C. Gardner tr. E. lateritica and E. insularis) were analysed with Albany, Western Australia GC±MS. The oil components of the rest were E. baxteri (Benth.) Maiden & Blakely ex. J. Black 0.33 Currency Creek Arboretum, South Australia identi®ed using normalized retention times. For this E. obliqua L'He r. tr. purpose the column was calibrated by assuming Waite Arboretum, South Australia times for three markers, 1,8-cineole, octadecane E. remota Blakely tr. (OD added to the ether) and torquatone. The raw Kangaroo Island, South Australia retention times were ®rst normalized to 525 s for a The specimens for these species were authenticated by OD, and times before and after OD adjusted by Mr M. I. H. Brooker, Australian National Herbarium, or assuming linearity and using 99 s for cineole and Dean Nicolle, Currency Creek Arboretum, South Australia. 997 s for torquatone. Torquatone was found to be b Botanical voucher specimens have been deposited at the South Australian Herbarium by Dean Nicolle, who collected the present in all oil samples. The normalized retention leaves for these species. times of the column were identi®ed with oil

# 1997 by John Wiley & Sons, Ltd. Flavour and Fragrance Journal, Vol. 12, 177±183 (1997) # Table 2. Compounds identi®ed and their percentage occurrence (> 0:05%) in the leaf oils of the Eucalyptus species 1997 ck by ta ica Bla John ina J. x. e thalass marg W dner . . ile ely Gar y r & subsp subsp xell Blak C. pper Sons, & & Bla pper Ho & Hoppe Smith Smith Ho & ssell Ltd. aiden er & ll. x. x. & e e . l. er uell. ll. M Ke er er V uer er en ook er ) er er er M Mue OLA k k r. ook . Â . Gardner Br ely er ook er Mue ook Bonp F Benth ook F nth.) oo ook Donn Donn Br oo Scha . Br Maid C. Br F Hopp Br TILE Br Br ook lia Br ta ta i L'He ook Blak a (Be Benth. is alis s ta tium (Maiden & Br Br ea ta oniana ina ina ua ina es tifolia teri er ona ersifo chyloma tens LEAF eissiana ec teritic cksoni cies xilis emota taeri suber pa div insular er pa la obliq r bupr ja todtiana johns e penden sepulcr ligula s aquil marg cor pr a marg bax KI a ook E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. Br E. E. E. E. E. E. E. E. E. E.

1 a-Pinene 1038 0.2 1.0 17.3 10.4 ± 20.0 11.9 11.1 1.9 2.9 2.7 6.7 0.1 7.5 7.0 1.4 1.1 1.4 5.2 0.4 0.2 0.8 3.7 0.09 0.1 OILS 2 Camphene 1085 ± ± 0.2 ± ± ± ± 0.1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 b-Pinene 1133 ± ± 0.2 0.9 ± 15.9 1.0 1.0 0.3 11.0 0.6 0.5 ± 0.6 0.4 0.5 0.3 1.5 0.4 1.7 0.8 0.08 0.3 ± ± OF 4 Sabinene 1149 ± ± ± ± ± 0.09 0.1 0.6 0.3 ± 0.8 ± ± ± ± 1.6 ± ± ± 0.2 ± ± ± ± ±

5 Myrcene 1175 ± ± 0.1 0.3 ± 2.0 0.9 0.7 0.6 0.3 0.7 0.09 0.1 0.7 0.6 1.2 0.2 0.3 0.6 0.2 ± ± 0.3 ± ± EUC 6 a-Phellandrene 1186 ± ± ± 0.09 ± 0.8 0.07 0.2 0.5 ± ± ± 0.2 ± 0.5 0.2 ± ± 0.1 0.9 ± ± ± ± ±

7 Isobutyl isovalerate 1199 ± ± ± ± ± 0.2 ± 0.09 0.07 ± ± ± ± 0.9 0.1 ± ± ± 0.09 ± ± ± ± ± ± AL Fla

8 a-Terpinene 1205 ± ± ± ± ± ± ± ± ± ± ± ± 0.3 ± ± ± ± ± ± ± ± ± ± ± ± YPTUS v 9 Limonene 1219 0.5 31.0 22.2 3.7 ± 6.8 2.2 4.7 2.4 3.3 4.3 3.3 0.3 5.8 3.7 5.2 4.3 4.3 4.0 0.1 0.2 0.3 2.7 ± 0.4 our 10 1,8-Cineole 1231 1.2 6.7 38.1 53.3 ± 14.7 20.8 53.2 23.6 8.8 55.8 43.0 4.3 62.3 49.1 58.5 44.1 53.7 33.8 3.2 4.9 5.0 30.1 1.2 4.2 and 11 b-cis-Ocimene 1248 ± ± ± ± ± 3.1 9.7 3.9 ± ± ± ± 1.6 ± ± ± ± 0.1 0.4 ± ± ± ± ± ±

12 g-Terpinene 1266 ± 0.1 0.1 ± ± 1.3 1.7 0.6 0.4 0.3 0.6 0.2 0.4 ± 0.7 ± 0.07 0.5 1.3 0.2 ± ± 0.1 ± ± SPECIES Fr 13 p-Cymene 1292 4.9 0.7 1.1 0.4 ± 0.3 0.1 0.5 0.4 0.6 0.3 0.4 0.4 0.3 0.3 ± 0.5 0.3 0.4 9.5 12.6 1.3 0.2 2.4 2.6 agr 14 Terpinolene 1300 ± 0.07 0.3 ± ± 0.2 0.1 ± 0.08 0.1 0.1 ± ± 0.1 0.2 ± 0.2 ± 0.1 ± ± ± ± ± ± ance 15 a-p-Dimethyl styrene 1457 0.2 ± 0.07 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.3 0.2 0.7 ± ± ± ± 16 a-Cubebene 1480 ± 0.07 ± ± ± 0.2 ± ± ± 0.08 ± 0.3 0.3 ± 0.3 ± ± 0.4 0.1 ± ± ± 0.06 ± ±

Journal 17 cis-Linalol oxide 1484 0.1 ± ± ± ± 0.2 ± ± ± 0.4 ± ± 0.08 ± ± ± ± ± 0.4 0.2 1.1 ± ± ± ± 18 Bicycloelemene 1495 ± ± ± ± ± 0.2 ± ± ± 0.1 ± 0.2 0.1 ± 0.2 ± ± 0.3 0.1 ± ± 0.07 ± 0.08 ± 19 a-Copaene 1505 ± ± ± 0.06 ± 0.06 ± 0.07 ± 1.1 ± 0.08 0.1 0.06 0.08 ± ± ± 0.06 0.06 ± 0.6 ± 0.2 2.5

, 20 a-Campholenic aldehyde 1511 0.06 ± 0.5 ± ± 0.09 ± ± ± ± ± 0.07 ± ± ± ± ± 0.3 0.2 0.08 0.08 ± ± ± ± V

ol. 21 a-Gurjunene 1545 ± 0.06 ± 0.08 ± 0.3 0.4 0.07 0.1 0.2 0.1 0.2 0.6 0.1 0.5 0.08 ± 0.5 0.3 0.2 ± ± 0.2 0.1 ± 22 b-Cubebene 1553 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1 ± ± ± ± ± ± ± 0.07 ± 12, 23 Linalol 1564 0.1 ± ± ± ± ± 5.3 ± ± 0.06 ± ± 5.8 ± ± ± ± ± 15.5 0.7 ± ± ± ± 0.06

177 24 trans-p-Menth-2-en-1-ol 1578 ± ± ± ± 0.08 ± ± ± 0.1 ± 0.1 ± ± ± ± ± ± ± ± 0.3 ± 0.07 ± 1.3 ± 25 Camphor 1580 0.09 ± ± ± ± ± ± ± ± 0.07 ± ± ± ± ± ± ± ± ± ± 0.3 ± ± ± 1.7 ±

183 26 Pinocarvone 1590 0.09 ± ± 0.3 ± ± ± ± ± 0.1 ± ± ± ± ± ± ± ± ± 1.1 1.3 0.3 ± ± ± 27 Fenchol 1598 ± 0.2 0.3 0.08 ± ± 0.06 ± ± 2.0 0.06 ± 0.1 ± 0.1 ± 0.07 0.1 0.1 0.8 0.6 0.1 ± 0.2 ± (1997) 28 b-Elemene 1602 0.08 0.3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.07 ± ± 0.4

29 b-Gurjunene 1606 ± 0.2 ± ± ± ± 0.06 ± ± ± ± ± ± ± ± ± ± 0.1 ± ± ± 0.06 ± ± ± 179 Table continues on next page 180 # Table 2. Continued 1997 ck by ta ica Bla John ina J. x. e thalass marg W dner . . ely ile Gar y r & subsp subsp Blak xell C. pper Sons, & & Bla pper Ho en & Hoppe Smith Smith Ho & ssell Ltd. er & ll. x. x. & e e . l. er uell. Maid ll. Ke er er uer er en ook er ) er er er .) M Mue k k r. ook . Â . Gardner Br ely er ook er Mue ook Bonp F Benth ook F oo ook Donn Donn Br oo Scha . Br Maid C. Br F Hopp Br Br Br ook lia Br ta ta i L'He ook (Benth Blak a Benth. is alis s ta tium (Maiden & Br Br ea ta oniana ina ina ua ina es eri tifolia er ona ersifo chyloma tens eissiana ec teritic cksoni cies xilis emota taeri suber pa div insular er pa la bupr ja todtiana johns e penden obliq r sepulcr ligula s aquil marg cor pr a marg baxt C. ook E. E. E. E. E. E. E. E. E. E. E. E. E. Br E. E. E. E. E. E. E. E. E. E. E. E. M. 30 b-Caryophyllene 1611 ± 0.7 0.1 ± ± 0.2 ± 0.7 0.2 0.8 ± ± 0.06 0.5 2.1 0.1 1.9 0.2 0.8 0.1 ± 0.1 0.8 ± 1.4 31 Terpinen-4-ol 1617 1.0 5.6 0.4 0.8 ± 0.7 1.4 0.7 1.2 1.5 3.1 2.0 1.2 1.0 2.1 0.3 1.4 1.9 1.0 1.8 2.2 1.0 1.0 0.4 0.7 BIGNELL 32 Aromadendrene 1620 ± ± 0.6 2.5 0.1 1.2 ± ± ± 1.9 ± 2.0 6.4 ± 1.3 ± 0.9 3.1 0.9 0.1 0.2 2.5 ± 1.0 0.5 33 a-Bulnesene 1629 ± 0.07 0.1 0.2 ± 0.1 ± ± ± 0.2 ± 0.2 0.5 ± 0.2 ± 0.1 0.4 0.1 0.09 0.1 0.2 ± 0.07 0.08 34 cis-p-Menth-2-en-1-ol 1645 0.2 ± ± ± ± ± ± ± ± ± 0.1 0.06 0.2 ± ± ± ± 0.06 ± 0.6 10.7 0.2 ± 1.7 2.0 35 Myrtenal 1647 0.3 0.06 ± ± ± ± ± ± ± 0.1 ± ± ± ± ± ± ± ± ± 1.7 2.0 0.08 ± 0.07 ± ET 36 allo-Aromadendrene 1659 0.06 1.9 0.4 1.6 ± 0.8 1.7 0.8 0.2 0.8 1.5 1.3 3.7 ± 1.0 0.5 1.0 1.8 0.9 0.6 0.3 2.0 0.5 0.7 0.7 Fla 37 trans-Pinocarveol 1671 0.3 ± 0.4 ± ± ± ± ± ± 0.7 ± ± ± ± ± ± ± ± 0.08 2.8 2.7 0.7 ± 0.09 ± AL. v 38 Humulene 1684 ± 0.2 ± 0.2 ± 0.1 0.1 0.2 0.1 ± 0.4 0.4 ± 0.3 0.2 ± 0.2 0.2 0.4 0.2 ± 0.2 0.2 ± ± our 39 d-Terpineol 1687 0.09 ± 0.2 ± ± ± ± ± ± 0.1 ± ± 0.1 ± 0.3 0.3 ± ± ± ± ± ± ± 0.4 0.1 and 40 Cryptone 1690 6.1 ± ± 0.07 ± ± ± ± ± ± 0.09 ± ± ± ± ± ± ± ± 8.5 8.1 0.2 ± 0.6 0.5 41 cis-Piperitol 1692 ± ± ± 0.1 2.3 ± ± ± ± ± ± ± ± 0.1 ± ± ± ± ± ± ± 0.1 ± ± ± Fr 42 Neral 1702 ± 0.4 0.1 0.1 ± ± ± ± 0.08 0.9 0.5 0.5 0.6 ± ± ± 0.08 ± ± ± 0.2 ± 0.3 ± ± agr 43 Viridi¯orene 1704 ± 3.4 0.07 0.1 ± 1.5 0.8 ± 0.2 7.8 0.07 0.1 3.4 ± 2.3 ± 0.7 0.7 ± ± ± 0.06 ± 0.7 ± ance 44 a-Terpineol 1711 3.2 0.2 2.9 1.0 ± 0.9 6.2 5.3 0.2 2.1 5.6 5.2 4.2 5.3 2.3 10.6 ± 1.4 14.7 0.6 0.6 0.6 0.5 0.7 0.7 45 Borneol 1717 0.09 0.1 0.5 ± ± ± ± 0.1 ± ± 0.3 0.3 ± ± 0.2 ± 0.1 0.1 ± 0.09 0.2 ± ± 0.2 ±

Journal 46 Verbenone 1725 0.3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.3 ± 0.06 ± 0.7 0.5 0.08 ± ± ± 47 b-Selinene 1731 ± 0.4 0.2 0.2 ± 0.06 ± ± ± 0.5 ± 0.2 0.3 ± 0.2 ± 0.3 0.5 0.1 ± ± 0.7 0.5 ± 1.8 48 a-Selinene 1735 ± 0.1 0.09 0.2 ± 0.08 ± ± ± 0.9 0.2 0.2 0.3 ± ± ± 0.3 0.4 0.1 ± ± 0.4 0.4 0.2 1.4

, 49 A Muurolene 1742 0.2 ± ± 0.1 ± ± ± ± 0.6 0.2 0.4 0.2 ± 0.2 ± ± 0.3 ± ± ± 0.3 0.07 ± ± ± V

ol. 50 Piperitone 1744 0.08 1.0 0.2 ± ± ± ± 3.7 ± 0.2 3.3 0.1 ± ± ± 1.1 0.6 ± ± ± 0.3 0.8 0.1 14.6 0.4 51 Bicyclogermacrene 1747 ± ± ± 4.5 ± 1.5 ± ± 0.9 0.3 ± ± 21.8 0.3 0.7 9.8 ± 0.3 0.3 3.3 ± ± ± 20.0 ± 12, 52 Carvone 1750 0.8 ± ± ± ± ± 14.9 ± ± ± ± ± ± ± ± ± ± ± ± 0.3 0.7 ± ± ± ±

177 53 trans-Piperitol 1761 0.07 ± ± ± ± ± ± ± ± 0.08 0.1 ± 0.3 ± 0.1 ± ± ± ± 0.3 0.3 ± ± 2.0 1.6 54 d-Cadinene 1774 0.2 0.4 0.1 0.2 ± ± 0.5 0.1 1.2 4.4 1.8 0.3 0.8 0.3 0.3 0.1 0.8 0.4 0.2 0.3 0.3 0.3 0.4 0.5 0.3 ±

183 55 g-Cadinene 1779 ± 0.06 ± ± 0.1 ± 0.2 ± 0.2 0.9 0.1 ± 0.2 ± ± 0.2 ± ± 0.1 0.2 0.8 ± 0.1 0.3 ± 56 Myrtenol 1807 ± ± ± ± ± ± ± ± ± 1.2 ± ± ± ± ± ± ± ± ± 1.3 1.9 ± ± ± ± (1997) 57 Cadina-1,4-diene 1810 ± 0.3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.2 ± ± ± 58 trans-p-Mentha-1(7), 1811 0.4 ± 0.3 0.3 ± ± ± 0.07 ± 0.6 0.07 ± ± 0.06 ± ± ± 0.1 0.06 0.4 0.8 ± ± ± ± 8-dien-2-ol # 59 Calamenene 1847 0.2 0.3 ± ± ± ± ± ± 0.2 2.1 ± ± ± ± ± ± 0.2 ± ± 0.4 0.5 4.8 ± 0.7 0.1 1997 60 trans-p-Mentha 1850 0.3 ± 1.3 ± ± ± ± 0.1 ± 0.3 ± 0.5 0.07 ± 0.1 ± ± ± 0.3 ± 0.3 ± ± ± ± -1,8-dien-6-ol by 61 Geraniol 1859 ± 0.07 0.2 0.1 ± 0.3 2.4 1.7 ± 3.8 1.4 2.7 1.0 2.2 4.6 0.3 0.2 ± 2.8 ± ± ± 0.3 ± ±

John 62 p-Cymen-8-ol 1865 0.6 0.2 ± 0.06 ± ± ± ± ± ± 0.2 0.2 ± ± ± ± 0.08 0.07 ± 1.6 1.9 0.3 ± 0.7 0.1 63 cis-p-Mentha-1,8-dien-6-ol 1881 ± ± 0.1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.7 ± ± ±

W 64 cis-p-Mentha- 1903 0.07 ± 0.3 ± ± ± ± ± ± ± 0.1 0.2 ± ± ± ± ± 0.08 ± ± 0.1 0.5 ± ± ±

ile 1(7),8-dien-2-ol

y 65 Calacorene 1932 ± ± 0.1 ± ± 0.09 ± ± ± 0.6 ± 0.7 ± ± ± ± ± 0.2 0.5 ± 0.2 0.3 ± 0.2 ±

& 66 Palustrol 1938 0.2 ± 0.1 0.09 ± 0.06 0.2 ± ± 0.2 ± 0.3 0.4 ± 0.2 ± 0.1 0.2 0.2 ± ± 0.8 1.1 ± ±

Sons, 67 Caryophyllene oxide 1994 1.2 0.8 ± ± ± 0.07 ± ± 0.1 1.0 ± ± 0.7 0.4 1.2 ± 1.0 0.1 0.4 0.6 4.9 1.6 ± 1.7 0.9 68 b-Phenylethyl propionate 2001 ± 0.4 ± ± ± ± ± ± ± 0.1 0.1 ± 0.4 ± ± ± 0.3 ± ± 0.3 0.2 0.3 ± 0.2 0.08 69 C H O 2008 0.5 0.2 0.8 0.09 ± ± 0.3 ± ± ± ± 0.1 0.4 ± 0.1 ± 0.1 0.1 ± 0.3 0.4 0.5 ± 0.2 0.1

Ltd. 15 26 70 C15H26O 2023 0.2 1.0 0.2 0.2 ± 0.1 0.1 0.07 0.07 0.3 0.08 0.5 0.5 ± 0.5 ± 0.1 0.5 0.2 0.1 ± 0.4 0.08 0.4 0.08 71 C15H26O 2040 ± 0.3 0.08 0.2 ± 0.06 0.3 0.1 0.1 0.4 0.2 0.3 0.6 ± 0.2 ± 0.2 0.3 0.2 0.4 0.3 0.7 0.08 0.8 0.1 V OLA 72 C15H26O 2050 0.3 0.4 ± ± ± ± ± ± 0.06 0.4 ± 0.08 0.4 0.07 0.2 ± 0.1 ± 0.1 0.1 0.4 0.3 0.3 0.8 0.2 73 C15H26O 2070 ± 0.8 0.3 0.2 ± 0.2 0.8 0.1 0.08 0.5 0.1 0.9 0.8 ± 0.8 ± 0.2 0.7 0.4 0.1 0.1 0.9 0.1 0.6 ± TILE 74 C15H26O 2076 0.2 0.1 0.08 0.2 ± ± 0.07 ± 0.3 1.2 ± 0.1 0.1 ± ± ± 0.2 0.1 ± 0.2 0.2 1.0 ± 1.9 0.1 75 Globulol 2085 0.2 3.4 0.4 1.1 ± 0.3 1.9 0.4 0.6 3.1 0.5 1.8 2.5 0.2 1.4 0.06 0.9 1.7 0.8 1.0 0.7 4.3 1.0 4.1 0.4

76 C15H26O 2089 ± ± ± 0.2 ± ± ± ± ± ± ± ± ± ± ± 0.3 0.6 0.1 ± ± ± 0.3 ± ± ± LEAF 77 Viridi¯orol 2093 ± 1.4 0.3 0.5 ± 0.2 2.1 0.3 0.1 0.6 0.3 1.0 1.4 0.06 0.9 ± 0.6 1.0 0.4 0.3 0.1 2.5 0.1 1.4 ± 78 Guaiol 2104 ± ± ± 0.4 ± 0.06 0.1 0.1 0.06 0.1 ± 0.2 0.5 ± 0.1 ± 0.2 0.3 ± 0.1 0.08 0.4 0.07 0.2 ±

79 C15H26O 2110 2.1 0.6 0.2 0.3 ± 0.1 0.5 0.2 ± 0.4 0.1 0.6 0.6 ± 0.4 0.7 0.3 0.7 0.2 3.0 2.0 0.4 0.3 0.9 0.1 OILS 80 C15H26O 2120 ± 1.6 0.5 0.4 ± 0.4 0.8 0.2 0.1 0.9 0.2 2.0 1.4 ± 1.6 0.5 0.3 1.5 0.9 ± ± 0.7 0.2 0.8 0.1 81 Spathulenol 2136 0.2 1.9 0.1 3.1 0.4 0.5 2.4 1.2 0.7 1.5 3.4 0.9 7.5 0.2 0.7 1.1 2.5 0.5 0.4 12.4 2.2 14.2 1.4 7.2 1.7 OF 82 C15H24O 2153 ± ± ± 1.0 ± ± 0.4 0.1 ± 0.07 1.2 0.1 0.4 ± ± 0.3 0.5 ± ± ± ± 1.3 ± 0.7 0.4

83 g-Eudesmol 2177 ± 0.5 0.2 0.3 ± 0.2 0.1 0.1 0.07 0.7 0.2 0.6 0.4 0.6 0.4 0.4 3.2 1.4 0.2 0.1 0.9 0.5 5.5 0.7 2.3 EUC 84 d-Cadinol 2187 ± 0.3 0.3 0.1 ± 0.07 0.2 0.09 ± 0.3 0.3 0.3 0.3 0.2 0.2 0.08 0.7 0.9 ± 0.2 0.3 0.8 1.8 0.4 4.3

85 C15H26O 2197 ± 0.5 0.2 0.1 ± 0.07 0.1 ± ± 0.5 ± 0.2 0.3 0.1 0.2 ± 0.6 0.7 ± 0.5 0.5 0.8 1.4 0.4 2.6 AL Fla 86 C15H26O 2223 ± 0.1 ± ± ± ± 0.1 ± ± 0.3 0.2 0.2 0.2 ± ± ± 0.3 ± ± 2.1 0.2 0.7 0.2 0.6 0.3 YPTUS v 87 C15H26O 2229 ± 0.2 ± ± ± ± 0.3 ± ± ± 0.4 ± ± ± ± ± ± ± ± 0.2 ± ± ± 0.4 0.08 our 88 a-Eudesmol 2234 0.1 2.0 1.1 0.8 0.07 0.6 0.3 0.3 ± 1.7 0.4 1.9 1.1 1.4 0.9 0.6 8.2 4.6 1.0 0.8 1.0 3.0 13.2 1.5 14.8

and 89 C15H26O 2240 0.4 ± ± ± 0.07 ± 0.7 ± ± ± 0.9 ± 1.2 ± ± ± ± ± ± ± 1.5 ± ± ± ±

90 b-Eudesmol 2244 ± 3.6 1.6 1.6 0.08 0.6 0.4 0.7 ± 2.2 ± 2.3 1.7 1.9 1.3 1.0 11.6 6.2 1.1 4.0 ± 13.2 15.1 2.5 32.0 SPECIES

Fr 91 C15H26O 2263 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 ± ± ± ± ± ± ± ± agr 92 C15H26O 2269 0.2 0.2 0.06 ± ± ± 0.1 ± 0.7 1.0 ± ± 0.2 ± 0.1 ± 0.09 0.06 0.06 ± ± 0.4 0.09 ± 0.5 ance 93 Farnesyl acetate 2271 1.6 0.2 ± ± ± ± ± ± ± ± 0.09 ± 0.3 ± ± ± 0.07 ± ± 2.3 1.2 ± ± ± ± 94 Jacksonone 2280 59.7 ± ± 0.2 ± 0.06 ± ± ± 1.0 ± 1.2 ± 0.5 ± ± ± ± 0.4 ± ± ± ± ± ±

Journal 95 Component A 2293 ± 0.2 ± ± ± ± 0.2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1 0.5 ± ± 96 Tasmanone 2303 0.08 2.4 ± 0.06 93.6 ± ± 0.2 37.0 0.9 ± 0.2 ± 0.06 ± ± 0.1 ± 0.1 4.9 1.1 2.2 ± 0.3 0.1 97 Isobicyclogermacral 2325 0.7 0.7 0.2 0.2 ± 0.2 0.1 0.1 ± 2.5 0.08 2.3 0.4 0.3 1.1 ± 1.0 ± 0.3 1.0 1.4 0.7 0.5 ± 4.9

, 98 (E; E)-Farnesol 2366 ± 0.4 ± ± ± ± ± ± ± 0.4 ± 1.7 0.1 ± ± ± 0.2 ± 0.09 0.3 0.5 ± ± 1.4 ± V 99 Agglomerone 2381 1.0 ± ± ± 0.9 19.2 ± ± 0.1 ± 0.2 ± ± ± 0.1 ± ± ± ± 0.2 ± ± ± ± ± ol. 100 Component Bb 2382 ± 0.6 ± ± ± ± ± ± ± 0.2 ± ± ± ± ± ± ± ± 0.1 ± ± 0.4 0.08 0.4 ± 12, 101 Lateriticone 2388 0.4 ± ± ± 0.5 ± ± ± 13.8 0.5 ± 0.2 ± 0.1 ± ± 0.1 ± 0.2 1.0 1.9 0.3 ± ± 0.1

177 102 Torquatone 2424 0.1 7.5 0.2 0.3 0.3 0.1 0.6 0.6 0.2 2.4 0.4 1.2 6.4 0.4 0.9 0.09 0.3 0.2 0.7 1.0 0.8 6.7 1.0 2.1 0.5

± Total percentages 91.5 88.2 96.0 93.6 98.5 97.1 95.9 95.2 90.2 90.0 94.8 93.6 91.2 95.1 95.3 97.5 94.7 97.6 95.2 83.7 81.9 86.2 86.9 84.1 91.1 183 a On SGE-BP20. (1997) b Reference 15. 181 182 C. M. BIGNELL ET AL. components analysed previously by GC±MS for over 100 Eucalyptus species: some of these results have been published.1 In addition, Kova ts indices (KI, see Table 2) were obtained by running a mix- ture of C10 ±C25 alkanes on the SGE-BP20/GC column. All GC analyses were performed in duplicate and the retention times and percentage compositions of each component averaged. Duplicate times were discarded if they di€ered by more than 1 s and the experiments repeated in duplicate. Components which contributed less than 0.06% to the ®nal analyses were not considered (an arbitrary but practical decision).

RESULTS AND DISCUSSION

Freshly isolated oils obtained by vacuum distilla- tion of powdered leaves from single trees were analysed by GC and by GC±MS. The results for the 25 species are listed in Table 2; only those components with concentrations greater than 0.05% are reported. The principal components in the oils were the monoterpenes a-pinene (0±20.0%), limonene (0±22.2%), 1,8-cineole (0±62.3%) and p-cymene (0±12.6%). Apart from 1,8-cineole, the main oxygenated monoterpenes detected were terpinen-4-ol (0±5.6%) and a-terpi- neol (0±14.7%). Fig. 1. Structures for torquatone, jacksonone, agglomerone, The principal sesquiterpenes encountered in tasmanone and lateriticone these species were aromadendrene (0±6.4%), allo- aromadendrene (0±3.7%) and bicyclogermacrene (0±21.8%), and the related alcohols, globulol we have suggested this name be adopted. It seems (0±4.3%), viridi¯orol (0±2.5%) and spathulenol appropriate to name the second b-diketone found (0±14.2%), as well as g-eudesmol (0±5.5%), in E. lateritica, lateriticone. Inspection of Table 2 a-eudesmol (0±14.8%) and b-eudesmol (0± indicates that these four compounds were detected 32.0%). The aromatic ketone torquatone in many of the species examined. Their NMR and (see Fig. 1) was detected (0.1±7.5%) in all of the EI spectra are given in Table 3. Tentative structures 25 species. Large concentrations of four unusual for components A and B have been proposed in compounds (see Fig. 1) were found in some Series I, Part IX.15 members of this subgenus: (i) jacksonone Our oil analyses agreed, when comparison was (8-acetoxy-p-menth-1-en-6-one: 59.6%) in E. jack- possible, to some extent with those of some sonii; (ii) tasmanone (1-isobutyroyl-4-methoxy- previous workers6 but not with others:4;5 in general 3,5,5-trimethylcyclohex-3-en-2,6-dione: 93.6%) many more components were identi®ed. in E. suberea; (iii) tasmonone (37.0%) and later- iticone (1-isovaleroyl-4-methoxy-3,5,5-trimethyl- Acknowledgements Ð The authors thank Mr Ian Brooker, cyclohex-3-en-2,6-dione: 13.8%) in E. lateritica; Australian National Herbarium and Dean Nicolle, Currency and (iv) agglomerone (1-isobutyroyl-4-methyoxy- Creek Arboretum, South Australia, for identifying the species 5,5-dimethylcyclohex-3-en-2,6-dione: 19.2%) in and helpful discussions. We are grateful to Dr Jennifer Gardner, E. insularis. Three of these have been reported Curator of the Waite Arboretum, for her interest in this study. 11±14 11 This work was supported in part by a grant from the Australian previously although jacksonone, an insecti- Council for International Agricultural Research (ACIAR) cide, was apparently not named at the time and so to J.J.B.

# 1997 by John Wiley & Sons, Ltd. Flavour and Fragrance Journal, Vol. 12, 177±183 (1997) VOLATILE LEAF OILS OF EUCALYPTUS SPECIES 183

Table 3. NMR and EI spectra NMR spectra were run in CDCl3 on a JEOL GX400 spectrometer Jacksonone (8-acetoxy-p-menth-1-en-6-one) 1 H NMR d 1.46 (6H, s, -C CH3†2), 1.765 (3H, dt, J ˆ 2:7, 1.3 Hz, CH3-7), 1.975 (3H, s, OAc), 2.2±2.6 (5H, m, 2  CH2, CH-4), 6.735 (1H, m, CH-2). Mass spec. m/z (%), 210 (0), 153 (15), 150 (85), 135 (25), 122 (12), 110 (30), 109 (50), 108 (90), 107 (100), 95 (30), 82 (20), 79 (22), 77 (15), 59 (20), 53 (18), 43 (75) Lateriticone (1-isovaleroyl-4-methoxy-3,5,5-trimethylcyclohex-3-en-2,6-dione), 2 forms in ratio of 2.0 : 1 1 Major form: H NMR d 0.965 (6H, d, J ˆ 7:0 Hz, -CH CH3†2), 1.31 (6H, s, -C CH3†2), 1.955 (3H, s, C-CH3), 2.14 (1H, nonet, J ˆ 7:0 Hz, -CH2-CH- CH3†2), 2.91 (2H, d, J ˆ 7:0 Hz, -CH2-CH-), 3.925 (3H, s, -OCH3), 19.13 (1H, s, -OH) Minor form: d 0.97 (6H, d, J ˆ 7:0 Hz, -CH CH3†2), 1.43 (6H, s, -C CH3†2), 1.895 (3H, s, C-CH3), 2.19 (1H, nonet, J ˆ 7:0 Hz, -CH2-CH- CH3†2), 3.03 (2H, d, J ˆ 7:0 Hz, -CH2-CH-), 3.855 (3H, s, -OCH3), 18.40 (1H, s, -OH) Mass spec. m/z (%), 266.1509 (C15H22O4 requires 266.1518, 18%), 252 (20), 251 (100), 233 (8), 223 (15), 209 (25), 195 (23), 182 (25), 149 (10), 139 (15), 125 (12) Tasmanone (1-isobutyroyl-4-methoxy-3,5,5-trimethylcyclohex-3-en-2,6-dione), 2 forms in ratio of 2.0 : 1 1 Major form: H NMR d 1.135 (6H, d, J ˆ 6:7 Hz, -CH CH3†2), 1.32 (6H, s, -C CH3†2), 1.955 (3H, s, C-CH3), 3.925 (3H, s, -OCH3), 3.97 (1H, septet, J ˆ 6:7 Hz, -CH- CH3†2), 19.19 (1H, s, -OH) Minor form: d 1.155 (6H, d, J ˆ 6:7 Hz, -CH CH3†2), 1.44 (6H, s, -C CH3†2), 1.90 (3H, s, C-CH3), 3.855 (3H, s, -OCH3), 4.13 (1H, septet, J ˆ 6:7 Hz, -CH- CH3†2), 18.47 (1H, s, -OH) Mass spec. m/z (%), 252 (8), 238 (15), 237 (100), 219 (5), 209 (33), 181 (10), 177 (18), 167 (10), 149 (20), 139 (18), 125 (13), 109 (12) Agglomerone (1-isobutyroyl-4-methoxy-5,5-dimethylcyclohex-3-en-2,6-dione) two forms in ratio 5.5 : 1a 1 Major form: H NMR d 1.13 (6H, d, J ˆ 6:7 Hz, -CH CH3†2), 1.345 (6H, s, -C CH3†2), 3.805 (3H, s, -OCH3), 3.94 (1H, septet, J ˆ 6:7 Hz, -CH- CH3†2), 5.41 (1H, s, CH-5 ring†, 18.70 (1H, s, -OH) Minor form: d 1.155 (6H, d, J ˆ 6:7 Hz, -CH CH3†2), 1.46 (6H, s, -C CH3†2), 3.72 (3H, s, -OCH3), 4.195 (1H, septet, J ˆ 6:7 Hz, -CH- CH3†2), 5.39 (1H, s, CH-5 ring†, 18.63 (1H, s, -OH) Mass spec. m/z (%) 238 (10), 224 (12), 223 (100), 205 (5), 195 (75), 163 (18), 135 (12), 125 (20), 111 (15), 111 (12), 95 (10). a The tautomeric ratio reported here is somewhat larger than that (4 : 1) given in ref. 13.

REFERENCES Methods of Analysis New Series, Vol. 12, eds H. F. Linskens and J. F. Jackson, Springer-Verlag, Berlin (1991). p. 201±219. 1. (Series I) Part XIII. C. M. Bignell, P. J. Dunlop, J. J. Brophy and J. F. Jackson, Flavour Fragr. J. 11, 339 (1996), and 8. S. R. Heller and G. W. A. Milne, EPA/NIH Mass Spectral earlier Parts cited therein. Data Base, U.S. Government Printing Oce, Washington, 2. M. I. H. Brooker and D. A. Kleinig, A Field Guide to the DC (1978, 1980, 1983). Eucalypts, Vol. 2, Inkata Press, Melbourne (1990). 9. E. Stenhagen, S. Abrahamsson and F. W. McLa€erty, 3. G. M. Chippendale, Flora of Australia, Vol. 19. Australian Registry of Mass Spectral Data, Wiley, New York (1974). Government Publications Service, Canberra (1988). 10. A. A. Swigar and R. M. Silverstein, Monoterpenes, Aldrich, 4. R. T. Baker and H. G. Smith, A Research on the Eucalypts Milwaukee, WI (1981). and their Essential Oils, 2nd edn, Government Printer, 11. Desheng Ding and Handong Sun, Zhiwu Xeubao, 25, 62: Sydney (1920). (Chem. Abs., 99, 4330n (1983)). 5. Unpublished data cited in A. R. Penfold and J. L. Willis, 12. R. O. Hellyer, I. R. C. Bick, R. G. Nichols and H. The Eucalypts, World Crop Series, Leonard Hill, London Rottendorf, Aust. J. Chem., 16, 703 (1963). and Interscience, New York (1961). 13. R. O. Hellyer, Aust. J. Chem., 17, 1418 (1964). 6. J. J. Brophy in Eucalyptus Leaf Oils, eds D. J. Boland, J. J. 14. R. O. Hellyer, Aust. J. Chem., 21, 2825 (1968). Brophy and A. P. N. House, Inkata Press, Melbourne (1991). 15. (Series I) Part IX. C. M. Bignell, P. J. Dunlop, J. J. Brophy 7. R. B. Inman, P. J. Dunlop and J. F. Jackson in Modern and J. F. Jackson, Flavour Fragr. J., 11, 95 (1996).

# 1997 by John Wiley & Sons, Ltd. Flavour and Fragrance Journal, Vol. 12, 177±183 (1997)