DNA Methylation Changes During Aging and in Age-Associated Diseases

Total Page:16

File Type:pdf, Size:1020Kb

DNA Methylation Changes During Aging and in Age-Associated Diseases DNA Methylation Changes During Aging and in Age-Associated Diseases Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Monika Eipel aus Jülich Berichter: Univ.-Prof. Dr. Dr. Wolfgang Wagner Univ.-Prof. Dr. Martin Zenke Tag der mündlichen Prüfung: 04.06.2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. II Abstract VI Zusammenfassung VII 1 Introduction 1 1.1 DNA Methylation in the Aging Organism 1 1.1.1 Mechanisms of DNA Methylation and Demethylation 1 1.1.2 DNA Methylation Changes During Aging 3 1.1.3 DNA Methylation as a Biomarker for Aging 6 1.2 Clonal Development During Aging and Age-Associated Diseases 7 1.2.1 Age-Related Clonal Hematopoiesis 7 1.2.2 DNA Methylation Changes During Malignant Transformation 11 1.2.3 Inherited Age-Associated Diseases and Telomeropathies 12 1.2.4 The PRDM Family 17 1.3 Stem Cells 19 1.3.1 Induced Pluripotent Stem Cells 19 1.3.2 Induced Pluripotent Stem Cells as a Model System in Clinical Research 20 1.4 Objectives 23 2 Materials and Methods 24 2.1 Molecular Biology 24 2.1.1 DNA Isolation 24 2.1.2 Polymerase Chain Reaction 24 2.1.3 Agarose Gel Electrophoresis 25 2.1.4 Bisulfite Conversion 25 2.1.5 Pyrosequencing 26 2.1.6 Barcoded Bisulfite Amplicon Next Generation Sequencing 29 2.1.7 RNA Isolation 31 2.1.8 cDNA Synthesis and Semi-qPCR 31 2.2 Age Prediction Models 33 2.3 Cloning 34 III 2.3.1 Using CRISPR/Cas9n to Generate Gene Knockouts 34 2.3.2 Generation of PRDM8 Overexpression Vector 37 2.3.3 Transformation of Escherichia Coli 38 2.3.4 Plasmid Isolation and Colony PCR 38 2.3.5 Transfection of Induced Pluripotent Stem Cells via Electroporation 39 2.3.6 Virus Production 39 2.3.7 Transduction of Induced Pluripotent Stem Cells 40 2.4 Cell Culture 41 2.4.1 Culture of Induced Pluripotent Stem Cells 41 2.4.2 Embryoid Body Assay 42 2.4.3 Neural differentiation 43 2.4.4 HEK 293T Cell Culture 45 2.4.5 Cell Sorting 45 2.5 Proteochemistry 45 2.5.1 H and E staining of Buccal Swab Smears 45 2.5.2 Immunofluorescence Staining 45 2.6 Statistics and Data Analyses 46 3 Results 47 3.1 Epigenetic Age Predictions of Buccal Swab Samples 47 3.1.1 Comparative Analyses of Age-Associated DNA Methylation Changes in Blood and Mouth Swab Samples 47 3.1.2 Development of a Predictor to Determine Cell Compositions in Buccal Swabs 50 3.1.3 Combination of Age-Associated and Cell Type Specific CG Dinucleotides to Improve Age Predictions 55 3.2 Analysis of DNA Methylation Variability of Neighboring CG Dinucleotides in Clonal Diseases 57 3.2.1 Identifying Myeloid Malignancies by Analyses of DNA Methylation Variability at Neighboring CG Dinucleotides 58 IV 3.2.2 Using Barcoded Bisulfite Amplicon Next Generation Sequencing to Classify DNA Methylation Patterns of AML Samples 65 3.3 The Functional Role of PRDM8 on Stem Cell Differentiation 69 3.3.1 PRDM8 is Differentially Methylated in Dyskeratosis Congenita Patients 69 3.3.2 Using CRISPR/Cas9n to Modulate PRDM8 Expression in Induced Pluripotent Stem Cells 70 3.3.3 Influence of PRDM8 on Neural Differentiation 74 3.3.4 Genome-Wide Analyses of PRDM8-Dependent DNA Methylation Changes During Neural Differentiation 79 4 Discussion 85 4.1 Tissue Specific DNA Methylation Enhances Epigenetic Age Predictions 85 4.2 Malignant Clonal Development can be Identified by DNA Methylation Variability of Successive CG Dinucleotides 88 4.3 Classification of DNA Methylation Patterns of Individual DNA Strands Provides a New Perspective to Track Clonal Hematopoiesis 91 4.4 Lack of PRDM8 Expression Leads to Impaired Neural Differentiation and is Associated with Differential Promoter Methylation 93 5 Conclusion and Future Perspective 97 6 Bibliography 98 7 Appendix 116 7.1 Abbreviations 116 7.2 List of Figures 120 7.3 List of Tables 122 7.4 Publications 123 7.5 Acknowledgements 125 7.6 Declaration of Authorship 126 V Abstract Abstract Highly reproducible changes in DNA methylation (DNAm) can be used for epigenetic age predictions. In forensic science, the specimens of choice for age predictions are buccal swabs containing leukocytes and epithelial cells. However, it is well known that DNAm varies between cell types. To take these differences into account, we developed a model to predict the proportion of cell types in buccal swabs based on DNAm levels at only two CpG sites. The combination of these CpG sites with three age-associated CpG sites generated a new model for age predictions of buccal swab samples which allows age prediction with high accuracy. Of note, epigenetic age predictors are not applicable to blood samples from patients with hematological malignancies, indicating that the DNAm landscape is disturbed during malignant transformation. To further elucidate how methylation levels in age-associated CpG sites change during malignant transformation, we focused on the age-associated region in PDE4C. We demonstrate that the variability of DNAm patterns of successive CpG sites in PDE4C is indicative for clonal hematopoiesis. Barcoded Bisulfite Amplicon Next Generation Sequencing was used to derive patient-specific methylation patterns of AML samples with single strand resolution. These patterns could be classified as healthy or AML-derived by machine learning algorithms. We hypothesize that the quantification of AML derived DNAm patterns provides a new perspective to track clonal hematopoiesis. Furthermore, we have recently described reduced expression and hypermethylation of the PRDM8 gene in patients with the premature aging disease dyskeratosis congenita. To study the physiological role of this epigenetically controlled histone methyltransferase, we modulated its expression in iPSCs using the CRISPR/Cas9n technology. Spontaneous and directed differentiation experiments revealed impaired neural differentiation of PRDM8-/- and PRDM8+/- clones. Genome-wide methylation analyses indicate that PRDM8 positively regulates neurogenesis via the promotion of specific DNAm changes in promoter regions of genes associated to neural functions. In conclusion, this thesis enhances our understanding of DNAm changes and variability at specific CpG sites during aging and in age-associated diseases and demonstrates how these changes can be used for forensic and clinical applications. VI Zusammenfassung Zusammenfassung Reproduzierbare Veränderungen in der DNA-Methylierung (DNAm) können für epigenetische Altersvorhersagen genutzt werden. Für die forensische Bestimmung des epigenetischen Alters werden Mundschleimhautabstriche (MSA), bestehend aus Leukozyten und Epithelzellen, bevorzugt. Jedoch variiert die DNAm zwischen verschiedenen Zelltypen. Daher haben wir ein Modell zur Bestimmung der zellulären Komposition von MSA entwickelt, welches auf der DNAm von zwei CpGs basiert. Die Kombination dieser CpGs mit drei altersassoziierten CpGs generierte ein neues Modell zur Altersbestimmung von MSA mit einer hohen Genauigkeit. Epigenetische Altersabschätzungen sind jedoch nicht für Blutproben von Patienten mit hämatologischen Erkrankungen anwendbar, was auf eine Veränderung der DNAm- Landschaft während der malignen Transformation hinweist. Um zu untersuchen wie sich die DNAm in altersassoziierten Regionen während der malignen Transformation verändert, fokussierten wir uns auf die altersassoziierte Region in PDE4C. Wir konnten zeigen, dass die Variabilität von DNAm-Mustern von benachbarten CpGs in PDE4C indikativ für klonale Hämatopoese ist. BBA-Seq wurde angewandt um patientenspezifische DNAm-Muster von AML-Patienten mit Einzelstrangauflösung zu generieren. Diese Muster wurden mittels maschinellen Lernens als gesund oder AML-abgeleitet klassifiziert. Wir nehmen an, dass die Quantifizierung der AML-abgeleiteten DNAm-Muster eine neue Perspektive zur Verfolgung der klonalen Hämatopoese bietet. Kürzlich beschrieben wir die Hypermethylierung und reduzierte Expression von PRDM8 in Patienten mit der altersassoziierten Krankheit Dyskeratosis Congenita. Um die funktionelle Rolle dieser epigenetisch regulierten Histon-Methyltransferase zu studieren, wurde die Genexpression in iPSCs mittels CRISPR/Cas9n moduliert. Unter spontanen und gerichteten Differenzierungsbedingungen konnte eine geminderte neuronale Differenzierung der PRDM8+/- und PRDM8-/- Zellen nachgewiesen werden. Genomweite Methylierungsanalysen legen nahe, dass PRDM8 die Neuronalentwicklung über DNA-Methylierungsveränderungen in Promotoren von Genen reguliert, welche mit neuronalen Funktionen assoziiert sind. Zusammenfassend vertieft diese Thesis unser Verständnis von spezifischen DNAm- Veränderungen während des Alterns als auch in altersassoziierten Krankheiten und demonstriert wie diese Veränderungen für forensische und klinische Zwecke genutzt werden können. VII Introduction 1 Introduction 1.1 DNA Methylation in the Aging Organism Aging is caused by a variety of hallmarks, such as genomic instability, telomere attrition, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and, importantly, epigenetic abnormalities including changes in DNA methylation (DNAm). Epigenetic systems control gene activity and thus - either directly or indirectly - affect all other hallmarks (Ashapkin et al. 2017). Therefore, current research focuses on the nature and mechanisms of epigenetic variability. 1.1.1 Mechanisms of DNA Methylation and Demethylation Epigenetics can be referred to as the interface between the genome
Recommended publications
  • Stem Cells in Development and Disease 12Th and 13Th of July 2013
    Saturday, July 13th, 2013 Session 6 Stem Cells and Cancer Contact S Chairpersons: Petra BOUKAMP, F B 8 7 3 Session 5 Haematopoesis Ana MARCINIAK-CZOCHRA Christiane Wickenhoefer Chairpersons: Claudia SCHOLL, SFB 873 office / Project Coordination Andreas TRUMPP 11:00 - 11:25 Dominique BONNET Department of Medicine V London Research Institute, London - UK Im Neuenheimer Feld 410 | D-69120 Heidelberg Stem Cells in Development 08:30 - 08:45 Hans-Reimer RODEWALD New Insights into Human Hematopoietic Phone: +49 6221 56-5493 | Fax: 49 6221 56-5054 and Disease DKFZ, Heidelberg – Germany Stem Cells and Their Niche E-mail: [email protected] th th Stem Cell Activity and Lineage Output in 12 and 13 of July 2013 Unperturbed Hematopoiesis 11:25 - 11:40 Anthony D. HO Conference Location: German Cancer Research Center | Center of Communications Department of Medicine, German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 | D-69120 Heidelberg 08:45 - 09:10 Tariq ENVER Heidelberg – Germany Center of Communications University College, London – UK Heterogeneity of Human Leukemia Stem Im Neuenheimer Feld 280 | D-69120 Heidelberg Wohnheime 536 Transcriptional Control of Normal and Cells - Does It Matter? P 502 522 670 P 535 561 560 501 521 Pädagogische 500 Leukemic Haematopoiesis 672 Hochschule H Im Neuenheimer Feld H 676 - 683 Admin P 236 H 294 293/ 253/ 11:40 - 11:55 Jochen UTIKAL 292 254 H H 235 H Hörsäle 234 09:10 - 09:25 Hellmut AUGUSTIN Clinic for Dermatology, Venereology and P Chemie 252 7050 269 330 400 350 OMZ 231 232
    [Show full text]
  • Human Pluripotent Stem Cell-Derived Acinar/Ductal Organoids
    Gut Online First, published on October 7, 2016 as 10.1136/gutjnl-2016-312423 Pancreas ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2016-312423 on 15 September 2016. Downloaded from Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling Meike Hohwieler,1 Anett Illing,1 Patrick C Hermann,1 Tobias Mayer,1 Marianne Stockmann,1 Lukas Perkhofer,1 Tim Eiseler,1 Justin S Antony,2 Martin Müller,1 Susanne Renz,1 Chao-Chung Kuo,3 Qiong Lin,4 Matthias Sendler,5 Markus Breunig,1 Susanne M Kleiderman,1 André Lechel,1 Martin Zenker,6 Michael Leichsenring,7 Jonas Rosendahl,8 Martin Zenke,4 Bruno Sainz Jr,9 Julia Mayerle,5 Ivan G Costa,3 Thomas Seufferlein,1 Michael Kormann,2 Martin Wagner,1 Stefan Liebau,10 Alexander Kleger1 ▸ Additional material is ABSTRACT published online only. To view Objective The generation of acinar and ductal cells Significance of this study please visit the journal online (http://dx.doi.org/10.1136/ from human pluripotent stem cells (PSCs) is a poorly gutjnl-2016-312423). studied process, although various diseases arise from this compartment. What is already known on this subject? Design We designed a straightforward approach to ▸ fi Human pluripotent stem cells (PSCs) present a For numbered af liations see direct human PSCs towards pancreatic organoids end of article. powerful tool for developmental studies and resembling acinar and ductal progeny. regenerative medicine. Correspondence to Results Extensive phenotyping of the organoids not ▸ Directed differentiation of PSCs towards Prof Dr Alexander Kleger, only shows the appropriate marker profile but also pancreatic cell fates requires the formation of Department of Internal ultrastructural, global gene expression and functional PDX1/NKX6.1-positive progenitor cells.
    [Show full text]
  • Human DC3 Antigen Presenting Dendritic Cells from Induced Pluripotent Stem Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449451; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Human DC3 Dendritic Cellsavailable from under iPS aCellsCC-BY-NC-ND 4.0 International license. Human DC3 Antigen Presenting Dendritic Cells from Induced Pluripotent Stem Cells Taiki Satoh 1, 2, 3, Marcelo A. S. Toledo 1, 2, 4, Janik Boehnke 1, 2, Kathrin Olschok 4, Niclas Flosdorf 1, 2, Katrin Götz 1, 2, Caroline Küstermann 1, 2, Stephanie Sontag 1, 2, Kristin Seré 1, 2, Steffen Koschmieder 4, Tim H. Brümmendorf 4, Nicolas Chatain 4, Yoh-ichi Tagawa 3 and Martin Zenke 1, 2* 1 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany. 2 Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany. 3 School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan. 4 Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany. *Correspondence: Martin Zenke, PhD, Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany. Telephone: +49-241-80 80759; Fax: +49-241-80 82008 e-mail: [email protected] Abstract Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset.
    [Show full text]
  • CV Zenke Extended 2019 2
    Martin Zenke, PhD, Professor of Cell Biology Extended Research Profile Personal Data Name and Academic Title Zenke, Martin - Univ.-Prof. Dr. rer. nat. 07.08.1953 in Korbach/Waldeck (Germany) Current Position Full Professor of Cell Biology (C4), Chairman and Director of Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Affiliation Institution RWTH Aachen University Institute/Department Institute for Biomedical Engineering, Department of Cell Biology Address RWTH Aachen University Medical School Pauwelsstrasse 30 52074 Aachen Helmholtz Institute for Biomedical Engineering RWTH Aachen University Pauwelsstrasse 20 52074 Aachen +49-241-80-80760 (office) +49-241-80-82008 (Fax) [email protected] (email) www.molcell.de www.stemcellfactory.de University Education 1979 - 1982 Graduate studies in Molecular and Cell Biology, Institute for Virus Research, German Cancer Research Center (DKFZ), Heidelberg, Germany 1972 – 1978 Studies in Chemistry/Biochemistry and Medicine, Philipps-University, Marburg, Germany Academic Qualifications 1992 Lecture qualification (Habilitation) in Molecular Genetics, Faculty of Life Sciences, Vienna University, Vienna, Austria 1982 PhD, Faculty of Life Sciences, Ruprecht-Karls-University, Heidelberg, Germany 1978 Diplom (Master), Chemistry/Biochemistry, Philipps-University, Marburg, Germany Scientific Career since 2003 Professor Cell Biology (C4) and Chairman, Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine and Helmholtz Institute for Biomedical
    [Show full text]
  • 6Th International Meeting April 5-6, 2011
    6th International Meeting Stem Cell Network North Rhine-Westphalia _April 5-6, 2011 _Final Program _Poster Abstracts _Company Profiles _Contact 3 _Program Tuesday, April 5th 8:00 - 9:00 am _Registration 9:00 - 9:30 am _Opening of the Meeting Svenja Schulze, Minister for Innovation, Science and Research of the State of North Rhine-Westphalia 9:30 - 11:00 am _Keynote Lectures, Chair: H. Schöler John Dick, Toronto: “Stem cells and cancer: are they relevant?” Ludwig Siep, Münster: “Ethical questions concerning research with induced pluripotent stem cells” 11:00 - 11:30 am _Coffee Break, Poster Session 11:30 - 12:30 pm _Session I: Disease Modeling, Chair: O. Brüstle Kevin Eggan, Cambridge Juan Carlos Izpisúa Belmonte, La Jolla 12:30 - 2:00 pm _Lunch Break, Poster Session 2:00 - 3:00 pm _Panel Discussion, Chair: L. Honnefelder “International regulation of research translation” 3:00 - 3:30 pm _Coffee Break, Poster Session 3:30 - 4:30 pm _Session II: Homing and Migration, Chair: P. Horn Francisco Sanchez-Madrid, Madrid Steffen Massberg, München 4:30 - 6:30 pm _Poster Session 7:00 - 10:30 pm _Networking event at the Zeche Zollverein (bus transport provided) 4 Wednesday, April 6th 8:00 – 9:00 am _Registration 9:00 - 10:00 am _Session III: Cell Fate Specification in Stem Cells of Model Organisms, Chair: C. Kaltschmidt Erika Matunis, Baltimore Elly Tanaka, Dresden 10:00 - 11:00 am _Session IV: Non-human Primate Pluripotent Stem Cells, Chair: S. Schlatt Erika Sasaki, Kawasaki Shoukrat Mitalipov, Portland 11:00 - 11:45 am _Coffee Break, Poster Session 11:45 am - 12:45 pm _Session V: Disease Modelling - Cancer Chair: T.
    [Show full text]
  • Helmholtz-Institute for Biomedical Engineering Annual Report 2016
    Contact Helmholtz-Institute for Helmholtz-Institute for Biomedical Engineering Phone: +49-241-80-80163 RWTH Aachen University Fax: +49-241-80-82573 Pauwelsstrasse 20 Email: [email protected] Biomedical Engineering 52074 Aachen Web: http://www.hia.rwth-aachen.de Germany Annual Report 2016 Imprint Published by Coordination Helmholtz-Institute for Birgit van Marwick Biomedical Engineering © 2017 Pictures Printed by Helmholtz-Institute for Druck & Verlagshaus MAINZ GmbH, Aachen Biomedical Engineering Helmholtz-Institute for Biomedical Engineering Annual Report Annual Report Helmholtz-Institute for Biomedical Engineering RWTH Aachen University 2016 2016 RWTH Aachen University How to reach us Address Helmholtz-Institute for Biomedical Engineering Pauwelsstrasse 20 52074 Aachen Germany By car · Follow the motorway from Cologne or Netherlands to Aachen (A4) and take the exit towards Laurensberg. · Turn right into Kohlscheider Strasse and follow the signs Uniklinik. · After approximately 750 m turn right on Toledoring/Pariser Ring, take the fifth exit (Uniklinik). · In the roundabout take the exit towards RWTH Melaten and follow the Forckenbeckstrasse for 250 m. · Opposite the restaurant Forckenbeck turn left into Pauwelsstrasse. After approximately 100 m the Helmholtz- Institute is on the right hand side. By train/bus Our Institute is well connected by public transport from the main train station, the train station ‘Aachen West’ or the main bus terminal in the city centre. Several bus lines lead to University Hospital (from the main train station line 3B; from the train station ‘Aachen West’ line 3A, 33, 73 from the bus terminal line 73, 33, 4, 5). Line 33, 73 and 3A stop directly at the Helmholtz-Institute, the other lines stop in front of the main entrance of the University Hospital.
    [Show full text]
  • Phos.Phorylation of the V-Erba Protein Is Reqmred for Its Function As an Oncogene
    Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press Phos.phorylation of the v-erbA protein is reqmred for its function as an oncogene Corine Glineur, 1 Martin Zenke, 2 Hartmut Beug, 2,3 and Jacques Ghysdael 1 llnstitut National de la Sant6 et de la Recherche M6dicale U 186/Centre National de la Recherche Scientifique URA 1160, Institut Pasteur, 59019 Lille Cedex, France; 2IMP, A 1030 Vienna, Austria The v-erbA oncogene of avian erythroblastosis virus (AEV) encodes a ligand-independent mutated version of the chicken c-erbAa-encoded thyroid hormone receptor. The v-erbA gene product, a 75-kD gag/v-erbA fusion protein, is phosphorylated on Ser-16/17 of its v-erbA-encoded domain, and phosphorylation at this site is increased in vivo after activation of either the PKA or PKC signal transduction pathways. To test the hypothesis that phosphorylation of Ser-16/17 regulates gag/v-erbA protein function, mutant proteins in which Ser-16/17 had been changed to alanine or threonine residues were analyzed for their ability to inhibit erythroid differentiation of ts v-erbB or ts v-sea-transformed erythroblasts at nonpermissive temperature. Conversion of Ser-16/17 into alanine, although not affecting nuclear localization or DNA binding of the gag/erbA protein, prevented phosphorylation of the v-erbA-encoded domain of the protein both in unstimulated cells or after stimulation by PKA and PKC activators. The nonphosphorylatable AA-gag/v-erbA protein proved unable to inhibit temperature-induced differentiation of ts v-erbB and ts v.sea-transformed erythroblasts and to block expression of the erythrocyte-specific genes band 3 and carbonic anhydrase II.
    [Show full text]
  • Parthenogenetic Stem Cells for Tissue-Engineered Heart Repair
    Parthenogenetic stem cells for tissue-engineered heart repair Michael Didié, … , Loren J. Field, Wolfram-Hubertus Zimmermann J Clin Invest. 2013;123(3):1285-1298. https://doi.org/10.1172/JCI66854. Technical Advance Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue- engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and
    [Show full text]
  • Hematopoietic Cells
    Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 3655-3659, May 1990 Biochemistry Receptor-mediated endocytosis of transferrin-polycation conjugates: An efficient way to introduce DNA into hematopoietic cells (transferrinfection/transferrin receptor/chloroquine/DNA transfection/gene therapy) MARTIN ZENKE, PETER STEINLEIN, ERNST WAGNER, MATTHEW COTTEN, HARTMUT BEUG, AND MAX L. BIRNSTIEL Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria Contributed by Max L. Birnstiel, February 15, 1990 ABSTRACT Most current gene transfer methods function via the transferrin cycle (a method termed "transferrinfec- satisfactorily in specialized systems involving established cell tion"). Pilot experiments described in the previous commu- lines but are often not applicable with nonadherent, primary nication, showing the principal feasibility of the transferrin- hematopoietic cells, which are notoriously difficult to transfect. polylysine gene transfer approach (8), encouraged us to study To approach this problem, we have investigated an alternative its usefulness with hematopoietic cells in more detail, by method of gene transfer, "transferrnfection," in which DNA using both established cell lines and primary hematopoietic complexed to transferrin-polycation conjugates is introduced cells of avian origin. into cells by receptor-mediated endocytosis [Wagner, E., Zenke, M., Cotten, M., Beug, H. & Birnstiel, M. L. (1990) Proc. Natl. Acad. Sci. USA 87, 3410-3414]. We show here that MATERIALS AND METHODS transferrin-polylysine and transferrin-protamine, when com- Transferrin-Polylysine and Transferrin-Protamine Conju- plexed to plasmid DNA containing a luciferase reporter gene, gates and Recombinant Plasmids. The origin of polylysine is efficiently bound and moved into avian erythroblasts by (Sigma), protamine (Sigma), and chicken transferrin (ion- endocytosis.
    [Show full text]
  • Prof. Heikenwälder Lebenslauf Und Publikationsliste
    Heikenwalder, Mathias (14.07.1976) Univ. Prof. Dr. Mathias Heikenwälder, Ph.D. Head of Division (W3) Chronic Inflammation and Cancer (F180) Deutsches Krebsforschungszentrum Im Neuenheimer Feld 242 69120 Heidelberg Tel: +49 6221 42-3891 E-Mail: [email protected] University training and degree 1999 - 2001 Diploma in Molecular Biology at Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany (Prof. Martin Zenke) 1995 - 2001 Studies of Microbiology and Genetics, University of Vienna Advanced academic qualifications 2009 Habilitation (PD) in ‘Experimental Pathology’ at the Medical Faculty, University of Zurich, Switzerland (Prof. Holger Moch). 2001 - 2004 PhD at the Institute of Neuropathology, University Hospital Zurich (USZ)/ Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland (Prof. Adriano Aguzzi) Postgraduate professional career From 10/2019 on Group leader at the Dep. of Infectious Diseases, Molecular Virology Since 2015 Head of the Division “Chronic Inflammation and Cancer”, German Cancer Research Center Since 2015 Full professor (W3) for “Chronic Inflammation and Cancer”, Heidelberg University and German Cancer Research Center (DKFZ) 2010 - 2015 W2 Professor with a tenure track at the Technische Universität München 2010 - 2015 Helmholtz Young Investigators group leader with a tenure track at the Institute of Virology, Helmholtz Zentrum München, HMGU, Germany 2007 - 2010 Group leader, Prof. Max-Cloëtta fellow and lecturer at the Department of Pathology, University Hospital Zurich (USZ) / Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland 2005 - 2007 Postdoc and independent group leader at the at the Department of Pathology, University Hospital Zurich (USZ) 2004 – 2005 Postdoctoral fellow at the Institute of Neuropathology, University Hospital Zurich (USZ)/ Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland (Prof.
    [Show full text]
  • Human Sensory Neurons Derived from Pluripotent Stem Cells for Disease Modelling and Personalized Medicine
    Neurobiology of Pain 8 (2020) 100055 Contents lists available at ScienceDirect Neurobiology of Pain journal homepage: www.sciencedirect.com/journal/neurobiology-of-pain Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine Angelika Lampert a,*, David L. Bennett b, Lucy A. McDermott b,c, Anika Neureiter a, Esther Eberhardt d,e,f, Beate Winner e, Martin Zenke g a Institute of Physiology, RWTH Aachen University, Germany b Nuffield Department of Clinical Neurosciences, University of Oxford, UK c Wadham College, University of Oxford, UK d Department of Anesthesiology, FAU Erlangen-Nürnberg, Germany e Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany f Department of Anesthesiology, RWTH Aachen University, Germany g Cell Biology, RWTH Aachen University, Germany ARTICLE INFO ABSTRACT Keywords: In this concise Mini-Review we will summarize ongoing developments of new techniques to study physiology and iPSC pathophysiology of the peripheral sensory nervous system in human stem cell derived models. We will focus on Disease modelling recent developments of reprogramming somatic cells into induced pluripotent stem cells, neural differentiation Pain towards neuronal progenitors and human sensory neurons. Peripheral neuron We will sum up the high potential of this new technique for disease modelling of human neuropathies with a Stem cell differentiation focus on genetic pain syndromes, such as gain- and loss-of-function mutations in voltage-gated sodium channels. The stem cell derived human sensory neurons are used for drug testing and we will summarize their usefulness for individualized treatment identificationin patients with neuropathic pain. The review will give an outlook on potential application of this technique as companion diagnostics and for personalized medicine.
    [Show full text]
  • Gene Function in Cell Growth, Differentiation & Development
    Helmholtz-Institute for Biomedical Engineering 2015 RWTH Aachen University Gene Function in Cell Growth, Differentiation & Development Director Univ.-Prof. Dr. rer. nat. Martin Zenke RWTH Aachen University Hospital Pauwelsstrasse 30, 52074 Aachen Helmholtz Institute for Biomedical Engineering Pauwelsstrasse 20, 52074 Aachen Phone: +49-241-80 80760 (Office) +49-241-80 80759 (Secretary) Fax: +49-241-80 82008 Email: [email protected] Web: http://www.molcell.de http://www.stemcellfactory.de Staff Offergeld, Andrea, Administrative Assistant Sous, Renate, Administrative Assistant Mierau, Eveline, Administrative Assistant Eipel, Monika, PhD Student Fernandez R., Eduardo, PhD, Postdoc Aydin, Gülcan, BSc, Technician Franzen, Julia, PhD Student Delgado Cáceres, Manuel, MSc Student Frobel, Joana, PhD Student Förster, Malrun, PhD Student Götzke, Roman, MSc Student Gleixner, Karoline, MD, Visiting Scientist Jätzold, Sandra, Technician Goncalves Freitas, Joana M., MSc Student Joussen, Sylvia, Technician Hieronymus, Thomas, PhD, Group Leader Kalwa, Marie, MD Student Hübel, Jessica, PhD Student Lohmann, Michael, MD Student Kluge, Frederick, BSc Student Lubberich, Richard, MD Student Kosanke, Maike, MSc Student Ostrowska, Alina, Technician Koczy, Matthias, MD Student Peisker, Fabian, MSc Student Küstermann, Caroline, PhD Student Sieben, Thorsten, Technician Kreutzer, Fabian, MSc Student Schellenberg, Anne, PhD Student Lin, Qiong, PhD, Postdoc Vasko, Theresa, MSc Student Mitzka, Saskia, Technician Walenda, Thomas, PhD, Postdoc Rösseler, Corinna, PhD Student Weidner, Carola, PhD Student Rommerskirchen, Anna, MSc Student Winkelmann, Simone, Technician Schalla, Carmen, Technician Sechi, Antonio, PhD, Group Leader Seré, Kristin, PhD, Group Leader Computational Biology Research Sontag, Stephanie, PhD Student Szymanski de Toledo, Marcelo, PhD, Postdoc Group Takehara Paschoalin, Rafaella, Visiting PhD Student Tan, Su Ee, MSc Student Dr.
    [Show full text]