Molecular Analysis of the Diversity and Pollutant Tolerance of the Burkholderiagenus

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Analysis of the Diversity and Pollutant Tolerance of the Burkholderiagenus Ca r d if f UNIVERSITY PRIFYSGOL Ca ERDY[§> Molecular Analysis of the Diversity and Pollutant Tolerance of the BurkholderiaGenus Thesis presented for the Degree of Philosophiae Doctor By George William Payne, BSc (Hons) Biotechnology In Candidature for the Degree of Philosophiae Doctor Cardiff School of Biosciences Cardiff University May 2006 UMI Number: U584883 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584883 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed ....... ..................................(candidate) 23,os.oc,...... STATEMENT 1 This thesis is a result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signed (candidate) Date STATEMENT 2 I hereby give my consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed (candidate) ACKNOWLEDGEMENTS I would like to thank the following: • Dr Eshwar Mahenthiralingam, Professor Andrew Weightman and Dr Hefin Jones at the School of Biosciences, Cardiff University for their outstanding help, support and encouragement. • The UK Natural Environment Research Council (NERC) for funding this PhD studentship (grant NER/S/A/2002/10347A) and additional funding from the Environmental Genomics Thematic Program (grant NER/T/S/2001/00299). • My final year undergraduate students, Sara Morgan, Helen Rose and Daniel Brown for their assistance with the work in Chapters two, three and four respectively. • Prof J. M. Tiedje and Dr. A Ramette for welcoming me on my placement in East Lansing, Michigan and for their help and support, especially furthering my understanding of phylogenetics. • Dr Louise O’ Sullivan for provision of the STM mutant bank and her technical guidance. • Dr. K. E. Ashelford for assistance with in silico primer analysis. • Collaborators from the International Burkholderia cepacia Working Group (IBCWG) for their provision of bacterial strains and methods. SCIENTIFIC PUBLICATIONS, CONFERENCES AND PRESENTATIONS Publications: Payne, G. W., P. Vandamme, S. H. Morgan, J. J. Lipuma, T. Coenye, A. J. Weightman, T. H. Jones, and E. Mahenthiralingam. 2005. Development of a recA gene based identification approach for the entire Burkholderia genus. Applied & Environ Microbiol 71:3917-27 Payne, G. W., A. Ramette, H. L. Rose, A. J. Weightman, T. H. Jones, J. M. Tiedje, and E. Mahenthiralingam. 2006. Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Lett 259:126-32 Posters: Payne G. W., A. J. Weightman, T. H. Jones, S. H. Morgan, P. Vandamme and E. Mahenthiralingam. Expansion of the recA gene based identification approach to include the entire Burkholderia genus. 4th NERC Environmental Genomics programme science workshop. April 18 & 19, 2005. Manchester, UK Payne G. W., A. J. Weightman, T. H. Jones, S. H. Morgan, P. Vandamme and E. Mahenthiralingam. Expansion of the recA gene based identification approach to include the entire Burkholderia genus. 10th International Symposium on Microbial Ecology. August 22-27, 2004. Poster 319 Cancun, Mexico O’Sullivan L., G. W. Payne, A. Marchbank, A. Fivian, H. L. Rose, T. H. Jones, A. J. Weightman and E. Mahenthiralingam.. Environmental Burkholderia: fitness and phylogeny. 3rd NERC Environmental Genomics programme science workshop. April 5 & 6, 2004. Manchester, UK Payne G. W., A. J. Weightman, T. H. Jones and E. Mahenthiralingam. Genomic analysis of diversity and mechanisms associated with bioremediation by Burkholderia species. 2nd NERC Environmental Genomics programme science workshop. April 14 & 15, 2003. Bristol, UK Presentations: Expansion of the recA gene based identification approach to include the entire Burkholderia genus. 9th International Burkholderia cepacia Working Group meeting. April 2-4, 2004. Vancouver, Canada Burkholderia Species Diversity in an Environmental Sample. Molecular Analysis of recA. 3rd All Wales Microbiology Meeting. 14-16 March, 2005. Gregynog, Aberystwyth, Wales, UK Expansion of the recA gene based identification approach to include the entire Burkholderia genus. 2nd All Wales Microbiology Meeting. 15-17 March, 2004. Gregynog, Aberystwyth, Wales, UK SUMMARY Burkholderia is an important bacterial genus containing species of ecological, biotechnological and pathogenic interest which are widely distributed in the natural environment. This study describes the development of molecular methods to identify Burkholderia and also examines the genetic basis for their tolerance to halogenated pollutants. The recA gene is a useful target for speciation of B. cepacia complex bacteria. Novel PCR primers were evaluated by testing their specificity against a panel of Burkholderia species. Nucleotide sequencing and phylogenetic analysis of 869 bp of the recA gene differentiated between putative and known Burkholderia species, including the B. cepacia complex. A genus-specific recA PCR yielding 385 bp was also able to identify all Burkholderia examined. Phylogenetic analysis of 188 novel recA genes clarified the taxonomic position of several important Burkholderia strains, revealing the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it facilitated the identification of clonal strain types of from both niches. A recA-based cultivation-independent approach was used to examine Burkholderia diversity associated with the maize rhizosphere and cord forming fungi. Robust sequence datasets were created from the 869 bp recA fragments and screened to identify recA phylotypes matching B. cepacia complex species previously cultivated from the maize samples. Burkholderia related to known species as well as novel phylogenies were identified from the maize and fungal samples; in both cases the phylogenetic resolution of recA was sufficient to distinguish all individual species. Transposon mutagenesis of B. vietnamiensis G4 was used to elucidate the genetic basis of resistance to halogenated phenol derivatives. Mutations resulting in increased susceptibility to 2,4-dichlorophenol included genes encoding enolase, toluene tolerance, regulators and a lipoprotein. Gene complementation restored the resistant phenotype of two mutants, a GTP-binding protein and a methyltransferase gene. iv CONTENTS DECLARATION............................................................................................................................. ACKNOWLEDGEMENTS............................................................................................................. SCIENTIFIC PUBLICATIONS, CONFERENCES AND PRESENTATIONS............................ SUMMARY.......................................................................................................................................iv CONTENTS.......................................................................................................................................v LIST OF FIGURES.........................................................................................................................viii LIST OF TABLES............................................................................................................................ x LIST OF ABBREIVATIONS............................................................................................................xi CHAPTER 1: INTRODUCTION........................................................................................................... 1 1.1 BACTERIAL SYSTEMATICS....................................................................................................1 1.1.1 Introduction to classification...........................................................................................1 1.1.2 Classification by phenotypic characters.......................................................................3 1.1.3 Classification by genotypic characters.........................................................................5 1.1.4 Polyphasic taxonomy, a consensus approach to bacterial systematics.................7 1.2 MOLECULAR TAXONOMY......................................................................................................8 1.2.1 16S rRNA gene sequence analysis in bacterial systematics ....................................8 1.2.2 The re c A gene as a molecular chronometer in systematics ....................................8 1.2.3 Multi locus sequence typing (MLST) ............................................................................10 1.3 TAXONOMIC OVERVIEW OF THE GENUS BURKHOLDERIA AND ITS ECOLOGY.....11 1.3.1 Taxonomic history and
Recommended publications
  • Stropharia Caerulea Kreisel 1979 Le Chapeau Est Visqueux À L’Humidité, Bleu Verdâtre Décolorant En Jaunâtre, Et La Marge Ornée De Légers Flocons Blancs
    13,90 11,55 8,66 10,43 Stropharia caerulea Kreisel 1979 Le chapeau est visqueux à l’humidité, bleu verdâtre décolorant en jaunâtre, et la marge ornée de légers flocons blancs. La cuticule sèche paraît lisse. Systématique Division Basidiomycètes Classe Agaricomycètes Ordre Agaricales Famille Strophariacées Les lames sont adnées à échancrées, crème, puis beige rosé, enfin brun chocolat clair. Détermination L’arête est concolore, caractéristique Les lames adnées à échancrées et la sporée brun déterminante. violacé orientent vers le Genre Stropharia. La sporée est brune . Avec la clé de Marcel Bon, DM 129, suivre : 1a Couleur vert-bleu, 2b Spores < 10 µm Section Stropharia Une confusion est possible avec Stropharia aeruginosa, 3a Espèces moyennes 5-7 cm +/- charnues, qui possède une arête blanche stérile, vert-bleu jaunissant, Le stipe est recouvert d’un voile caulinaire 4b Lames avec arête concolore, nombreuses floconneux blanc se terminant par un un anneau membraneux plus persistant, chrysocystides anneau fragile et fugace teinté de brun par de nombreuses cheilocystides clavées Stropharia caerulea les spores sur sa face supérieure. et très peu de chrysocystides sur l’arête. Les nombreuses chrysocystides de l’arête émergent au milieu de cellules clavées. Elles sont lagéniformes, étirées au sommet plus ou moins longuement sans toutefois être mucronées, et contiennent une vacuole assez importante. Les chrysocystides sécrètent une matière amorphe qui remplit leur vacuole. Cette masse est incolore puis devient jaune et enfin orangée avec l’âge et dans les solutions basiques comme l’ammoniaque ou la potasse. C’est ainsi que la vacuole paraît incolore ou jaune pâle dans l’eau, jaune très vif dans l’ammoniaque et orangée dans le rouge congo ammoniacal.
    [Show full text]
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
    [Show full text]
  • Grazing Alters Network Architecture During Interspecific Mycelial
    fungal ecology 1 (2008) 124–132 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Grazing alters network architecture during interspecific mycelial interactions T.D. ROTHERAYa, T.H. JONESa, M.D. FRICKERb, Lynne BODDYa,* aCardiff School of Biosciences, Cardiff University, Biosciences Building, Museum Avenue, Cardiff CF10 3AX, UK bDepartment of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK article info abstract Article history: The changes that occur in mycelial architecture of Phanerochaete velutina interacting with Received 18 July 2008 Hypholoma fasciculare mycelium in soil microcosms in the presence and absence of the Revision received 19 November 2008 collembola Folsomia candida are investigated employing tools developed in graph theory Accepted 1 December 2008 and statistical mechanics. There was substantially greater overgrowth of H. fasciculare by Published online 16 December 2008 P. velutina mycelium when grazed than when un-grazed. There was a marked disappear- Corresponding editor: ance of hyphal links in all un-grazed systems between 8 d and 34 d, predominantly in areas Fordyce Davidson distant from the interaction, but this was much less evident in grazed systems. Further, new tangential cross-links connecting radial cords distant from the inoculum formed in Keywords: grazed systems. The thickness of cords increased with time, and more so in grazed Adaptive biological networks systems. There was no significant difference in transport efficiency between the grazed Basidiomycete ecology and un-grazed systems. The ability of the mycelial network to modify dynamically link Combative interactions strengths is crucial to achieving a balance between transport capacity/robustness to Network architecture damage and overall cost of production.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Bulk Isolation of Basidiospores from Wild Mushrooms by Electrostatic Attraction with Low Risk of Microbial Contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2*
    Lakkireddy and Kües AMB Expr (2017) 7:28 DOI 10.1186/s13568-017-0326-0 ORIGINAL ARTICLE Open Access Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2* Abstract The basidiospores of most Agaricomycetes are ballistospores. They are propelled off from their basidia at maturity when Buller’s drop develops at high humidity at the hilar spore appendix and fuses with a liquid film formed on the adaxial side of the spore. Spores are catapulted into the free air space between hymenia and fall then out of the mushroom’s cap by gravity. Here we show for 66 different species that ballistospores from mushrooms can be attracted against gravity to electrostatic charged plastic surfaces. Charges on basidiospores can influence this effect. We used this feature to selectively collect basidiospores in sterile plastic Petri-dish lids from mushrooms which were positioned upside-down onto wet paper tissues for spore release into the air. Bulks of 104 to >107 spores were obtained overnight in the plastic lids above the reversed fruiting bodies, between 104 and 106 spores already after 2–4 h incubation. In plating tests on agar medium, we rarely observed in the harvested spore solutions contamina- tions by other fungi (mostly none to up to in 10% of samples in different test series) and infrequently by bacteria (in between 0 and 22% of samples of test series) which could mostly be suppressed by bactericides. We thus show that it is possible to obtain clean basidiospore samples from wild mushrooms.
    [Show full text]
  • Die Großpilzflora Des Gebietes „Speyerer Dünen Und Bruchbachtal“ 1059-1113 Winterhoff: Großpilzflora Der Speyerer Dünen Und Des Bruchbachtals 1059
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fauna und Flora in Rheinland-Pfalz Jahr/Year: 2000-2002 Band/Volume: 9 Autor(en)/Author(s): Winterhoff Wulfard Artikel/Article: Die Großpilzflora des Gebietes „Speyerer Dünen und Bruchbachtal“ 1059-1113 Winterhoff: Großpilzflora der Speyerer Dünen und des Bruchbachtals 1059 Fauna Flora Rheinland-Pfalz 9: Heft 4 (2002): S.1059-1113. Landau Die Großpilzflora des Gebietes „Speyerer Dünen und Bruchbachtal“ von Wulfard Winterhoff Inhaltsübersicht Abstract Kurzfassung 1. Einleitung 2. Dank 3. Das Untersuchungsgebiet 4. Untersuchungsmethoden 5. Die Pilzflora 5.1 Die Artenvielfalt 5.2 Seltene und für Rheinland-Pfalz neue Arten 6. Ökologische Gruppen der Pilze 6.1 Mykorrhizapilze 6.2 Bodenbewohnende Pilze (Terricole) 6.3 Holz- und rindenbewohnende Pilze (Lignicole und Corticicole) 6.4 Streubewohnende und herbicole Pilze 6.5 Moos- und pilzbewohnende Pilze (Bryophile und Fungicole) 6.6 Brandstellenpilze (Anthracophile) 6.7 Pilze auf Mist und Losung (Coprophile) 6.8 Pilze auf Rindenmulch 7. Die Pilze ausgewählter Pflanzengesellschaften 7.1 Pilze der Kiefernforste 7.2 Pilze bei anderen Nadelbäumen 7.3 Pilze der Buchenwälder 7.4 Pilze der Eichen- und Eichen-Hainbuchenwälder 7.5 Pilze der Erlen-Eschenwälder und Erlenforste 7.6 Pilze der Aschweidengebüsche 7.7 Pilze der Weiden-Birken-Pflanzungen 7.8 Pilze bei Birken in anderen Wald- und Forstgesellschaften 7.9 Pilze der Espengehölze 7.10 Pilze bei Kulturpappeln 1060 Fauna Flora Rheinland-Pfalz 9: Heft 4, 2002, S. 1059-1113 7.11 Pilze der Robinienforste 7.12 Pilze der Waldwegränder 7.13 Pilze der Sandrasen 7.14 Pilze der mageren Frisch- und Feuchtwiesen 7.15 Pilze der Großseggenwiesen und Röhrichte 8.
    [Show full text]
  • Mykologicke Lis Ty 80
    ., MYKOLOGICKE LIS TY 80 Casopis Ceske vedecke spolecnosti pro mykologii Praha 2002 ISSN 1213-5887 OBSAH Čížek K.: Vatičkovité houby České republiky a Slovenska X. Pseudotomentella hu- micola – vatovka přezkatá ................................................................................. 1 Hagara L.: Hypochnella violacea - vzácna huba našich luhov ........................................ 4 Tondl F.: Lošáček statný (Phellodon confluens) skutečně roste na hrázi rybníka Na- děje na Třeboňsku ............................................................................................. 6 Bieberová Z.: Druhý příspěvek k poznání mykoflóry chráněných území – NPR Vě- trníky, k. ú. Letonice .......................................................................................... 7 Záhorovská E. a Lisická E.: Lamproderma arcyrioides (Myxomycota, Stemonitida- ceae) fruktifikujúca na lišajníkoch .................................................................... 12 Janitor A.: Ing Cyprián Paulech CSc. už nie je medzi nami ......................................... 14 Kotlaba F. a Pouzar Z.: Odešel doc. ing. Antonín Příhoda .......................................... 15 Recenze (J. Holec) ........................................................................................................ 18 Novinky z knihovny ČVSM (A. Kubátová) ................................................................. 19 Různé (J. Holec) ........................................................................................................... 21 Zprávy o akcích ...........................................................................................................
    [Show full text]
  • Ingleborough NNR
    Ingleborough NNR Waxcap Grassland Survey January 2018 Ref: NEFU2017-243 Author: A.McLay Checked: Dr A.Jukes Natural England Field Unit CONTENTS Background 3 Introduction 3 Survey methodology 4 Survey results 4 Site evaluation 15 Recommendations 21 References 22 Appendices - Appendix 1. Location of units 23 - Appendix 2. List of non-CHEGD spp. 25 - Appendix 3. Grid locations for species 26 Appendix 4. Additional photographs 27 2 Introduction The term “waxcap grassland” was coined relatively recently to describe semi-natural grassland habitats containing distinctive assemblages of fungi, including waxcaps. Waxcaps are a group of fungi characterised by having thick waxy brittle gills, often bright colours and a preference for growing in unfertilised pastures or lawns. A waxcap grassland also frequently contains representatives of several other key grassland fungi groups, of which the fairy clubs (Clavariaceae family), earthtongues (Geoglossaceae) and pinkgills belonging to the genus Entoloma are the most prominent. Collectively these groups are often referred to as the CHEGD fungi, an acronymn derived from their initials. Additional grassland fungi representatives from the genera Dermoloma, Porpoloma and Camarophyllopsis are also included as honorary CHEGD fungi. The common factor linking these fungi groups is their requirement for nutrient-poor soil types, i.e. agriculturally unimproved grasslands. Such grasslands have usually received little or no input from modern agricultural nitrogen-based fertilisers and frequently support a semi-natural sward with fine-leaved grass species such as Festuca ovina, Agrostis capillaris and Anthoxanthum odoratum. A well-developed moss layer is almost always present and usually contains the widespread grassland moss species Rhytidiadelphus squarrosus. Waxcap grasslands usually have a well-grazed sward that is maintained by regular livestock browsing or frequent mowing.
    [Show full text]
  • Microbial Evolution: Concepts and Controversies
    Conference abstracts from the Colloqium Microbial Evolution: Concepts and Controversies organised by The Canada Research Chair in the history of biology at the Université du Québec à Montréal, from October 17 to 19 2002 Beyond neo-Darwinism: The Origins of Microbial Phylogenetics Jan Sapp Department fo History, Université du Québec à Montréal, CIRST Chairholder of the Canada Research Chair in the History of Biology The neo-Darwinian evolutionary synthesis of the 1930s and 1940s dealt with the evolution of plants and animals over the last 560 million years. It did not address the evolution of microorganisms and the previous 3000 million years of evolutionary change on earth. During the last two decades of the twentieth century, biologists developed new comparative molecular techniques and concepts to trace life back thousands of millions of years to investigate early microbial evolution with the aim to create a universal phylogeny. Studies of microbial phylogeny have brought about a conceptual revolution in the way in which evolutionary change occurs in microbes with the evidence for the fundamental importance of symbiotic mergers, fusions, and various other mechanisms for horizontal gene transfer. The scope and significance of these mechanisms remain subjects of controversy. The Origin of Intermediate Metabolism Harold Morowitz Krasnow Institute, George Mason University, Fairfax, VA 2030, USA The case is made for autotrophs preceding heterotrophs, chemoautorophs preceding photoautotrophs, and the reductive tricarboxylic acid cycle preceding the Calvin-Benson cycle. The acetyl Co-A pathway is less certain. A group of universal features of the primary chart of autotrophic metabolism is discussed. This includes the universal nitrogen entry point and the universal sulfur entry point.
    [Show full text]
  • Investigation of South African Estuarine Microbial Species and Genome Diversity
    Investigation of South African Estuarine Microbial species and Genome diversity By Ms. Eveline Kaambo Submitted in partial fulfillment of the requirement for the degree of Magister Scientiae (M.Sc) in the Department of Biotechnology, University of the Western Cape Supervisor: Professor D.A. Cowan November 2006 Abstract A study of the microbial diversity in sediments of the Great Berg River estuary is carried out using modern molecular phylogenetic methods. The aim of the study is to determine the effect of (pollution by) the effluents of the fish industry on the composition of the microbial community in the sediments. The diversity in microbial groups of sediment samples that received wastewater from the local fishing industry is investigated by a PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) approach and compared to an unaffected site. DGGE is used for the separation of 16S rDNA amplified from metagenomic DNA, which is expected to provide qualitative information on sediment microbial community composition. The DGGE method is also applied to monitor changes of the microbial community at different depths in the estuarine sediment. Two primer sets is used in this study, one specific for 16S rDNA from the domain Bacteria and the other for DNA from the domain Archaea, which allowed the depth profiles for these groups of organisms to be compared. The DGGE profiles representing the bacteria revealed a decrease in diversity with depth at the downstream site of the wastewater outlet. In contrast, the archaeal diversity increases with depth. In addition to the DGGE analyses, 16S rDNA clone libraries were constructed from both sampling sites.
    [Show full text]
  • Diversity of Microorganisms Within Rock Varnish in the Whipple Mountains, California† K
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 2006, p. 1708–1715 Vol. 72, No. 2 0099-2240/06/$08.00ϩ0 doi:10.1128/AEM.72.2.1708–1715.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Diversity of Microorganisms within Rock Varnish in the Whipple Mountains, California† K. R. Kuhlman,1* W. G. Fusco,2 M. T. La Duc,1 L. B. Allenbach,2 C. L. Ball,2 G. M. Kuhlman,1 R. C. Anderson,1 I. K. Erickson,3 T. Stuecker,1 J. Benardini,2 J. L. Strap,2 and R. L. Crawford2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 911091; Environmental Biotechnology Institute, University of Idaho, Moscow, Idaho 83844-10522; and Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-30513 Received 16 February 2005/Accepted 19 October 2005 Rock varnish from Arizona’s Whipple Mountains harbors a microbial community containing about 108 microorganisms g؊1 of varnish. Analyses of varnish phospholipid fatty acids and rRNA gene libraries reveal a community comprised of mostly Proteobacteria but also including Actinobacteria, eukaryota, and a few members of the Archaea. Rock varnish represents a significant niche for microbial colonization. Rock varnish (also known as desert varnish) is a dark, thin forms very slowly at rates thought to be between Ͻ1 to about (usually 5 to 500 ␮m thick), layered veneer composed of clay 40 ␮m per 1,000 years (50), thus archeologists have been in- minerals cemented together by oxides and hydroxides of man- terested in dating the age of varnishes to place petroglyphs ganese and iron (11, 20, 56, 63, 64).
    [Show full text]
  • Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices
    Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices Jenna Morgan Lang1,2, Aaron E. Darling1, Jonathan A. Eisen1,2* 1 Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America, 2 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America Abstract Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a ‘‘primary concordance’’ tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.
    [Show full text]