MYCOLOGIST NEWS 1St Edition March 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey of Fungi at the University of Wisconsin-Waukesha Field Station
University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Spring 1993 A survey of fungi at the University of Wisconsin- Waukesha Field Station Alan D. Parker University of Wisconsin-Waukesha Follow this and additional works at: https://dc.uwm.edu/fieldstation_bulletins Part of the Forest Biology Commons, and the Zoology Commons Recommended Citation Parker, A.D. 1993 A survey of fungi at the University of Wisconsin-Waukesha Field Station. Field Station Bulletin 26(1): 1-10. This Article is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Field Station Bulletins by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. A Survey of Fungi at the University of Wisconsin-Waukesha Field Station Alan D. Parker Department of Biological Sciences University of Wisconsin-Waukesha Waukesha, Wisconsin 53188 Introduction The University of Wisconsin-Waukesha Field Station was founded in 1967 through the generous gift of a 98 acre farm by Ms. Gertrude Sherman. The facility is located approximately nine miles west of Waukesha on Highway 18, just south of the Waterville Road intersection. The site consists of rolling glacial deposits covered with old field vegetation, 20 acres of xeric oak woods, a small lake with marshlands and bog, and a cold water stream. Other communities are being estab- lished as a result of restoration work; among these are mesic prairie, oak opening, and stands of various conifers. A long-term study of higher fungi and Myxomycetes, primarily from the xeric oak woods, was started in 1978. -
COMMON Edible Mushrooms
Plate 1. A. Coprinus micaceus (Mica, or Inky, Cap). B. Coprinus comatus (Shaggymane). C. Agaricus campestris (Field Mushroom). D. Calvatia calvatia (Carved Puffball). All edible. COMMON Edible Mushrooms by Clyde M. Christensen Professor of Plant Pathology University of Minnesota THE UNIVERSITY OF MINNESOTA PRESS Minneapolis © Copyright 1943 by the UNIVERSITY OF MINNESOTA © Copyright renewed 1970 by Clyde M. Christensen All rights reserved. No part of this book may be reproduced in any form without the writ- ten permission of the publisher. Permission is hereby granted to reviewers to quote brief passages, in a review to be printed in a maga- zine or newspaper. Printed at Lund Press, Minneapolis SIXTH PRINTING 1972 ISBN: 0-8166-0509-2 Table of Contents ABOUT MUSHROOMS 3 How and Where They Grow, 6. Mushrooms Edible and Poi- sonous, 9. How to Identify Them, 12. Gathering Them, 14. THE FOOLPROOF FOUR 18 Morels, or Sponge Mushrooms, 18. Puff balls, 19. Sulphur Shelf Mushrooms, or Sulphur Polypores, 21. Shaggyrnanes, 22. Mushrooms with Gills WHITE SPORE PRINT 27 GENUS Amanita: Amanita phalloides (Death Cap), 28. A. verna, 31. A. muscaria (Fly Agaric), 31. A. russuloides, 33. GENUS Amanitopsis: Amanitopsis vaginata, 35. GENUS Armillaria: Armillaria mellea (Honey, or Shoestring, Fun- gus), 35. GENUS Cantharellus: Cantharellus aurantiacus, 39. C. cibarius, 39. GENUS Clitocybe: Clitocybe illudens (Jack-o'-Lantern), 41. C. laccata, 43. GENUS Collybia: Collybia confluens, 44. C. platyphylla (Broad- gilled Collybia), 44. C. radicata (Rooted Collybia), 46. C. velu- tipes (Velvet-stemmed Collybia), 46. GENUS Lactarius: Lactarius cilicioides, 49. L. deliciosus, 49. L. sub- dulcis, 51. GENUS Hypomyces: Hypomyces lactifluorum, 52. -
LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005. -
Reviewing the Data Deficient Fungi List, 2009
Using molecular techniques to combine taxonomic and ecological data for fungi Reviewing the Data Deficient fungi list, 2009 SCIENCE FOR CONSERVATION 306 Using molecular techniques to combine taxonomic and ecological data for fungi Reviewing the Data Deficient fungi list, 2009 Peter Johnston, Duckchul Park, Ian Dickie and Katrin Walbert SCIENCE FOR CONSERVATION 306 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Cortinarius tessiae. Photo: Jerrie Cooper. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright October 2010, New Zealand Department of Conservation ISSN 1177–9241 (web PDF) ISBN 978–0–478–14833–6 (web PDF) This report was prepared for publication by the Publishing Team; editing by Lynette Clelland and layout by Frith Hughes and Lynette Clelland. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 5 1. Introduction 6 2. Objectives 7 3. Methods 7 3.1 Data sources 7 3.1.1 Ecological datasets 7 3.1.2 Dried herbarium specimens 8 3.1.3 Tissue samples stored in CTAB buffer 8 3.1.4 Updated collection data from PDD herbarium 8 3.2 Molecular methods 9 3.2.1 DNA extraction and amplification 9 3.2.2 DNA analysis 9 4. -
A Four-Locus Phylogeny of Rib-Stiped Cupulate Species Of
A peer-reviewed open-access journal MycoKeys 60: 45–67 (2019) A four-locus phylogeny of of Helvella 45 doi: 10.3897/mycokeys.60.38186 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species Xin-Cun Wang1, Tie-Zhi Liu2, Shuang-Lin Chen3, Yi Li4, Wen-Ying Zhuang1 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 2 College of Life Sciences, Chifeng University, Chifeng, Inner Mongolia 024000, China 3 College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China 4 College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China Corresponding author: Wen-Ying Zhuang ([email protected]) Academic editor: T. Lumbsch | Received 11 July 2019 | Accepted 18 September 2019 | Published 31 October 2019 Citation: Wang X-C, Liu T-Z, Chen S-L, Li Y, Zhuang W-Y (2019) A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species. MycoKeys 60: 45–67. https://doi. org/10.3897/mycokeys.60.38186 Abstract Helvella species are ascomycetous macrofungi with saddle-shaped or cupulate apothecia. They are distri- buted worldwide and play an important ecological role as ectomycorrhizal symbionts. A recent multi-locus phylogenetic study of the genus suggested that the cupulate group of Helvella was in need of comprehen- sive revision. In this study, all the specimens of cupulate Helvella sensu lato with ribbed stipes deposited in HMAS were examined morphologically and molecularly. -
Pecoraro, L., Perini, C., Salerni, E. & De Dominicis, V
L. Pecoraro, C. Perini, E. Salerni & V. De Dominicis Contribution to the knowledge of the mycological flora of the Pigelleto Nature Reserve, Mt. Amiata (Italy) Abstract Pecoraro, L., Perini, C., Salerni, E. & De Dominicis, V.: Contribution to the knowledge of the mycological flora of the Pigelleto Nature Reserve, Mt. Amiata (Italy). — Fl. Medit 17: 143-163. 2007. — ISSN 1120-4052. The Pigelleto Nature Reserve, situated to the south-east of Mt. Amiata (Tuscany, Italy), is char- acterized by a relict nucleus of Abies alba Mill. at low altitude, which is probably an autochtho- nous ecotype. The mycoflora list reported here is the result of past studies and observations car- ried out during 2005-2006. Among the species of macrofungi accounted for (426, belonging to 144 genera), 158 entities were collected for the first time during this recent study. Introduction This work represents a contribution to the mycological knowledge of Pigelleto Nature Reserve (Mt. Amiata, central-southern Tuscany, Italy, Fig. 1). It constitutes part of the “Life04NAT IT/000191” Project concerning the conservation of Abies alba Miller, which includes many different studies to analyze the various natural components of the area under investigation (Pecoraro & al. in press). The woods in the Amiata area are characterized by the alternation of Quercus cerris L. and Fagus sylvatica L., even though there are also mixed areas of mostly Carpinus betu- lus L. or Fraxinus sp. pl. (De Dominicis & Loppi 1992). Moreover, all of the forested areas have been subject to reforestation, mainly carried out in the first half of the 1900s due to the passage of the forestry law in 1923. -
The Ascomycota
Papers and Proceedings of the Royal Society of Tasmania, Volume 139, 2005 49 A PRELIMINARY CENSUS OF THE MACROFUNGI OF MT WELLINGTON, TASMANIA – THE ASCOMYCOTA by Genevieve M. Gates and David A. Ratkowsky (with one appendix) Gates, G. M. & Ratkowsky, D. A. 2005 (16:xii): A preliminary census of the macrofungi of Mt Wellington, Tasmania – the Ascomycota. Papers and Proceedings of the Royal Society of Tasmania 139: 49–52. ISSN 0080-4703. School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia (GMG*); School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia (DAR). *Author for correspondence. This work continues the process of documenting the macrofungi of Mt Wellington. Two earlier publications were concerned with the gilled and non-gilled Basidiomycota, respectively, excluding the sequestrate species. The present work deals with the non-sequestrate Ascomycota, of which 42 species were found on Mt Wellington. Key Words: Macrofungi, Mt Wellington (Tasmania), Ascomycota, cup fungi, disc fungi. INTRODUCTION For the purposes of this survey, all Ascomycota having a conspicuous fruiting body were considered, excluding Two earlier papers in the preliminary documentation of the endophytes. Material collected during forays was described macrofungi of Mt Wellington, Tasmania, were confined macroscopically shortly after collection, and examined to the ‘agarics’ (gilled fungi) and the non-gilled species, microscopically to obtain details such as the size of the -
Reviewing the World's Edible Mushroom Species: a New
Received: 5 September 2020 Revised: 4 December 2020 Accepted: 21 December 2020 DOI: 10.1111/1541-4337.12708 COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY Reviewing the world’s edible mushroom species: A new evidence-based classification system Huili Li1,2,3 Yang Tian4 Nelson Menolli Jr5,6 Lei Ye1,2,3 Samantha C. Karunarathna1,2,3 Jesus Perez-Moreno7 Mohammad Mahmudur Rahman8 Md Harunur Rashid8 Pheng Phengsintham9 Leela Rizal10 Taiga Kasuya11 Young Woon Lim12 Arun Kumar Dutta13 Abdul Nasir Khalid14 Le Thanh Huyen15 Marilen Parungao Balolong16 Gautam Baruah17 Sumedha Madawala18 Naritsada Thongklang19,20 Kevin D. Hyde19,20,21 Paul M. Kirk22 Jianchu Xu1,2,3 Jun Sheng23 Eric Boa24 Peter E. Mortimer1,3 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China 2 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China 4 College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China 5 Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil 6 Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil 7 Colegio de Postgraduados, Campus Montecillo, Texcoco, México 8 Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, -
The Genus Coprinus and Allies
BRITISH MYCOLOGICAL SOCIETY FUNGAL EDUCATION & OUTREACH— [email protected] The genus Coprinus and allies Most of the species previously in the genus Coprinus and commonly known as Inkcaps were transferred into three new genera in 2001 on the basis of their DNA: Coprinopsis, Coprinellus and Parasola, leaving just three British species in Coprinus in the strict sense. The name Inkcap comes from the characteristic habit of most of these species of dissolving into a puddle of black liquid when mature - or ‘deliquescing’. In the past this liquid was indeed used for ink. Many Coprinus comatus species are very short-lived – some fruit bodies survive less than a day – Photo credit: Nick White and they occur in moist conditions throughout the year in a range of different habitats according to species including soil, wood, vegetation, roots and dung. Caps are thin-fleshed, usually white when young and often appear coated in fine white powder or fibrils called ‘veil’; they range in size from minute (less than 0.5cm) to more than 5cm across. Gills start out pale but soon turn black with the deliquescing spores. Stems are white and in some species very tall in relation to cap size. One species, Coprinopsis atramentaria, has a seriously unpleasant effect if eaten a few hours either side of consuming alcohol, acting like the drug ‘Antabuse’ used to treat alcoholics. Coprinopsis lagopus Photo credit: Penny Cullington Unless otherwise stated, text kindly provided by Penny Cullington and members of the BMS Fungus recording groups BRITISH MYCOLOGICAL SOCIETY FUNGAL EDUCATION & OUTREACH— [email protected] The genus Agaricus This genus contains not only our commercially grown shop mushroom (Agaricus bisporus) but also about 40 other species in the UK including the very tasty Agaricus campestris (Field Mushroom) and several others renowned for their excellent flavour. -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Diversity of Ectomycorrhizal Fungi in Minnesota's Ancient and Younger Stands of Red Pine and Northern Hardwood-Conifer Forests
DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY PATRICK ROBERT LEACOCK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DAVID J. MCLAUGHLIN, ADVISER OCTOBER 1997 DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS COPYRIGHT Patrick Robert Leacock 1997 Saint Paul, Minnesota ACKNOWLEDGEMENTS I am indebted to Dr. David J. McLaughlin for being an admirable adviser, teacher, and editor. I thank Dave for his guidance and insight on this research and for assistance with identifications. I am grateful for the friendship and support of many graduate students, especially Beth Frieders, Becky Knowles, and Bev Weddle, who assisted with research. I thank undergraduate student assistants Dustine Robin and Tom Shay and school teacher participants Dan Bale, Geri Nelson, and Judith Olson. I also thank the faculty and staff of the Department of Plant Biology, University of Minnesota, for their assistance and support. I extend my most sincere thanks and gratitude to Judy Kenney and Adele Mehta for their dedication in the field during four years of mushroom counting and tree measuring. I thank Anna Gerenday for her support and help with identifications. I thank Joe Ammirati, Tim Baroni, Greg Mueller, and Clark Ovrebo, for their kind aid with identifications. I am indebted to Rich Baker and Kurt Rusterholz of the Natural Heritage Program, Minnesota Department of Natural Resources, for providing the opportunity for this research.