The Role of Hyperthermophilic Prokaryotes in Oil Fields

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Hyperthermophilic Prokaryotes in Oil Fields Microbial Ecology of Oil Fields The role of hyperthermophilic prokaryotes in oil fields Karl O. Stetter , Robert Huber Lehrstuhl für Mikrobiologie, University of Regensburg, 93053 Regensburg, Germany ABSTRACT Deep geothermally heated oil stratifications represent newly recognized non-volcanic islands of microbial life at extremely high temperatures, some 3,500 m below the surface. Samples of produced fluids contain high concentrations of various anaerobic extremely thermophilic and hyperthermophilic archaea and bacteria, indicating the presence of complex microbial communities in situ. The isolates consist of heterotrophs and facultative and obligate chemolithoautotrophs, some of which are able to use crude oil in their energy- yielding reactions. They belong to the genera Archaeoglobus, Thermococcus, Pyrococcus, Methanococcus, Methanobacterium, Thermotoga, Thermosipho, and Thermodesulfobacterium. Most isolates are members of species already known from hot springs and hydrothermal vents. They may have entered the reservoirs through natural routes such as faults and oil seeps or by sea water injection. A great deal are sulfidogens and may, therefore, participate in reservoir "souring" at temperatures previously considered too high for biochemical reactions. Introduction Microbial hydrogen sulfide formation in shallow oil reservoirs (reservoir "souring") at moderate temperatures is well known and is mainly caused by a variety of mesophilic and slightly thermophilic sulfate-reducing bacteria [12]. Deep hot oil reservoirs, however - in view of their extremely high temperatures around 100°C - were previously considered as too extreme to support microbial activity and reservoir "souring" observed there was attributed exclusively to abiotic chemical processes [5]. During the last decade, hyperthermophilic archaea and bacteria which grow at temperatures of 80 to 113°C were isolated from terrestrial hot springs and submarine hot vents [10, 11]. By their physiological properties and 16S rRNA sequence, hyperthermophiles represent a variety of very different taxonomic groups. Within the 16S rRNA-based phylogenetic tree of life, hyperthermophiles cover all the deepest and shortest branches [8, 11]. Archaeoglobus is a unique hyperthermophilic sulfate reducing archaeon. Its first isolation from a submarine hot vent close to Vulcano Island (Italy) led to the hypthesis that "souring" of hot reservoirs may be caused biotically by Archaeoglobus-like organisms [7]. In this paper, we describe the isolation, properties and possible role of extreme thermophiles and hyperthermophiles, which we have discovered for the first time in deep hot oil reservoirs [9]. Microbial Biosystems: New Frontiers Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Brylinsky M, Johnson-Green P (ed) Atlantic Canada Society for Microbial Ecology, Halifax, Canada, 1999. Microbial Ecology of Oil Fields Results Sampling, Isolation, and Identification In order to investigate the presence of extreme thermophiles and hyperthermophiles in deep oil-bearing strata, anaerobic samples (each 100 ml) from the upcoming reservoir fluids were taken from 15 wells at the Thistle offshore oil production platform (East Shetland Basin, North Sea) and from 33 wells at the Prudhoe Bay, Endicott and Kuparuk oil fields (North Slope of Alaska, U.S.A.). The maximum temperatures measured in the reservoirs were between 71 and 110°C. At the wellheads, the produced fluids had cooled to between 20°C and 87°C, depending on the flow rate (up to 3.5 m/sec). The produced fluids consisted of oil, water and gas in varying ratios. The water cut varied between 10% and 30%, depending on the sample source. The separated, depressurized water phase of the samples had a pH close to 7 with an ionic strength similar to seawater. All four reservoirs were continuously flooded by pressurized seawater and had a history of H2S production. Hyperthermophiles were detected after inoculating sterile anaerobic culture media (containing various possible substrates) with the water phases of the samples and incubating them at 85 and 102°C. Original cell concentrations were determined by serial dilution of the water phases. The species were identified by DNA/DNA hybridization with the type species already known from hydrothermal systems. Table 1. Examples of viable hyperthermophiles found in Thistle produced fluids (Enrichments at 85 and 102°C) Well No. Original titre Identified species (cells/ml) A02 100 Archaeoglobus fulgidus; Archaeoglobus lithotrophicus 10 Thermococcus celer; Thermococcus litoralis 1000 Pyrococcus sp. nov. A05 1000 Archaeoglobus fulgidus; Archaeoglobus lithotrophicus 10 Thermococcus litoralis 10 Pyrococcus sp. nov. A08 10000 Archaeoglobus fulgidus; A. profundus; A. lithotrophicus 100 Thermococcus litoralis 10 Pyrococcus sp. nov. A25 100 Archaeoglobus fulgidus; Archaeoglobus lithotrophicus 1000 Thermococcus celer; Thermococcus litoralis 10 Pyrococcus sp. nov. A31 100 Archaeoglobus fulgidus; Archaeoglobus lithotrophicus 10 Thermococcus celer; Thermococcus litoralis 1000 Pyrococcus sp. nov. The samples from the Thistle reservoir were available first and were studied in more detail. Our studies revealed that all 15 Thistle samples contained mixtures of hyperthermophiles. The original cell titres (in the water phases) were 10 to 10,000 viable cells/ml (Table 1), indicating very high cell concentrations in the reservoirs. The Thistle hyperthermophiles identified consist of members of Archaeoglobus fulgidus, Archaeoglobus Microbial Ecology of Oil Fields lithotrophicus, Archaeoglobus profundus, Thermococcus celer and Thermococcus litoralis. These archaeal species had been found before in submarine hydrothermal systems [11]. In addition, a new species of Pyrococcus was detected in the Thistle samples (Table 1). Enrichments at 65°C gave rise to cultures of Methanococcus thermolithotrophicus (5 samples), Methanobacterium thermoautotrophicum (2 samples) and a new species of Thermosipho (1 sample; Table 2). Table 2. Maximum growth temperature and morphology of hot reservoir thermophiles Species Tmax (°C) Morphology Bacteria Thermosipho sp. 78 rods in chains with sheath, overballooning ends Thermotoga sp. 90 rods with sheath, overballooning ends Thermodesulfobacterium sp. 80 rods Archaea Methanobacterium thermoautotrophicum 70 rods in chains, UV-fluorescent Methanococcus thermolithotrophicus 70 irregular cocci, UV-fluorescent, ∅ 1.5µm Archaeoglobus lithotrophicus 89 Archaeoglobus profundus 90 irregular cocci, often triangular, ∅ 0.5 - 2µm Archaeoglobus fulgidus 94 UV-fluorescent like methanogens Thermococcus celer 93 Thermococcus litoralis 98 irregular cocci, often in pairs, Pyrococcus sp. 103 ∅ 2µm From about 50% of the samples taken from the Alaskan oil reservoirs, Archaeoglobus and Thermococcus-like cultures could be enriched at 85°C. Enrichment cultures from 7 samples contained Thermotoga-like organisms. Depending on the samples, the original cell concentrations (viable cells/ml) ranged from 1 to 10 for Archaeoglobus, 1 to 10,000 for Thermococcus, and 1 to 1,000 for Thermotoga. Cultures of rod-shaped bacteria resembling members of the genus Thermodesulfobacterium, were obtained at 75°C from 2 samples. Microbial Ecology of Oil Fields Physiological properties In the laboratory, the deep reservoir isolates grow at temperatures corresponding to the in situ conditions (Table 3; Fig. 1). Archaeoglobus lithotrophicus grows between 63 and 89°C with an optimum around 80°C (optimal doubling time: 95 min; Fig. 1). Investigation of the pressure tolerance of Archaeoglobus fulgidus demonstrated its ability to grow between 300 and 420 atmospheres under reservoir conditions (not shown). In their energy-yielding reactions, a great deal of the reservoir thermophiles are sulfidogens (Table 3). Members of Archaeoglobus are sulfate reducers. As electron donor, Archaeoglobus fulgidus is able to use a variety of laboratory substrates [7]. In contrast, Archaeoglobus lithotrophicus is a strict chemolithoautotroph. Members of Pyrococcus and Thermococcus are able to reduce elemental sulfur using complex organic material as electron donor (Table 3). 0 In the absence of S , members of these genera are able to grow by fermentation with H2, CO2, and fatty acids as end products. Thermosipho and Thermotoga ferment carbohydrates, 0 forming H2, CO2, acetate and lactic acid. In the presence of S , however, H2S is formed instead of H2 [3]. Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus are obligate chemolithoautotrophs forming methane from H2 and CO2. Microbial Ecology of Oil Fields Table 3. Growth temperature and laboratory substrates of isolates from the Thistle reservoir Species Growth temperature (°C) Laboratory substrates Electron min. opt. max. (positive requirement) acceptor 2- Archaeoglobus fulgidus 60 83 94 lactate; cell extract SO4 2- Archaeoglobus 65 82 90 H2/CO2 + acetate SO4 profundus 2- Archaeoglobus 63 80 89 H2CO2 SO4 lithotrophicus sp. nov. Thermococcus litoralis 50 88 98 cell extract; peptone S0 Thermococcus celer 75 87 93 cell extract; peptone S0 Pyrococcus sp. Nov. 60 92 103 cell extract; peptone S0 Pure cultures of the strains were obtained by plating on to culture medium solidified by 0.6% gelrite (Kelco, San Diego, USA). 10 ml cultures were grown during shaking at 200 rpm in stoppered 120 ml serum bottles. Organic substrates were added at 0.05 % (w/v). Cell extract consisted of yeast extract (Difco), meat extract (Difco) and Methanothermus fervidus extract. Alternative substrates
Recommended publications
  • A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
    www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike .
    [Show full text]
  • Thermococcus Piezophilus Sp. Nov., a Novel Hyperthermophilic And
    1 Systematic and Applied Microbiology Achimer October 2016, Volume 39, Issue 7, Pages 440-444 http://dx.doi.org/10.1016/j.syapm.2016.08.003 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00348/45949/ © 2016 Elsevier GmbH. All rights reserved. Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise ✯ Dalmasso Cécile 1, 2, 3, Oger Philippe 4, Selva Gwendoline 1, 2, 3, Courtine Damien 1, 2, 3, L'Haridon Stéphane 1, 2, 3, Garlaschelli Alexandre 1, 2, 3, Roussel Erwan 1, 2, 3, Miyazaki Junichi 5, Reveillaud Julie 1, 2, 3, Jebbar Mohamed 1, 2, 3, Takai Ken 5, Maignien Lois 1, 2, 3, Alain Karine 1, 2, 3, * 1 Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 2 CNRS, IUEM − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 3 Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France 4 Université de Lyon, INSA Lyon, CNRS UMR 5240, 11 Avenue Jean Capelle, F-69621 Villeurbanne, France 5 Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan * Corresponding author : Karine Alain, email address : [email protected] ✯ Note: The EMBL/GenBank/DDBJ 16S rRNA gene sequence accession number of strain CDGST is LN 878294.
    [Show full text]
  • Archaeoglobus Profundus Type Strain (AV18T)
    Standards in Genomic Sciences (2010) 2:327-346 DOI:10.4056/sigs.942153 Complete genome sequence of Archaeoglobus profundus type strain (AV18T) Mathias von Jan1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, Lynne Goodwin2,3, Cliff Han2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Galina Ovchinnikova2, Olga Chertkov2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Elizabeth Saunders2, Thomas Brettin2,3, John C. Detter2,3, Patrick Chain2,4, Konrad Eichinger6, Harald Huber6, Ste- fan Spring1, Manfred Rohde7, Markus Göker1, Reinhard Wirth6, Tanja Woyke2, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 University of Regensburg, Microbiology – Archaeenzentrum, Regensburg, Germany 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hyperthermophilic, marine, strictly anaerobic, sulfate respiration, hydrogen utili- zation, hydrothermal systems, Archaeoglobaceae, GEBA Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu- ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog- lobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no va- lidly published name.
    [Show full text]
  • Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus Fulgidus VC-16 by Comparative Transcriptome Analyses
    Hindawi Publishing Corporation Archaea Volume 2015, Article ID 235384, 12 pages http://dx.doi.org/10.1155/2015/235384 Research Article Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses William P. Hocking, Irene Roalkvam, Carina Magnussen, Runar Stokke, and Ida H. Steen Department of Biology, Centre for Geobiology, University of Bergen, 5020 Bergen, Norway Correspondence should be addressed to Ida H. Steen; [email protected] Received 10 April 2015; Revised 9 June 2015; Accepted 14 June 2015 Academic Editor: Uwe Deppenmeier Copyright © 2015 William P. Hocking et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzingred aFd :menaquinone oxidoreductase reaction, as the major mode of energy conservation, rather than formate or H2 cycling during respiratory growth. The bifunctional CODH (cdhAB-2) is predicted to play an ubiquitous role in the metabolism of CO, and a novel nitrate reductase- associated respiratory complex was induced specifically in the presence of sulfate. A potential role of this complex in relation to Fdred and APS reduction is discussed.
    [Show full text]
  • Microbial and Geochemical Investigation Down to 2000 M Deep Triassic Rock (Meuse/Haute Marne, France)
    geosciences Article Microbial and Geochemical Investigation down to 2000 m Deep Triassic Rock (Meuse/Haute Marne, France) Vanessa Leblanc 1,2,3, Jennifer Hellal 1 , Marie-Laure Fardeau 4,5, Saber Khelaifia 4,5, Claire Sergeant 2,3, Francis Garrido 1, Bernard Ollivier 4,5 and Catherine Joulian 1,* 1 BRGM, Geomicrobiology and Environmental Monitoring Unit, F-45060 Orléans CEDEX 02, France; [email protected] (V.L.); [email protected] (J.H.); [email protected] (F.G.) 2 Bordeaux University, Centre d’Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33170 Gradignan, France; [email protected] 3 CNRS-IN2P3, Centre d’Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33170 Gradignan, France 4 Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France; [email protected] (M.-L.F.); Saber.Khelaifi[email protected] (S.K.); [email protected] (B.O.) 5 Université de Toulon, CNRS/INSU, 83957 La Garde, France * Correspondence: [email protected]; Tel.: +33-2-3864-3089 Received: 31 August 2018; Accepted: 13 December 2018; Published: 20 December 2018 Abstract: In 2008, as part of a feasibility study for radioactive waste disposal in deep geological formations, the French National Radioactive Waste Management Agency (ANDRA) drilled several boreholes in the transposition zone in order to define the potential variations in the properties of the Callovo–Oxfordian claystone formation. This consisted of a rare opportunity to investigate the deep continental biosphere that is still poorly known. Four rock cores, from 1709, 1804, 1865, and 1935 m below land surface, were collected from Lower and Middle Triassic formations in the Paris Basin (France) to investigate their microbial and geochemical composition.
    [Show full text]
  • Hyperthermophilic Archae- and Eubacteria Occurring Within Indonesian Hydrothermal Areas
    Mitt. Geol.-Paläont. Inst. Univ. Hamburg The Sea off Mount Tambora S. 161-172 Hamburg Heft 70 October 1992 Hyperthermophilic Archae- and Eubacteria occurring within Indonesian Hydrothermal Areas by G. HUBER, R. HUBER, B. JONES G. LAUERER, A. NEUNER, A. SEGERER, K. O. STETTER & E. T. DEGENS*) With 3 Figures and 6 Tables Contents Abstract 162 1. Introduction ^2 2. Results and Discussion 163 2.1 Sampling 163 2.2 Archaebacterial Isolates from Sea Sediments and Sea Water Samples from the Sumbawa and Komodo-Rinja Areas 164 2.3 Hyperthermophilic Archaebacterial and Eubacterial Isolates from the Shallow Submarine Hot Springs at the Beach of Sangeang Island 165 2.4 Methanogenic Isolates from the Toye Bungkah Hot Springs, Bali 167 2.5 Hyperthermophilic and Thermophilic Archae- and Eubacteria Isolated from Solfatara Fields at the Dieng Plateau and Tangkuban Prahu, Java 167 3. Acknowledgements 17C References 171 *) Addresses of the authors: B. JONES, Gist-Brocades, Delft, The Netherlands; G. HUBER, R. HUBER, G. LAUERER, A. NEUNER, A. SEGERER, Prof. Dr. K. O. STETTER, University of Regensburg, Institute of Microbiology, Universitätsstr. 31, D-8400 Regensburg, Federal Republic of Germany; Prof. Dr. E. T. DEGENS, SCOPE/UNEP International Carbon Unit, Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstraße 55, D-2000 Hamburg 13, Federal Republic of Germany. Abstract From 85 samples taken during cruise 45B of the R/V SONNE within the Sunda Arc subduction zone and from solfatara fields in Java, thermophilic and hyperthermophilic archae- and eubacteria were isolated. The archaebacteria belong to the genera Methanobacterium, Methanolobus, Methanosarcina, Acidianus, Thermoproteus, Desulfurococcus, Thermoplasma and to two up to now unknown genera of hyperthermophilic marine heterotrophs and continental metal mobilizers.
    [Show full text]
  • Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus Fulgidus VC-16 by Comparative Transcriptome Analyses
    Hindawi Publishing Corporation Archaea Volume 2015, Article ID 235384, 12 pages http://dx.doi.org/10.1155/2015/235384 Research Article Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses William P. Hocking, Irene Roalkvam, Carina Magnussen, Runar Stokke, and Ida H. Steen Department of Biology, Centre for Geobiology, University of Bergen, 5020 Bergen, Norway Correspondence should be addressed to Ida H. Steen; [email protected] Received 10 April 2015; Revised 9 June 2015; Accepted 14 June 2015 Academic Editor: Uwe Deppenmeier Copyright © 2015 William P. Hocking et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzingred aFd :menaquinone oxidoreductase reaction, as the major mode of energy conservation, rather than formate or H2 cycling during respiratory growth. The bifunctional CODH (cdhAB-2) is predicted to play an ubiquitous role in the metabolism of CO, and a novel nitrate reductase- associated respiratory complex was induced specifically in the presence of sulfate. A potential role of this complex in relation to Fdred and APS reduction is discussed.
    [Show full text]
  • Thermococcus Celer Genome Would Encode a Product Closely
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4180-4184, May 1994 Evolution Transcription factor IID in the Archaea: Sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes (tancription inilaion/molecular evolution/gene duplcation/maximum likelihood and parsimony/least-squares didance) TERRY L. MARSH, CLAUDIA I. REICH, ROBERT B. WHITELOCK*, AND GARY J. OLSENt Department of Microbiology, University of Illinois, Urbana, IL 61801 Communicated by Carl R. Woese, January 7, 1994 ABSTRACT The first step in transcription initiation in the Bacteria. If this were true, then it is expected that there eukaryotes is mediated by the TATA-binding protein, a subunit will be biological innovations shared by the Eucarya and the of the transcription factor IID complex. We have cloned and Archaea but not present in the Bacteria. This is a testable sequenced the gene for a presumptive homolog of this eukary- hypothesis. otic protein from Thermococcus celer, a member ofthe Archaea Ouzounis and Sander (8) reported that the genome of the (formerly archaebacteria). The protein encoded by the ar- archaeon Pyrococcus woesei includes sequences that would chaeal gene is a tandem repeat of a conserved domain, corre- encode a protein similar to transcription factor IIB (TFIIB) of sponding to the repeated domain in its eukaryotic counterparts. eukaryotes. This fact, combined with previous observations Molecular phylogenetic analyses ofthe two halves ofthe repeat that archaeal gene promoters include sequences similar to the are consistent with the duplication occurring before the diver- TATA box of eukaryotic promoters (9), led them to suggest gence of the archaeal and eukaryotic domains.
    [Show full text]
  • Ep 0949930 B1
    Europäisches Patentamt *EP000949930B1* (19) European Patent Office Office européen des brevets (11) EP 0 949 930 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: A61K 38/46, C07H 19/00, of the grant of the patent: C07H 21/02, C07H 21/04, 06.10.2004 Bulletin 2004/41 C12N 9/14, C12N 1/20, (21) Application number: 97933154.3 C12N 15/00 (22) Date of filing: 19.06.1997 (86) International application number: PCT/US1997/010784 (87) International publication number: WO 1997/048416 (24.12.1997 Gazette 1997/55) (54) THERMOSTABLE PHOSPHATASES THERMOSTABILEN PHOSPHATASEN PHOSPHATASES THERMOSTABLES (84) Designated Contracting States: • EMBL DATABASE Accession no D83525 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Sequence identity PSCS 29 February 1996 NL PT SE RAHAMAN N ET AL: "Gene cloning and sequence ananlysis of cobyric acid synthase (30) Priority: 19.06.1996 US 33752 P and cobalamin (5’-phosphate) synthase from hyperthermophilic archaeon Pyrococcus spec." (43) Date of publication of application: XP002151693 20.10.1999 Bulletin 1999/42 • BULT CAROL J ET AL: "Complete genome sequence of the methanogenic archaeon, (73) Proprietor: Diversa Corporation Methanococcus jannaschii." SCIENCE San Diego, CA 92121 (US) (WASHINGTON D C), vol. 273, no. 5278, 23 August 1996 (1996-08-23), pages 1058-1073, (72) Inventors: XP002151692 ISSN: 0036-8075 -& EMBL • MATHUR, Eric, J. DATABASE Accession no U67505 Sequence Carlsbad, CA 92009 (US) identitity MJU67505 26 August 1996 • LEE, Edd XP002151694 La Jolla, CA 92037 (US) • EMBL DATABASE Accession no AA080579, • BYLINA, Edward Sequence identity SSAA80579 16 October 1996 Andalusia, PA 19020 (US) CARSON D ET AL: "Sugercane cDNA from leaf roll tissue" XP002151695 (74) Representative: VOSSIUS & PARTNER • CLINICAL CHEMISTRY, December 1992, Vol.
    [Show full text]
  • Thermal Stability of the Ribosomal Protein L30e From
    Thermal Stability of the Ribosomal Protein L30e from Hyperthermophilic Archaeon Thermococcus celer by Protein Engineering LEUNG Tak Yuen B.Sc. (Hon.), CUHK A Thesis Submitted in Partial Fulfillment of the Requirement For The Degree of Master of Philosophy in Biochemistry July 2003 The Chinese University of Hong Kong The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School /;/輕塑\ \ L; :^ \ U^VE^ /, / ^O^LIBRARY SYSTEMX./ Table of Contents Acknowledgments { Abstract “ Abbreviations 衍 Abbreviations of amino acids iv Abbreviations of nucleotides iv Naming system for TRP mutants v Chapter 1 I ntroduction 1 • 1 Hyperthermophile and hyperthermophilic proteins 1 1.2 Hyperthermophilic proteina are highly similar to their mesophilic 2 homologues 1.3 Hyperthermophilic proteins and free energy of stabilization 3 1.4 Mechanisms of protein stabilization 4 1.5 The difference in protein stability between mesophilic protein and 4 hyperthermophilic protein 1.6 Ribosomal protein L30e from T. celer can be used as a model 9 system to study thermostability 1.7 Protein engineering of TRP 10 1.8 Purpose of the present study 12 Chapter 2 Materials and Methods 2.1 Bacterial strains 13 2.2 Plasmids 13 2.3 Bacterial culture media and solutions 13 2.4 Antibiotic solutions 13 2.5 Restriction endonucleases and other enzymes 14 2.6 M9ZB medium 14 2.7 SDS-PAGE 14 2.8 Alkaline phosphatase
    [Show full text]
  • Genome Analysis and Genome-Wide Proteomics
    Open Access Research2009ZivanovicetVolume al. 10, Issue 6, Article R70 Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea Yvan Zivanovic¤*, Jean Armengaud¤†, Arnaud Lagorce*, Christophe Leplat*, Philippe Guérin†, Murielle Dutertre*, Véronique Anthouard‡, Patrick Forterre§, Patrick Wincker‡ and Fabrice Confalonieri* Addresses: *Laboratoire de Génomique des Archae, Université Paris-Sud 11, CNRS, UMR8621, Bât400 F-91405 Orsay, France. †CEA, DSV, IBEB Laboratoire de Biochimie des Systèmes Perturbés, Bagnols-sur-Cèze, F-30207, France. ‡CEA, DSV, Institut de Génomique, Genoscope, rue Gaston Crémieux CP5706, F-91057 Evry Cedex, France. §Laboratoire de Biologie moléculaire du gène chez les extrêmophiles, Université Paris-Sud 11, CNRS, UMR8621, Bât 409, F-91405 Orsay, France. ¤ These authors contributed equally to this work. Correspondence: Fabrice Confalonieri. Email: [email protected] Published: 26 June 2009 Received: 24 March 2009 Revised: 29 May 2009 Genome Biology 2009, 10:R70 (doi:10.1186/gb-2009-10-6-r70) Accepted: 26 June 2009 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2009/10/6/R70 © 2009 Zivanovic et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Thermococcus<p>Theoresistance genome may gammatole besequence due to ransunknownof Thermococcus proteogenomics DNA repair gammatolerans, enzymes.</p> a radioresistant archaeon, is described; a proteomic analysis reveals that radi- Abstract Background: Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys.
    [Show full text]
  • Clues from Simulated Metabolic Network Expansion
    life Article Plausibility of Early Life in a Relatively Wide Temperature Range: Clues from Simulated Metabolic Network Expansion Xin-Yi Chu †, Si-Ming Chen †, Ke-Wei Zhao, Tian Tian, Jun Gao and Hong-Yu Zhang * Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (X.-Y.C.); [email protected] (S.-M.C.); [email protected] (K.-W.Z.); [email protected] (T.T.); [email protected] (J.G.) * Correspondence: [email protected]; Tel.: +86-27-87285085 † These authors contributed equally. Abstract: The debate on the temperature of the environment where life originated is still inconclusive. Metabolic reactions constitute the basis of life, and may be a window to the world where early life was born. Temperature is an important parameter of reaction thermodynamics, which determines whether metabolic reactions can proceed. In this study, the scale of the prebiotic metabolic network at different temperatures was examined by a thermodynamically constrained network expansion simulation. It was found that temperature has limited influence on the scale of the simulated metabolic networks, implying that early life may have occurred in a relatively wide temperature range. Keywords: origin of life; metabolism; network expansion simulation; temperature; thermodynamics Citation: Chu, X.-Y.; Chen, S.-M.; Zhao, K.-W.; Tian, T.; Gao, J.; Zhang, H.-Y. Plausibility of Early Life in a 1. Introduction Relatively Wide Temperature Range: The temperature of the environment where life originated has elicited a long-term Clues from Simulated Metabolic debate. Previous genome sequence-based studies on this issue reached inconsistent results Network Expansion.
    [Show full text]