Phylogeny Based on 16S Rrna/DNA

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny Based on 16S Rrna/DNA Phylogeny Based on Secondary article 16S rRNA/DNA Article Contents . Introduction Erko Stackebrandt, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, . Semantic Macromolecules: a Basis for Phylogenetic Braunschweig, Germany Studies . Sequence Determination, Sequence Alignment and Determination of Sequence Similarities Modern systematics of prokaryotes is based on comparative analysis of the evolutionarily . Recognition of the Higher Taxa of Prokaryotes conservative genes coding for 16S ribosomal RNA. Dendrograms of phylogenetic . Polyphasic Approach to Bacterial Systematics relatedness show the order in which organisms evolved in time, thus providing a basis for . The Taxonomic Rank ‘Species’ in Bacteriology their classification. Introduction are the historical record of evolution, and the determina- In contrast to more highly evolved eukaryotes, in which tion of their primary structure provides a powerful means complex morphologies visibly reflect their evolutionary by which evolutionary relationships can be measured. In history, the microscopic and ultrastructural features of essence, two organisms possessing a given stretch of microorganisms cannot be used to deduce the way in which semantides which differ in only a few changes (mutations, the prokaryotes and the morphologically simple eukar- nucleotide order or amino acid positions) are more closely yotic forms evolved. Before 1960 taxonomists were unable related to each other than those organisms in which a to appreciate the complexity of microbial systematics and higher number of changes have accumulated. Thus these to recognize that groups based on superficial properties molecules can be considered as chronometers. As different alone did not necessarily reflect those which arose due to genes are subjected to different rates of changes (same evolutionary processes. However, at this same time (when frequency of mutation but different level of manifestation most microbiologists resigned themselves to the belief that of changes), each cell possesses a variety of chronometers the true course of prokaryote phylogeny could never be from which different evolutionary events can be deter- unravelled) concepts were developed that turned out to mined. Slow running clocks will reflect early evolutionary change our view about the inter-relatedness of living events such as the separation of the main lines of descent, organisms. while fast running clocks will reflect more recent events, such as the more precise separation of genera and species. Comparative analysis of one particular homologous semantide from many organisms will allow the determina- Semantic Macromolecules: a Basis for tion of the order in which this gene or protein evolved during evolution, thus unravelling its family tree. Phylogenetic Studies Episemantic molecules, which are synthesized under the control of tertiary semantides, are adenosine triphosphate Biological molecules can be classified into three categories (ATP), carotenoids and chemotaxonomic markers. These – semantides, episemantides and asemantides – according molecules are not phylogenetic markers per se but the past to the information they carry (Zuckerkandl and Pauling, has shown that groups of organisms that form a 1965). At the highest level is the semantides, which are phylogenetic cluster can, in most cases, be recognized by information-carrying molecules. From the evolutionary the chemical composition of markers such as peptidogly- origin of the first cell to contemporary cells, information on can, lipids, fatty acids, isoprenoid quinones, polyamines reproduction, behaviour, survival, maintenance, etc. have and mycolic acids. been laid down in blueprints and passed in semantides Asemantic molecules are molecules that are not pro- from one generation to the other. duced by the organisms themselves and therefore do not Three semantides have been defined according to their express any of the information that this organism contains. role in the cell. Following the biological dogma of For example, molecules such as exogenously supplied information flow, DNA is the primary semantide, RNA vitamins, phosphate ions, oxygen, viruses, etc. cannot be is the secondary semantide, and proteins are the tertiary used in the reconstruction of evolutionary events. semantides. As changes in the primary structure of DNA occur by an ongoing process of random mutation and selection, the composition of this molecule is constantly changing and this information is passed through messen- ger RNA to the proteins. The sequences of these molecules ENCYCLOPEDIA OF LIFE SCIENCES / & 2001 Nature Publishing Group / www.els.net 1 Phylogeny Based on 16S rRNA/DNA 16S rRNA and the gene coding for it are ribosomal proteins are assembled to form the two reliable homologous molecules ribosomal subunits of which each ribosome is composed. The small 30S ribosomal subunit contains the 16S rRNA The most useful molecular chronometers used today for and 21 proteins, while the larger 50S subunit contains the the determination of phylogenetic relationships are the 16S 23S rRNA, the 5S rRNA and 32 proteins. Fully assembled ribosomal (r)RNA genes (rDNA) and their gene products, ribosomes are part of the translation process, in which the the 16S rRNAs (Figure 1) (Woese, 1987). In most organisms genetic information, channelled through the ribosomes via these genes occur in multiple copies per cell, but very slow- transcribed messenger RNA is translated into polypeptides growing species may have only a single copy. The 16S and proteins. It can be deduced from the universality of the rRNA gene is part of an rrn operon, located at the 5’ biological code that such a transcription process, although terminus, followed by the larger 23S rDNA gene and the primitive in early evolution, had already been functioning small 5S rRNA gene. These genes are separated by spacers, during the early stages of life. Thus, the 16S rRNA genes, as some of which contain genes for transfer RNA. During well as the genes coding for other components of the translation, the pre-rRNA is folded under the influence of ribosomes, are presumably derived from a common the ribosomal proteins into tertiary and quaternary ancestor and are homologous molecules. structures. This is the basis for the maturation process, in Several criteria have been identified which make the 16S which the 5’ and 3’ flanking region of the rRNA genes are rRNA and their genes the most widely studied phyloge- digested by specific enzymes. The mature RNA and the netic markers: (1) the function of ribosomes has not 1100r 1114f 519f 907r 536f 27f 926f 1392r 5’ 357f 342r 3’ Figure 1 Secondary structure of a 16S rRNA molecule based on the E. coli structure (Maidak et al., 1994; available in the public domain Ribosomal Database Project). Highly variable regions are red; highly conservative stretches are green. Binding sites of primers used in PCR amplification of the rRNA gene are blue, with the direction of amplification indicated by arrows. The other nucleotides are black. 2 ENCYCLOPEDIA OF LIFE SCIENCES / & 2001 Nature Publishing Group / www.els.net Phylogeny Based on 16S rRNA/DNA changed for about 3.8 billion years, (2) the 16S rDNA sequence analysis is most conveniently carried out as a genes are universally present among all cellular life forms, linear PCR cycle sequencing reaction. The sequences are (3) the size of 1540 nucleotides makes them easy to analyse, then aligned, which means that homologous nucleotides (4) the primary structure is an alternating sequence of derived from a common position within the ancestral invariant, more or less conserved to highly variable sequence are arranged in columns, and consequently are regions, and (5) lateral gene transfer has not (yet) been recognized as being identical or different (Stackebrandt observed among organisms. Other homologous molecules and Rainey, 1995). have been sequenced, e.g. the 23S rDNA, the 5S rRNA, Phylogenetic relationships can be assessed by pairwise genes coding for enzymes, and ribosomal proteins, but the similarities. One hundred per cent similarity found database is not nearly as extensive for these molecules as between a pair of 16S rDNA sequences using different 16S rDNA, for which about 8000 sequences have been methods indicates very high relatedness, if not identity of deposited. the investigated organisms. The lower the value the more unrelated the compared organisms. If, however, the number of organisms is too large, the respective similarity matrix cannot be interpreted meaningfully. In this case Sequence Determination, Sequence phylogenetic relationships can be visualized graphically by using algorithms that transform the similarity values into Alignment and Determination of dissimilarity values to compensate for superimposed Sequence Similarities (multiple) substitutions. These phylogenetic distances form the basis for phylogenetic trees or dendrograms. Progress in the elucidation of phylogenetic relationships The most widely applied treeing methods are distance parallels the development of sequencing methods. Com- methods but other approaches, such as maximum parsi- parative sequence analysis of 16S was introduced by Carl mony and maximum likelihood methods are frequently Woese and collaborators about 20 years ago (Woese and used as well. Tree topologies are best tested by comparing Fox, 1977). The demanding and expensive sequence the evolution of different phylogenetic markers with a analysis of T1-generated 16S rRNA oligonucleotides similar degree of sequence conservatism. The results
Recommended publications
  • A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
    www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike .
    [Show full text]
  • Thermococcus Piezophilus Sp. Nov., a Novel Hyperthermophilic And
    1 Systematic and Applied Microbiology Achimer October 2016, Volume 39, Issue 7, Pages 440-444 http://dx.doi.org/10.1016/j.syapm.2016.08.003 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00348/45949/ © 2016 Elsevier GmbH. All rights reserved. Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise ✯ Dalmasso Cécile 1, 2, 3, Oger Philippe 4, Selva Gwendoline 1, 2, 3, Courtine Damien 1, 2, 3, L'Haridon Stéphane 1, 2, 3, Garlaschelli Alexandre 1, 2, 3, Roussel Erwan 1, 2, 3, Miyazaki Junichi 5, Reveillaud Julie 1, 2, 3, Jebbar Mohamed 1, 2, 3, Takai Ken 5, Maignien Lois 1, 2, 3, Alain Karine 1, 2, 3, * 1 Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 2 CNRS, IUEM − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 3 Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France 4 Université de Lyon, INSA Lyon, CNRS UMR 5240, 11 Avenue Jean Capelle, F-69621 Villeurbanne, France 5 Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan * Corresponding author : Karine Alain, email address : [email protected] ✯ Note: The EMBL/GenBank/DDBJ 16S rRNA gene sequence accession number of strain CDGST is LN 878294.
    [Show full text]
  • Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: Emendation of Generic Descriptions and Proposal of Arcobacter Gen
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1991, p. 88-103 Vol. 41, No. 1 0020-7713/91/010088-16$02.00/0 Copyright 0 1991, International Union of Microbiological Societies Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: Emendation of Generic Descriptions and Proposal of Arcobacter gen. nov. P. VANDAMME,l* E. FALSEN,2 R. ROSSAU,’t B. HOSTE,l P. SEGERS,l R. TYTGAT,l AND J. DE LEY’ Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit Gent, B-9000 Ghent, Belgium,’ and Culture Collection, Department of Clinical Bacteriology, University of Goteborg, S-413 46 Goteborg, Sweden2 Hybridization experiments were carried out between DNAs from more than 70 strains of Campylobacter spp. and related taxa and either 3H-labeled 23s rRNAs from reference strains belonging to Campylobacter fetus, Campylobacter concisus, Campylobacter sputorum, Campylobacter coli, and Campylobacter nitrofigilis, an unnamed Campylobacter sp. strain, and a Wolinella succinogenes strain or 3H- or 14C-labeled23s rRNAs from 13 gram-negative reference strains. An immunotyping analysis of 130 antigens versus 34 antisera of campylobacters and related taxa was also performed. We found that all of the named campylobacters and related taxa belong to the same phylogenetic group, which we name rRNA superfamily VI and which is far removed from the gram-negative bacteria allocated to the five rRNA superfamilies sensu De Ley. There is a high degree of heterogeneity within this rRNA superfamily. Organisms belonging to rRNA superfamily VI should be reclassified in several genera. We propose that the emended genus Campylobacter should be limited to Campylobacter fetus, Campylobacter hy ointestinalis , Campylobacter concisus, Campylobacter m ucosalis , Campylobacter sputorum, Campylobacter jejuni, Campylobacter coli, Campylobacter lari, and “Campylobacter upsaliensis.
    [Show full text]
  • Archaeoglobus Profundus Type Strain (AV18T)
    Standards in Genomic Sciences (2010) 2:327-346 DOI:10.4056/sigs.942153 Complete genome sequence of Archaeoglobus profundus type strain (AV18T) Mathias von Jan1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, Lynne Goodwin2,3, Cliff Han2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Galina Ovchinnikova2, Olga Chertkov2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Elizabeth Saunders2, Thomas Brettin2,3, John C. Detter2,3, Patrick Chain2,4, Konrad Eichinger6, Harald Huber6, Ste- fan Spring1, Manfred Rohde7, Markus Göker1, Reinhard Wirth6, Tanja Woyke2, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 University of Regensburg, Microbiology – Archaeenzentrum, Regensburg, Germany 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hyperthermophilic, marine, strictly anaerobic, sulfate respiration, hydrogen utili- zation, hydrothermal systems, Archaeoglobaceae, GEBA Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu- ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog- lobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no va- lidly published name.
    [Show full text]
  • Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus Fulgidus VC-16 by Comparative Transcriptome Analyses
    Hindawi Publishing Corporation Archaea Volume 2015, Article ID 235384, 12 pages http://dx.doi.org/10.1155/2015/235384 Research Article Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses William P. Hocking, Irene Roalkvam, Carina Magnussen, Runar Stokke, and Ida H. Steen Department of Biology, Centre for Geobiology, University of Bergen, 5020 Bergen, Norway Correspondence should be addressed to Ida H. Steen; [email protected] Received 10 April 2015; Revised 9 June 2015; Accepted 14 June 2015 Academic Editor: Uwe Deppenmeier Copyright © 2015 William P. Hocking et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzingred aFd :menaquinone oxidoreductase reaction, as the major mode of energy conservation, rather than formate or H2 cycling during respiratory growth. The bifunctional CODH (cdhAB-2) is predicted to play an ubiquitous role in the metabolism of CO, and a novel nitrate reductase- associated respiratory complex was induced specifically in the presence of sulfate. A potential role of this complex in relation to Fdred and APS reduction is discussed.
    [Show full text]
  • Comparative Analysis of Four Campylobacterales
    REVIEWS COMPARATIVE ANALYSIS OF FOUR CAMPYLOBACTERALES Mark Eppinger*§,Claudia Baar*§,Guenter Raddatz*, Daniel H. Huson‡ and Stephan C. Schuster* Abstract | Comparative genome analysis can be used to identify species-specific genes and gene clusters, and analysis of these genes can give an insight into the mechanisms involved in a specific bacteria–host interaction. Comparative analysis can also provide important information on the genome dynamics and degree of recombination in a particular species. This article describes the comparative genomic analysis of representatives of four different Campylobacterales species — two pathogens of humans, Helicobacter pylori and Campylobacter jejuni, as well as Helicobacter hepaticus, which is associated with liver cancer in rodents and the non-pathogenic commensal species, Wolinella succinogenes. ε CHEMOLITHOTROPHIC The -subdivision of the Proteobacteria is a large group infection can lead to gastric cancer in humans 9–11 An organism that is capable of of CHEMOLITHOTROPHIC and CHEMOORGANOTROPHIC microor- and liver cancer in rodents, respectively .The using CO, CO2 or carbonates as ganisms with diverse metabolic capabilities that colo- Campylobacter representative C. jejuni is one of the the sole source of carbon for cell nize a broad spectrum of ecological habitats. main causes of bacterial food-borne illness world- biosynthesis, and that derives Representatives of the ε-subgroup can be found in wide, causing acute gastroenteritis, and is also energy from the oxidation of reduced inorganic or organic extreme marine and terrestrial environments ranging the most common microbial antecedent of compounds. from oceanic hydrothermal vents to sulphidic cave Guillain–Barré syndrome12–15.Besides their patho- springs. Although some members are free-living, others genic potential in humans, C.
    [Show full text]
  • Genetic Markers and Plant Genetic Resource Management P
    NCRPIS Publications and Papers North Central Regional Plant Introduction Station 1995 Genetic Markers and Plant Genetic Resource Management P. K. Bretting United States Department of Agriculture Mark P. Widrlechner Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ncrpis_pubs Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ncrpis_pubs/75. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the North Central Regional Plant Introduction Station at Iowa State University Digital Repository. It has been accepted for inclusion in NCRPIS Publications and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Plant Breeding Reviews, Volume 13 Edited by Jules Janick © 1995 John Wiley & Sons, Inc. ISBN: 978-0-471-57343-2 12 P. K. BRETTING AND M. P. WIDRLECHNER C. Maintenance 1. Maintaining Trueness-to-Type a. Morphological Traits b. Secondary Metabolites c. Isozymes, Seed Proteins, and DNA Markers d. Comparative Studies e. Pollination Control Methods 2. Monitoring Shifts in Population Genetic Structure in Heterogeneous Germplasm a. Deviations from Random Mating b. Regeneration of Autogamous Species 3. Monitoring Genetic Shifts Caused by Differential Viability in Storage 4. Monitoring Genetic Shifts Caused by In Vitro Culture 5. Monitoring Germplasm Viability and Health D. Utilization 1. Developing Optimal Utilization Strategies from Genetic Marker Data 2.
    [Show full text]
  • Microbial and Geochemical Investigation Down to 2000 M Deep Triassic Rock (Meuse/Haute Marne, France)
    geosciences Article Microbial and Geochemical Investigation down to 2000 m Deep Triassic Rock (Meuse/Haute Marne, France) Vanessa Leblanc 1,2,3, Jennifer Hellal 1 , Marie-Laure Fardeau 4,5, Saber Khelaifia 4,5, Claire Sergeant 2,3, Francis Garrido 1, Bernard Ollivier 4,5 and Catherine Joulian 1,* 1 BRGM, Geomicrobiology and Environmental Monitoring Unit, F-45060 Orléans CEDEX 02, France; [email protected] (V.L.); [email protected] (J.H.); [email protected] (F.G.) 2 Bordeaux University, Centre d’Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33170 Gradignan, France; [email protected] 3 CNRS-IN2P3, Centre d’Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33170 Gradignan, France 4 Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France; [email protected] (M.-L.F.); Saber.Khelaifi[email protected] (S.K.); [email protected] (B.O.) 5 Université de Toulon, CNRS/INSU, 83957 La Garde, France * Correspondence: [email protected]; Tel.: +33-2-3864-3089 Received: 31 August 2018; Accepted: 13 December 2018; Published: 20 December 2018 Abstract: In 2008, as part of a feasibility study for radioactive waste disposal in deep geological formations, the French National Radioactive Waste Management Agency (ANDRA) drilled several boreholes in the transposition zone in order to define the potential variations in the properties of the Callovo–Oxfordian claystone formation. This consisted of a rare opportunity to investigate the deep continental biosphere that is still poorly known. Four rock cores, from 1709, 1804, 1865, and 1935 m below land surface, were collected from Lower and Middle Triassic formations in the Paris Basin (France) to investigate their microbial and geochemical composition.
    [Show full text]
  • Characterization of Campylobacter Jejuni Strains from Different Hosts and Modelling the Survival of C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Helsinki, Finland Characterization of Campylobacter jejuni strains from different hosts and modelling the survival of C. jejuni in chicken meat and in water Manuel González ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Veterinary Medicine, University of Helsinki, for public examination in Walter Hall, Agnes Sjöbergin katu 2, Helsinki, on September 14th 2012, at 12 noon. 1 Supervisor Professor Marja-Liisa Hänninen, DVM, PhD Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Helsinki, Finland Pre-examiners/Reviewers Professor Heriberto Fernández, PhD Institute of Clinical Microbiology Universidad Austral de Chile Valdivia, Chile and Professor Jordi Rovira Carballido, PhD Vicerector de Investigación Universidad de Burgos Burgos, Spain Opponent Professor Sonja Smole Mozina, PhD Chair of Microbiology, Biotechnology and Food Safety Department of Food Science and Technology Biotechnical Faculty University of Ljubljana Ljubljana, Slovenia ISBN 978-952-10-8165-1 (paperback) ISBN 978-952-10-8166-8 (PDF) http://ethesis.helsinki.fi/ Helsinki University Print Helsinki 2012 2 Contents ACKNOWLEDGMENTS ............................................................................................. 5 ABSTRACT ..................................................................................................................
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,348,854 Webster, Jr
    US00534.8854A United States Patent (19) 11 Patent Number: 5,348,854 Webster, Jr. 45) Date of Patent: Sep. 20, 1994 54 METHOD FORDETECTINGPROKARYOTIC vol. 10, No. 2, "Overview of Automation and Identifi ORGANISMS cation,” pp. 18-20, William J. Martin (1979). 76 Inventor: John A. Webster, Jr., 5 Kenmar Dr., American Society for Microbiology News, vol. 49, No. 2, Bldg. 5, Apt. 21, Billerica, Mass. "Impact of Modern Taxonomy on Microbiology,” Don 01821 J. Brenner. International Code of Nomenclature of Bacteria and 21) Appl. No.: 21,551 Selected Statutes... Bacteriological Code, 1976 Revi 22 Filed: Mar. 2, 1987 sions; ASM, Washington, D.C. (1975). Arnot et al., Mol. Biochem. Parasitol. 3:47-56 (1981). Related U.S. Application Data Dunn et al., Cell 12:23-36 (1977). Mattei et al., Chem. Absts, vol. 86, No. 19, p. 267, Ab 63) Continuation of Ser. No. 695,223, Jan. 25, 1985, aban doned, Continuation-in-part of Ser. No. 305,498, Sep. stract No. 1362(e) (1977). 25, 1981, Pat. No. 4,717,653. Moseley, S. L. et al., J. Infect. Dis. 142:892-898 (1980). Acore, R. U., Current Topics in Microbiology and Im 51 Int. Cl. ............................................... C12Q 1/68 munobiology 64:105-128 (1974), edited by Springer, 52 U.S. C. .......................................... 435/6; 435/34; New York. 435/172.1; 435/810; 436/504; 436/545; 436/501; 436/804 Boros et al., Nucl. Acids Res, 6:1817-1830 (1979). 58) Field of Search .................. 435/6, 34, 172.1, 810; Saillard, Colette, J. N. Bove, "Methods in Mycro 436/504, 543, 545, 801, 501; 535/695, 223, 78, plasma,’ vol.
    [Show full text]
  • Hyperthermophilic Archae- and Eubacteria Occurring Within Indonesian Hydrothermal Areas
    Mitt. Geol.-Paläont. Inst. Univ. Hamburg The Sea off Mount Tambora S. 161-172 Hamburg Heft 70 October 1992 Hyperthermophilic Archae- and Eubacteria occurring within Indonesian Hydrothermal Areas by G. HUBER, R. HUBER, B. JONES G. LAUERER, A. NEUNER, A. SEGERER, K. O. STETTER & E. T. DEGENS*) With 3 Figures and 6 Tables Contents Abstract 162 1. Introduction ^2 2. Results and Discussion 163 2.1 Sampling 163 2.2 Archaebacterial Isolates from Sea Sediments and Sea Water Samples from the Sumbawa and Komodo-Rinja Areas 164 2.3 Hyperthermophilic Archaebacterial and Eubacterial Isolates from the Shallow Submarine Hot Springs at the Beach of Sangeang Island 165 2.4 Methanogenic Isolates from the Toye Bungkah Hot Springs, Bali 167 2.5 Hyperthermophilic and Thermophilic Archae- and Eubacteria Isolated from Solfatara Fields at the Dieng Plateau and Tangkuban Prahu, Java 167 3. Acknowledgements 17C References 171 *) Addresses of the authors: B. JONES, Gist-Brocades, Delft, The Netherlands; G. HUBER, R. HUBER, G. LAUERER, A. NEUNER, A. SEGERER, Prof. Dr. K. O. STETTER, University of Regensburg, Institute of Microbiology, Universitätsstr. 31, D-8400 Regensburg, Federal Republic of Germany; Prof. Dr. E. T. DEGENS, SCOPE/UNEP International Carbon Unit, Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstraße 55, D-2000 Hamburg 13, Federal Republic of Germany. Abstract From 85 samples taken during cruise 45B of the R/V SONNE within the Sunda Arc subduction zone and from solfatara fields in Java, thermophilic and hyperthermophilic archae- and eubacteria were isolated. The archaebacteria belong to the genera Methanobacterium, Methanolobus, Methanosarcina, Acidianus, Thermoproteus, Desulfurococcus, Thermoplasma and to two up to now unknown genera of hyperthermophilic marine heterotrophs and continental metal mobilizers.
    [Show full text]
  • Wolinella Recta, Wolinella Curva, Bactevoides Ureolyticus, and Bactevoides Gvacilis Are Microaerophiles, Not Anaerobes Y.-H
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1991, p. 218-222 Vol. 41, No. 2 0020-7713/91/020218-05$02.00/0 Copyright 0 1991, International Union of Microbiological Societies Wolinella recta, Wolinella curva, Bactevoides ureolyticus, and Bactevoides gvacilis Are Microaerophiles, Not Anaerobes Y.-H. HAN,l R. M. SMIBERT,2 AND N. R. KRIEG1* Microbiology and Immunology Section, Department of Biology, and Department of Anaerobic Microbiology,2 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Although the nonfermentative, asaccharolytic, putative anaerobes Wulinella curva, Wolinella recta, Bacterui- des ureolyticus, and Bacteroides gracilis are phylogenetically related to the true campylobacters, the type strains of these species exhibited 0,-dependent microaerophilic growth in brucella broth and on brucella agar. The optimum 0, levels for growth of these strains ranged from 4 to 14% in brucella broth and from 2 to 8% on brucella agar, when H, was provided as the electron donor. No growth occurred under 21% O,, and scant or no growth occurred under anaerobic conditions unless fumarate or nitrate was provided as a terminal electron acceptor. Aspartate, asparagine, and malate also served as apparent electron acceptors. The organisms were catalase negative and, except for B. gracilis, oxidase positive. Catalase added to brucella broth enhanced growth. 0, uptake by all species was inhibited by cyanide and 2-heptyl-4-hydroxyquinolineN-oxide. We concluded that these organisms are not anaerobes but instead are microaerophiles, like their campylobacter relatives. Among the proteobacteria, a major taxonomic problem (21), it is oxidase positive, a characteristic usually associated has been finding phenotypic characteristics that correlate with organisms that can respire with 02.This raises the with the various phylogenetic groups delineated by rRNA question of whether W.
    [Show full text]