Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae

Total Page:16

File Type:pdf, Size:1020Kb

Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae Mycologia, 98(6), 2006, pp. 1053–1064. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae David M. Geiser1 phylogenetically associated with this group. The Department of Plant Pathology, Pennsylvania State recently proposed order Mycocaliciales shows a sister University, University Park, Pennsylvania 16802 relationship with Eurotiomycetes. The great majority Ce´cile Gueidan of human pathogenic Pezizomycotina are Eurotiomy- Jolanta Miadlikowska cetes, particularly in Eurotiales, Onygenales and Franc¸ois Lutzoni Chaetothyriales. Due to their broad importance in Frank Kauff basic research, industry and public health, several Vale´rie Hofstetter genome projects have focused on species in Onyge- Emily Fraker nales and Eurotiales. Department of Biology, Duke University, Durham, Key words: Cleistothecium, industrial fungi, North Carolina, 27708 medically important fungi Conrad L. Schoch Department of Botany and Plant Pathology, Oregon INTRODUCTION State University, Corvallis, Oregon, 93133 Molecular data have been crucial in defining the class Leif Tibell Eurotiomycetes, which is now known to comprise Department of Systematic Botany, Uppsala University, a morphologically and ecologically disparate set of Norbyva¨gen 18 D, Uppsala, Sweden fungi. Early phylogenetic analyses of the Ascomycota Wendy A. Untereiner based on nuclear small ribosomal subunit sequences Department of Botany, Brandon University, Brandon, revealed a common ancestry between Capronia Manitoba, Canada R7A 6A9 pilosella (Chaetothyriales), with bitunicate asci and ascolocular development, and the fungi then recog- Andre´ Aptroot nized as the monophyletic Plectomycetes (Geiser and ABL Herbarium, G. v.d. Veenstraat 107, NL-3762 XK Soest, The Netherlands LoBuglio 2001) and as Eurotiomycetes by Eriksson (1999) (Berbee 1996, Spatafora et al 1995), which generally produce prototunicate asci in enclosed Abstract: The class Eurotiomycetes (Ascomycota, ascomata. This link led Berbee (1996) to propose Pezizomycotina) is a monophyletic group comprising that the Eurotiomycetes evolved by loss of the two major clades of very different ascomycetous fungi: bitunicate ascus and its corresponding mode of (i) the subclass Eurotiomycetidae, a clade that forcible discharge. The possibility of the cleistothe- contains most of the fungi previously recognized as cium evolving by means of paedomorphosis or Plectomycetes because of their mostly enclosed ‘‘arrested development’’ was proposed by Eriksson ascomata and prototunicate asci; and (ii) the subclass (1982). Later phylogenetic analyses further supported Chaetothyriomycetidae, a group of fungi that pro- a connection between the Chaetothyriales and the duce ascomata with an opening reminiscent of those prototunicate Eurotiomycetes (Liu et al 1999, produced by Dothideomycetes or Sordariomycetes. In Lumbsch et al 2000, Silva-Hanlin and Hanlin 1999, this paper we use phylogenetic analyses based on data Winka et al 1998). Based on the distinctiveness of available from the Assembling the Fungal Tree of Life Chaetothyriales, Chaetothyriomycetes (Eriksson and project (AFTOL), in addition to sequences in Winka 1997) and Chaetothyriomycetidae (Kirk et al GenBank, to outline this important group of fungi. 2001) were proposed as supraordinal taxa. The Eurotiomycetidae include producers of toxic and Despite the generally low node support in some useful secondary metabolites, fermentation agents previous studies of the Eurotiomycetes comprising used to make food products and enzymes, xerophiles both Eurotiomycetidae and Chaetothyriomycetidae and psychrophiles, and the important genetics model (Liu and Hall 2004, Lutzoni et al 2001, Reeb et al Aspergillus nidulans. The Chaetothyriomycetidae in- 2004), the result appears to be supported by multiple clude the common black yeast fungi, some of which datasets involving multiple genes and taxon sets are pathogens of humans and animals, as well as some (Lutzoni et al 2004). As shown in this volume, primarily lichenized groups newly found to be weighted parsimony analysis of sequences from five gene regions yielded 89% bootstrap support and Accepted for publication 29 November 2006. Bayesian analysis yielded 100% posterior probability 1 Corresponding author. E-mail: [email protected] for the common ancestry of the subclasses (Spatafora 1053 1054 MYCOLOGIA et al 2006). Furthermore this analysis placed Coryne- sequences showed Ascosphaera and Eremascus to form liales in a basal position within a strongly supported a clade distinct from Onygenales (Berbee and Taylor Eurotiomycetidae clade, indicating that members of 1992), leading Geiser and LoBuglio (2001) to infer this clade evolved from fissitunicate/ascolocular Ascosphaerales as a distinct order. (Lutzoni et al ancestors (Schoch et al 2006, Spatafora et al 2006). 2004) added further evidence in support of Asco- sphaerales based on SSU and nuclear ribosomal large Changing concepts of class Eurotiomycetes.—Nannfeldt subunit RNA gene (LSU) sequences, showing Asco- (1932) played a key role in integrating ontogenetic sphaera apis, Eremascus albus and Paracoccidioides features into ascomycete taxonomy, creating three brasiliensis to form a strongly supported clade. major groups based on ascomal development. One of these groups, Plectascales, was defined based on the Newly included orders.—The subclass Chaetothyrio- production of naked asci and antheridia. In this mycetidae first was proposed to accommodate the group enclosed cleistothecial ascomata form after order Chaetothyriales (Kirk et al 2001). The order ascogenous hyphae are enveloped in sterile mycelia. Verrucariales subsequently was shown to be sister to This group included all fungi with globose ascomata Chaetothyriales (Lutzoni et al 2001) and was added to and irregularly disposed evanescent asci. this subclass (Eriksson 2001). Recent molecular Eurotiomycetidae is a monophyletic group encom- studies also placed the order Pyrenulales in this passing a wide variety of morphologies, which group (reviewed in Lutzoni et al 2004). Members of includes many traditionally defined plectomycete-like these three orders all are characterized by perithecial fungi. Based on phylogenetic analyses of the nuclear ascomata and bitunicate asci with a dehiscence ribosomal small subunit RNA gene (SSU), Eriksson ranging from fissitunicate to evanescent. Historically (1999) proposed the class Eurotiomycetes for the classifications of ascomycetes treated either liche- clade comprising most fungi known morphologically nized or nonlichenized taxa, but rarely both, because as ‘‘Plectomycetes’’ and outlined as ‘‘the mono- they were recognized as two different groups (Achar- phyletic Plectomycetes’’ by Geiser and LoBuglio ius 1810, Lindau 1897, Zahlbruckner 1926). It was (2001). Although some concepts have included only in the 20th century that these classifications were perithecial taxa (Benny and Kimbrough 1980, Luttrell merged (Luttrell 1951, 1955; Nannfeldt 1932), and 1951) ‘‘Plectomycetes’’ generally refers to fungi with indeed the Chaetothyriomycetidae stands as the these morphological characters: (i) thin-walled, glo- prime example of the need for such a combined bose to pyriform, prototunicate asci (i.e. asci with system. The family Pyrenulaceae, together with walls that break down at maturity to release the species from the Verrucariaceae, then were in- ascospores within the ascoma in a passive fashion, cluded in the order Xylariales based on their ascus rather than forcible discharge through an apical type and centrum, identified as Xylaria-type (Lut- pore); (ii) ascomata without a distinct hymenial layer trell 1951, 1955). In the same classification the and with asci forming scattered within the ascomatal family Herpotrichiellaceae was assigned to Pleospo- cavity; (iii) unicellular ascospores; (iv) ascomata rales based on its centrum development (Luttrell varying from gymnothecial to cleistothecial, lacking 1951, 1955). an ostiolar opening and with highly variable cleis- Eriksson’s (1982) system divided what is now tothecial peridia, that may or may not be produced recognized as the Pezizomycotina into four groups within a stromatal structure; and (v) highly variable according to ascus type; the new orders Pyrenulales phialoblastic and thallic hyphomycetous anamorphs and Verrucariales were placed in the bitunicate (Alexopoulos et al 1996, Geiser and LoBuglio 2001). group. The existing families Chaetothyriaceae and Both Eriksson (1999) and Geiser and LoBuglio Herpotrichiellaceae were included in the bitunicate (2001) recognized similar fungi as making up this order Dothideales (Eriksson 1982). Barr was one of clade. Eriksson organized them into two major the first authors to consider the three orders orders. Eurotiales contained families Elaphomyce- Verrucariales, Chaetothyriales and Pyrenulales (at taceae, Monascaceae and Trichocomaceae and that time included in the Melanommatales) as closely Onygenales comprised Arthrodermataceae, Asco- related, based on ascus type (bitunicate or secondarily sphaeraceae, Eremascaceae, Gymnoascaceae and prototunicate) and hamathecium structure (insertion Onygenaceae. Based on SSU sequences Gibas et al of sterile filaments in the centrum, either pseudopar- (2002) defined the new order Arachnomycetales to aphyses or periphysoids) (Barr 1983). Molecular accommodate fungi in the genus Arachnomyces. This studies confirmed the close phylogenetic relation- genus previously had been placed within Onygenales ships
Recommended publications
  • Mycosporine-Like Amino Acids (Maas) in Time-Series of Lichen Specimens from Natural History Collections
    molecules Article Mycosporine-Like Amino Acids (MAAs) in Time-Series of Lichen Specimens from Natural History Collections Marylène Chollet-Krugler 1, Thi Thu Tram Nguyen 1,2 , Aurelie Sauvager 1, Holger Thüs 3,4,* and Joël Boustie 1,* 1 CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France; [email protected] (M.C.-K.); [email protected] (T.T.T.N.); [email protected] (A.S.) 2 Department of Chemistry, Faculty of Science, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, An Khanh, Ninh Kieu, Can Tho, 902495 Vietnam 3 State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany 4 The Natural History Museum London, Cromwell Rd, Kensington, London SW7 5BD, UK * Correspondence: [email protected] (H.T.); [email protected] (J.B.) Academic Editors: Sophie Tomasi and Joël Boustie Received: 12 February 2019; Accepted: 16 March 2019; Published: 19 March 2019 Abstract: Mycosporine-like amino acids (MAAs) were quantified in fresh and preserved material of the chlorolichen Dermatocarpon luridum var. luridum (Verrucariaceae/Ascomycota). The analyzed samples represented a time-series of over 150 years. An HPLC coupled with a diode array detector (HPLC-DAD) in hydrophilic interaction liquid chromatography (HILIC) mode method was developed and validated for the quantitative determination of MAAs. We found evidence for substance specific differences in the quality of preservation of two MAAs (mycosporine glutamicol, mycosporine glutaminol) in Natural History Collections. We found no change in average mycosporine glutamicol concentrations over time. Mycosporine glutaminol concentrations instead decreased rapidly with no trace of this substance detectable in collections older than nine years.
    [Show full text]
  • 10-ELS-OXF Kurtzman1610423 CH002 7..20
    Part II Importance of Yeasts Kurtzman 978-0-444-52149-1 00002 Kurtzman 978-0-444-52149-1 00002 Chapter 2 c0002 Yeasts Pathogenic to Humans Chester R. Cooper, Jr. regularly encounter the organisms described below. In fact, many s0010 1. INTRODUCTION TO THE MEDICALLY medical mycologists spend entire careers without direct clinical expo- IMPORTANT YEASTS sure to many of these fungi. Rather, the purpose of this review is to enlighten the non-medical mycologist as to the diversity of yeast and p0010 Prior to global emergence of the human immunodeficiency virus mold species regularly associated with human and animal disease (HIV), which is the causative agent of acquired immunodeficiency that also, at least in part, present a unicellular mode of growth in vivo. syndrome (AIDS), approximately 200 fungal pathogens were recog- The following descriptions present a concise overview of the key p0025 nized from among the more than 100,000 then-known fungal spe- biological and clinical features of these fungi. Where appropriate, refer- cies (Kwon-Chung and Bennett 1992, Rippon 1988). About 50 of ences to recent reviews of particular disease agents and their patholo- these species were regularly associated with fungal disease (myco- gies are provided. For a global perspective of fungal diseases, including sis). Since then, there has been a concurrent dramatic increase in in-depth clinical discussions of specific pathologies, diagnoses, and both the number of known fungal species and the incidence of treatments, the reader is referred to several outstanding and recently mycoses that they cause. Moreover, the spectrum of pathogenic fungi published texts (Anaissie et al.
    [Show full text]
  • Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
    STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers.
    [Show full text]
  • Genomic Analysis of Ant Domatia-Associated Melanized Fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J
    Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, Marcus Teixeira, Vania Vicente, Sybren de Hoog To cite this version: Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, et al.. Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycolog- ical Progress, Springer Verlag, 2019, 18 (4), pp.541-552. 10.1007/s11557-018-01467-x. hal-02316769 HAL Id: hal-02316769 https://hal.archives-ouvertes.fr/hal-02316769 Submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mycological Progress (2019) 18:541–552 https://doi.org/10.1007/s11557-018-01467-x ORIGINAL ARTICLE Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro F. Moreno1,2,3 & Veronika Mayer4 & Hermann Voglmayr5 & Rumsaïs Blatrix6 & J. Benjamin Stielow3 & Marcus M. Teixeira7,8 & Vania A. Vicente3 & Sybren de Hoog1,2,3,9 Received: 20 August 2018 /Revised: 16 December 2018 /Accepted: 19 December 2018 # The Author(s) 2019 Abstract Several species of melanized (Bblack yeast-like^) fungi in the order Chaetothyriales live in symbiotic association with ants inhabiting plant cavities (domatia) or with ants that use carton-like material for the construction of nests and tunnels.
    [Show full text]
  • Three New Species of Cyphellophora (Chaetothyriales) Associated with Sooty Blotch and Flyspeck
    RESEARCH ARTICLE Three New Species of Cyphellophora (Chaetothyriales) Associated with Sooty Blotch and Flyspeck Liu Gao1, Yongqiang Ma2, Wanyu Zhao1, Zhuoya Wei1, Mark L. Gleason3, Hongcai Chen1, Lu Hao1, Guangyu Sun1*, Rong Zhang1* 1 Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China, 2 Institute of Plant Protection, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province, China, 3 Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America * [email protected] (GS); [email protected] (RZ) Abstract OPEN ACCESS The genus Cyphellophora includes human- and plant-related species from mammal skin and nails, plant materials, and food. On the basis of analysis of ITS, LSU, TUB2 and RPB1 Citation: Gao L, Ma Y, Zhao W, Wei Z, Gleason ML, Chen H, et al. (2015) Three New Species of data and morphological characters, three new species, Cyphellophora phyllostachysdis, C. Cyphellophora (Chaetothyriales) Associated with artocarpi and C. musae, associated with sooty blotch and flyspeck disease, were added to Sooty Blotch and Flyspeck. PLoS ONE 10(9): this genus. The 2D structure of ITS1 and ITS2 confirmed this taxonomic status. Pathogenic- e0136857. doi:10.1371/journal.pone.0136857 ity tests on apple fruit indicated that C. artocarpi could be a sooty blotch and flyspeck patho- Editor: Patrick CY Woo, The University of Hong gen of apple. Kong, HONG KONG Received: February 20, 2015 Accepted: August 8, 2015 Published: September 23, 2015 Introduction Copyright: © 2015 Gao et al. This is an open access article distributed under the terms of the Creative The genus Cyphellophora de Vries (Cyphellophoraceae, Chaetothyriales) was set up in 1962 Commons Attribution License, which permits with C.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Black Fungal Extremes
    Studies in Mycology 61 (2008) Black fungal extremes Edited by G.S. de Hoog and M. Grube CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Black fungal extremes STUDIE S IN MYCOLOGY 61, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR S Manon van den Hoeven-Verweij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Kasper Luijsterburg, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Culturing and Direct DNA Extraction Find Different Fungi From
    Research CulturingBlackwell Publishing Ltd. and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots Tamara R. Allen1, Tony Millar1, Shannon M. Berch2 and Mary L. Berbee1 1Department of Botany, The University of British Columbia, Vancouver BC, V6T 1Z4, Canada; 2Ministry of Forestry, Research Branch Laboratory, 4300 North Road, Victoria, BC V8Z 5J3, Canada Summary Author for correspondence: • This study compares DNA and culture-based detection of fungi from 15 ericoid Mary L. Berbee mycorrhizal roots of salal (Gaultheria shallon), from Vancouver Island, BC Canada. Tel: (604) 822 2019 •From the 15 roots, we PCR amplified fungal DNAs and analyzed 156 clones that Fax: (604) 822 6809 Email: [email protected] included the internal transcribed spacer two (ITS2). From 150 different subsections of the same roots, we cultured fungi and analyzed their ITS2 DNAs by RFLP patterns Received: 28 March 2003 or sequencing. We mapped the original position of each root section and recorded Accepted: 3 June 2003 fungi detected in each. doi: 10.1046/j.1469-8137.2003.00885.x • Phylogenetically, most cloned DNAs clustered among Sebacina spp. (Sebaci- naceae, Basidiomycota). Capronia sp. and Hymenoscyphus erica (Ascomycota) pre- dominated among the cultured fungi and formed intracellular hyphal coils in resynthesis experiments with salal. •We illustrate patterns of fungal diversity at the scale of individual roots and com- pare cloned and cultured fungi from each root. Indicating a systematic culturing detection bias, Sebacina DNAs predominated in 10 of the 15 roots yet Sebacina spp. never grew from cultures from the same roots or from among the > 200 ericoid mycorrhizal fungi previously cultured from different roots from the same site.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Key to Dermatocarpon of the Pacific Northwest
    Key to Dermatocarpon of the Pacific Northwest Doug A. Glavich, email: [email protected] Draft 1: September 2006 The objective of this key is to incorporate D. meiophyllizum, which has been overlooked in North America (Glavich & Geiser 2004), into the Pacific Northwest lichen flora. This key is based on a combination of the following works: Goward et al. (1994), Heiðmarsson (2001), McCune & Geiser (1997), and McCune & Goward (1995). Members of the genus Dermatocarpon are foliose chlorolichens that, although some species are found in dry habitats, are defined by their habitat of aquatic or semi-aquatic environments (stream channel rocks, seeps, lake margins, etc). Thalli range from small squamulose (< 3 mm) to larger 50 mm wide foliose lobes; upper surface is usually smooth and range from grayish to brown (some green when wet); the grey upper surface is due to inflated epinecreal hyphae and dense pruina on some thalli is usually due to a thick layer of inflated epinecreal hyphae (Heiðmarsson 1996); lower surface smooth, granular, veined, or rhizinate. Many species are umbilicate and single-lobed with a single holdfast, while some are multi-lobed and attached to the substrate by multiple holdfasts. Ascocarps are immersed perithecia. Substrate mostly rock though some found on soil. The use of the term ‘pruinose’ in this key refers mainly to the appearance of the upper surface caused by the epinecreal hyphae and not the traditional definition of a an upper surface with calcium oxalate. 1a. Lower surface rhizinate……………………………...…………………..D. moulinsii 1b. Lower surface not rhizinate……………………………………………….………….2 2a. Medulla I (Melzer’s Reagent) + Red…………………………………….D.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]