Urinary System Uriniferous Tubule Nephron

Total Page:16

File Type:pdf, Size:1020Kb

Urinary System Uriniferous Tubule Nephron Urinary System Kidney Structure kidneys, ureters, bladder & urethra Capsule Kidney Function Hilum Filters blood • ureter → renal pelvis • removes waste products → major and minor calyxes • conserves salts, glucose, • renal artery and vein proteins, nutrients and water → segmental arteries → interlobar arteries Produces urine → arcuate arteries → interlobular arteries Endocrine functions • regulates blood pressure Medulla • produces • renal pyramids • renin • cortical/renal columns • erythropoietin • prostaglandins Cortex • converts vitamin D to active form • renal corpuscles • cortical labryinth of tubules • medullary rays Renal Lobe Renal Lobule Uriniferous Tubule = renal pyramid & overlying cortex = medullary ray & surrounding cortical labryinth Nephron + Collecting tubule Cortex Nephron Renal corpuscle produces glomerular ultrafiltrate (180 L per day) from blood Ultrafiltrate is concentrated • Proximal tubule • convoluted • straight • Henle’s loop Medulla • thick descending • thin • thick ascending • Distal tubule • Collecting tubule Papilla Calyx Urine (1-2 L per day) secreted from collecting ducts into calyxes 1 Renal Cortex Renal Cortex Medullary ray = collecting tubules Renal corpuscle = glomerulus + Bowman’s capsule Cortical labyrinth of tubules Sobotta & Hammersen: Histology Juxtaglomerular apparatus Renal Corpuscle • macula densa in distal tubule • JG cells in afferent arteriole • extraglomerular mesangial cells Urinary / Bowman’s space parietal Bowman’s layer capsule visceral layer Glomerulus Glomerulus • fenestrated capillaries • podocytes • intraglomerular mesangial cells 2 Renal Corpuscle Intraglomerular Mesangial Cells • Support capillaries • Phagocytose basal lamina Vascular pole • Vasoconstrict in response to angiotensin II Urinary pole Sobotta & Hammersen: Histology • Endothelial cell • 70-90 nm fenestra restrict proteins > 70kd Podocytes • Basal lamina Urinary Filtration • heparan sulfate is negatively charged • produced by endothelial cells & podocytes Membrane • phagocytosed by mesangial cells • Podocytes • pedicels 20-40 nm apart • diaphragm 6 nm thick with 3-5 nm slits • podocalyxin in glycocalyx is negatively charged Urinary Membrane 3 Juxtaglomerular Apparatus Macula densa in distal tubule • monitor Na+ content and volume in DT • low Na+: • stimulates JG cells to secrete renin • stimulates JG cells to dilate afferent arteriole Proximal tubule • tall, narrow columnar cells • proximal convoluted tubule • numerous microvilli • thick descending limb Henle’s loop JG cells Henle’s loop • secrete renin into circulation • thin descending & ascending limbs • renin converts angiotensinogen → angiotensin I • contain angiotensin converting enzyme (ACE) Distal tubule • lung is principal site of ACE activity • thick ascending limb Henle’s loop • ACE converts angiotensin I → II • distal convoluted tubule • contain angiotensin I & II • macula densa in DCT • angiotensin II constricts vasculature and stimulates secretion of aldosterone and ADH Collecting tubule & duct Mesangial • primarily in afferent arteriole cell • specialized smooth muscle cells • no basal lamina between JG cells & macula densa JG cell Macula Extraglomerular mesangial cells densa • also known as Polkissen or lacis cells Proximal Convoluted Tubule Henle’s Loop (thin segments) • Cuboidal (low to high) cells • Eosinophilic granular cytoplasm • Squamous cells • Basal nuclei • slightly thicker than endothelial cells • Elaborate brush/striated border • Few short microvilli • Lateral interdigitations • Lateral interdigitations • Descending limb • highly permeable to water, salt and urea • Resorbs 100% protein, amino acids, glucose, • Ascending limb creatinine, and bicarbonate ions • impermeable to water • permeable to salt which enters interstitium • Resorbs 70-80% of Na+, Cl-, and water • Na+/K+ pumps in basolateral membrane • Na+ pumped into interstitium • Cl- and water follow • Secretes waste products into lumen 4 Distal Tubule (DCT & thick ascending limb of Henle’s loop) Renal Medulla • Low cuboidal cells • Collecting tubules/ducts • Clear pale cytoplasm • Apical nuclei (DCT) • Henle’s loop (thin segments) • Central nuclei (Henle’s loop) • Capillaries of vasa recta • Numerous mitochondria • Absent (or few short) microvilli • Basal interdigitations • Numerous zonula occludens • Not permeable to water or urea Sobotta & Hammersen: Histology • Active Na+/K+ pumps (DCT) • aldosterone stimulates salt resorption • H+ and K+ transported into lumen • Active Cl- pumps (Henle’s thick) • Cl- enters interstitium (Na+ follows) Gartner & Hiatt: Color Textbook of Histology Collecting Tubule & Duct Renal Cortex Proximal tubule Distal Proximal tubule Henle’s loop • Cuboidal to columnar cells (convoluted) tubule (straight) (thick) • Clear cytoplasm • Central nuclei • Permeable to urea • In response to ADH, becomes permeable to water which enter the interstitium Collecting tubule Sobotta & Hammersen: Histology 5 Formation of Urine Countercurrent Multiplier System Increasing osmolarity gradient exists from corticomedullary junction to deep in medulla ** due to high urea and salt content deep in medulla •Descending thin limb of Henle is freely permeable to water and salt • Due to increasing osmolarity of interstitium: lumenal volume decreases and osmolarity increases • Ascending (thin and thick) limb of Henle and DCT are not permeable to water • Lumenal volume does not change • Urea enters lumen • Cl- pumped into interstitium (Na+ follows) → increases salt deep in medulla → ultrafiltrate becomes hypotonic as it ascends • Without ADH: collecting tubule/duct impermeable to water • ADH (pars nervosa of pituitary) makes collecting tubule/duct freely permeable to water and urea → increases water resorption, decreases urine volume, and increases urine tonicity → increases urea content deep in medulla to maintain interstitial osmolarity gradient Angiotensin II Regulation of Blood Pressure Angiotensin II Regulation of Blood Pressure Burns & Cave: Histology & Cell Biology 6 Additional Regulators of Kidney Function Atrial Natriuretic Peptide (ANP) Vasa Rectae • Secreted by atrial cardiac myocytes • Function • Peritubular capillary system in medulla • decreases renin release • Freely permeable to water and salts • decreases aldosterone release • Counter current exchange system: • blocks resorption salt and water equilibrates contents of medullary • decreases blood pressure interstitium and vasculature Alcohol • decreases ADH release Caffeine • increases salt resorption in DCT Vasculature of Kidney Renal Segmental Interlobar Arcuate Interlobular artery artery artery artery artery Urine is excreted through Afferent glomerular arteriole • Calyxes and renal pelvis Cortex Glomerular capillaries • Ureters Peritubular • Urinary bladder (storage) Interlobular Stellate capillary Efferent glomerular vein vein arteriole network Cortical • Urethra nephrons Juxtamedullary & deep cortical nephrons Arcuate vein Vasa rectae Medulla Interlobar vein Renal vein Netter: Atlas of Human Anatomy 7 Ureter Urinary Bladder • Mucosa - transitional epithelium • Muscosa - transitional epithelium • provides osmotic barrier • Lamina propria • Lamina propria • Muscularis – smooth muscle • Muscularis – smooth muscle • Inner longitudinal • inner longitudinal • Middle circular Empty • middle circular • Outer longitudinal (lower 1/3) (internal urethral sphincter) • outer longitudinal Sobotta & Hammersen: Histology Sobotta & Hammersen: Histology Gartner & Hiatt: Color Textbook of Histology Urethra • Mucosa • varies from transitional to stratified columnar to pseudostratified columnar to stratified squamous in different regions • Lamina propria • contains glands of Littre • highly vascularized • External urethral sphincter of skeletal muscle • In the male, 3 regions: • prostatic • membranous • penile or spongy 8.
Recommended publications
  • Urinary System
    URINARY SYSTEM Ján Líška DVM, PhD Institut of Histology and Embryology, Faculty of Medicine, Comenius University Urinary system • The kidneys are the organ with multiple functions: • filtration of the blood • excretion of metabolic waste products and related removal of toxins • maintenance blood volume • regulation of acid-base balance • regulation of fluid and electrolyte balance • production of the hormones The other components of urinary system are accessory. Their function is essentially in order to eliminate urine. Urinary system - anatomy • Kidney are located in the retroperitoneal space • The surface of the kidney is covered by a fibrous capsule of dense connective tissue. • This capsule is coated with adipose capsule. • Each kidney is attached to a ureter, which carries urine to the bladder and urine is discharged out through the urethra. ANATOMIC STRUCTURE OF THE KIDNEY RENAL LOBES CORTEX outer shell columns Excretory portion medullary rays MEDULLA medullary pyramids HILUM Collecting system blood vessels lymph vessels major calyces nerves RENAL PELVIS minor calyces ureter Cortex is the outer layer surrounding the internal medulla. The cortex contains renal corpuscles, convoluted parts of prox. and dist. tubules. Renal column: the renal tissue projection between two medullary pyramids which supports the cortex. Renal pyramids: the conical segments within the medulla. They contain the ductal apparatus and stright parts of the tubules. They posses papilla - having openings through which urine passes into the calyces. Each pyramid together with the associated overlying cortex forms a renal lobe. renal pyramid papilla minor calix minor calyx Medullary rays: are in the middle of cortical part of the renal lobe, consisting of a group of the straight portiones of nephrons and the collec- medullary rays ting tubules (only straight tubules).
    [Show full text]
  • Lab-Renal-2018-Zw4m.Pdf
    Introduction The slides for this lab are located in the “Urinary System” folders on the Virtual Microscope. In this lab, you will learn about the structures within the kidney required to filter the blood and the tubes required to transport the resulting waste products outside the body. The journey begins in the unit of the kidney called the nephron. Here the blood is filtered, products are reabsorbed and then some are secreted again, based on the body’s current state. Dissolved in water, these products then travel through the conducting portion of the kidney to the ureters. The ureters insert on the urinary bladder obliquely and posteriorly. The urinary bladder temporarily stores urine until it can be conveniently evacuated. Urine exits the body through the urethra. Learning objectives and activities Using the Virtual Slidebox: A Outline a renal lobe and identify the structural components of a renal lobule B Examine the components of the renal corpuscle: glomerulus and Bowman’s capsule C Classify the different areas of the renal tubules based upon their histological appearance and location D Compare the structures of the excretory passageways and use this information to identify them E Complete the self-quiz to test your understanding and master your learning Outline a renal lobe and identify the structural components of a renal lobule Examine Slide 1 and approximate a renal lobe in the kidney by identifying the following: Each kidney can be divided into somewhere between 8-15 renal lobes. Each lobe consists of a medullary pyramid capped by the cortex and flanked by renal columns with a renal papilla at its apex.
    [Show full text]
  • Ward's Renal Lobule Model
    Ward’s Renal Lobule Model 470029-444 1. Arcuate artery and vein. 7. Descending thick limb of 12. Collecting tubule. 2. Interlobular artery and vein. Henle's loop. 13. Papillary duct of Bellini. 3. Afferent glomerular arteriole. 8. Thin segment of Henle's 14. Vasa recta. loop. 4. Efferent glomerular arteriole. 15. Capillary bed of cortex (extends 9. Ascending thick limb of through entire cortex). 5. Renal corpuscle (glomerulus Henle's loop. plus Bowman's capsule). 10. Distal convoluted tubule. 16. Capillary bed of medulla (extends 6. Proximal convoluted tubule. 11. Arched connecting tubule. through entire medulla). MANY more banks of glomeruli occur in the cortex than are represented on the model, and the proportionate length of the medullary elements has been greatly reduced. The fundamental physiological unit of the kidney is the nephron, consisting of the glomerulus, Bowman's capsule, the proximal convoluted tubule, Henle's loop, and the distal convoluted tubule. The blood is filtered in the glomerulus, water and soluble substances, except blood proteins, passing into Bowman's capsule in the same proportions as they occur in the blood. In the proximal tubule water and certain useful substances are resorbed from the provisional urine, while some further components may be added to it by secretory activity on the part of the tubular epithelium. In the remainder of the tubule, resorption of certain substances is continued, while the urine is concentrated further by withdrawal of water. The finished urine flows through the collecting tubules without further change. Various kinds of loops occur, varying in length of the thin segment, and in the level to which they descend into the medulla.
    [Show full text]
  • 8.5 X12.5 Doublelines.P65
    Cambridge University Press 978-0-521-87702-2 - Silva’s Diagnostic Renal Pathology Edited by Xin J. Zhou, Zoltan Laszik, Tibor Nadasdy, Vivette D. D’Agati and Fred G. Silva Excerpt More information CHAPTER 1 CHAPTER Chapter 1 Renal Anatomy William L. Clapp, MD GROSS ANATOMY Glomerulus Location, Size, and Shape General Features Blood Supply Endothelial Cells Mesangium Form of Kidney (Mesangial Cells) NEPHRONS (Mesangial Matrix) Nephron Number GBM Nephron Types Podocytes Glomerular Filtration Barrier ARCHITECTURE Parietal Podocytes Cortex Parietal Epithelial Cells Cortical Labyrinth and Medullary Rays Peripolar Cells Renal Lobule JGA Medulla Tubules Outer Medulla Proximal Tubule Inner Medulla Thin Limbs of Henle’s Loop Algorithm for Architecture Distal Tubule PARENCHYMA (TAL) Vasculature (DCT) Connecting Tubule Macrovasculature Collecting Duct Microvasculature (Cortical Collecting Duct) (Cortex) (OMCD) (Medulla) (IMCD) Lymphatics Interstitium Nerves Knowledge of the elaborate structure of the kidney provides GROSS ANATOMY insight into its functions and facilitates an understanding of renal diseases. One cannot recognize what is abnormal in the Location, Size, and Shape kidney if one does not know what is normal. The following The retroperitoneum is divided into fascia-enclosed compart- sections consider the macroanatomy, functional units, architec- ments, including the anterior pararenal, perirenal, and posterior tural organization, microanatomy, and basic functions of the pararenal spaces. The kidneys lie within the perirenal space, which kidney. Unless otherwise stated, the illustrations will emphasize contains abundant fat and is enclosed by the anterior and posterior the human kidney. For additional information, readers are layers of renal fascia, known as Gerota’s fascia.The kidneys extend referred to several detailed reviews [1–4].
    [Show full text]
  • Functions of Kidney & Artificial Kidneys
    ISSN 2321 – 2004 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 1, Issue 1, April 2013 Functions of kidney & artificial kidneys Raghavendra1, Mallikarjun2, Vidya M.J3 Student, Instrumentation Technology, R.V.C.E, Bangalore, India 1 Student, Instrumentation Technology, R.V.C.E, Bangalore, India 2 Assistant Professor, Instrumentation Technology, R.V.C.E, Bangalore, India 3 Abstract: Renal failure is a term to describe a situation when the kidneys fail to work. This may be a permanent or temporary failure. When the kidneys fail, Wastes begin to accumulate in the blood (uremia) As homeostasis is upset within the body, other organs can also begin to shut down – heart, liver, etc. The end result of renal failure is usually death unless the blood is filtered by some other means. The ideal intervention is to replace the failed kidneys with a donor kidney (STSE).While a person waits for a donor kidney, they usually have to undergo dialysis, a method where their blood is filtered and cleaned on a regular basis using machines. Keywords: uraemia, homeostasis, Palpation, Elasticity I. INTRODUCTION The kidneys are organs that serve several essential of kidney stones is a sharp pain in the medial/lateral regulatory roles in most animals, including vertebrates and segments of the lower back. some invertebrates. They are essential in the urinary system and also serve homeostatic functions such as the II. ANATOMY regulation of electrolytes, maintenance of acid–base A. Location balance, and regulation of blood pressure (via maintaining salt and water balance). They serve the body as a natural In humans the kidneys are located in the abdominal cavity, filter of the blood, and remove wastes which are diverted more specifically in the paravertebral gutter and lie in a to the urinary bladder.
    [Show full text]
  • URINARY Objectives
    URINARY Objectives Students should be able to: 1. Describe the microscopic structure of the kidney cortex, medulla and renal pelvis; also the ureter and bladder. 2. Identify the histological features of the kidney, ureter and bladder. Kidney H & E stain General Histological Structure Low power magnification. Note the major features of a cross section through the kidney. Identify : renal capsule, cortex (deep staining zone), medulla and renal corpuscles. : renal corpuscles medulla cortex renal capsule 1.0mm Kidney Alkaline phosphatase stain General Histological Structure Identify : cortex , renal corpuscles, convoluted tubules and medullary rays. What does the term medullary rays imply? In the cortex- groups of radially arranged straight tubules form the cortical or medullary rays (pars radiata) section from cortex convoluted tubules renal corpuscle medullary ray 250 µm Kidney Detailed Histology Examine the structure of a renal corpuscle and appreciate how the filtration unit has been constructed. What constitutes the filter here? 1. Porous endothelium of capillaries. 2. Glomerular basement membrane. 3. Podocyte pedicels. U : urinary space Pd : podocyte Pd Pl : parietal layer U Pl proximal tubule 50 µm Kidney Detailed Histology Where does the filtrate collect? In the urinary space. What further changes take place in its composition before it is fully excreted? Extensive re-absorption (66-75%) of this glomerular filtrate in the proximal tubules. U : urinary space U 50 µm Kidney Detailed Histology What is the difference between vascular and urinary poles of the renal corpuscle? Why are they given these names? Vascular pole- with afferent and efferent arteriole blood supply. Urinary pole- with the start of the proximal convoluted tubule.
    [Show full text]
  • Kidney Structure Renal Lobe Renal Lobule
    Kidney Structure Capsule Hilum • ureter → renal pelvis → major and minor calyxes • renal artery and vein → segmental arteries → interlobar arteries → arcuate arteries → interlobular arteries Medulla • renal pyramids • cortical/renal columns Cortex • renal corpuscles • cortical labryinth of tubules • medullary rays Renal Lobe Renal Lobule = renal pyramid & overlying cortex = medullary ray & surrounding cortical labryinth Cortex Medulla Papilla Calyx Sobotta & Hammersen: Histology 1 Uriniferous Tubule Nephron + Collecting tubule Nephron Renal corpuscle produces glomerular ultrafiltrate from blood Ultrafiltrate is concentrated • Proximal tubule • convoluted • straight • Henle’s loop • thick descending • thin • thick ascending • Distal tubule • Collecting tubule Juxtaglomerular apparatus • macula densa in distal tubule •JG cells in afferent arteriole •extraglomerular mesangial cells Glomerulus • fenestrated capillaries • podocytes • intraglomerular mesangial cells 2 Urinary Filtration Urinary Membrane Membrane Podocytes • Endothelial cell • 70-90 nm fenestra restrict proteins > 70kd • Basal lamina • heparan sulfate is negatively charged • produced by endothelial cells & podocytes • phagocytosed by mesangial cells • Podocytes • pedicels 20-40 nm apart • diaphragm 6 nm thick with 3-5 nm slits • podocalyxin in glycocalyx is negatively charged 3 Juxtaglomerular Apparatus Macula densa in distal tubule • monitor Na+ content and volume in DT • low Na+: • stimulates JG cells to secrete renin • stimulates JG cells to dilate afferent arteriole • tall,
    [Show full text]
  • Urinary System
    The University Of Jordan Faculty Of Medicine Histology Of The Urinary system By Dr.Ahmed Salman Assistant Professor of Anatomy &Embryology Learning Objectives By the end of the topic the learner should be able to: Describe the histological structure of the kidney. Illustrate the ultrastructure of the blood renal barrier. Know the histological structure of the urinary passages. Urinary system Parts Paired kidneys Paired ureters Bladder Urethra (Wheater's Functional Histology, A Text and Color Atlas, 6th Ed.) Functions of the Kidney 1. Controlling the water and electrolytes balance 2. Regulating the extracellular fluid volume 3. Eliminating waste products, toxins and drugs; most importantly Urea 4. Controlling the acid-base balance of blood 5. Has a hormonal and metabolic function Secretion of Renin by juxtaglomerular cells which regulate blood pressure Secretion of Erythropoietin that stimulates the production of erythrocytes in the bone marrow and thus regulates the oxygen-carrying capacity of the blood Conversion of prohormone Vitamin D, to the active form which regulates calcium balance. Kidney structure Stroma Capsule Trabeculae Reticular stroma Parenchyma Uriniferous tubules Kidney – General structure Divided into cortex and medulla The cortex forms an outer shell and also forms columns that lie between the individual units of the medulla The medulla is composed of medullary pyramids the base of each cone is continuous with the inner limit of the cortex and the apex of the pyramid protrudes into the calyceal system that is known as the ‘papilla’ Kidney – lobes and lobules Lobe :medullary pyramid and the associated cortical tissue at its base and sides Lobule: a central medullary ray and the surrounding cortical tissue.
    [Show full text]
  • Urinary System
    Chapter 14 Urinary System Li Hong Division of Histology and Embryology Anhui Medical University contents General description Kidneys Components Kidneys Ureters Bladder urethra Functions of kidneys Regulate the fluid and electrolyte balance of body Remove waste products of metabolism from body Function as endocrine organs: Synthesize and secrete erythropoietin, rennin contents General description Kidneys Kidney structure The kidney is a bean-shaped organ covered by a fibrous tunic or renal capsule.Each kidney has a concave medial border ,the hilum---where nerve enter,blood and lymph vessels enter and the ureter exits.the renal pelvis , expanded upper end of the ureter,is divided into 2 or 3 major calyces.Several small branches,the minor calyces,arise from each major calyx. Kidney structure The kidney can be divided into an outer cortex and an inner medulla.the renal medulla consists of 10-18 pyramidal structures,the medullary pyramids whose apices point toward the renal pelvis whose base help form the interface with the cortex.from the base of each medullary pyramid,parallel arrays of tubules,the medullary rays,penetrate the cortex.the granular cortical tissue between the medullary rays is termed the cortical labyrinth.the cortex between medullary pyramids are called renal column. Kidney structure Renal medulla Renal column Medullary ray hilum Cortical labyrinth medullary pyramid Renal pelvis Major calyx ureter Minor calyx Renal cortex Renal anatomic structure Fibrosa Cortical labyrinth Cortex Medullary ray Parenchyma Renal pyramids
    [Show full text]
  • HISTOLOGY of URINARY ORGANS 1. Kidney
    LECTURE 4b URINARY SYSTEM (DR. B.M. KAVOI) • Main components of this system- 1. Kidneys, 2. Ureter, 3. Urinary bladder and 4. Urethra 1. KIDNEY • Parenchyma organized into cortex (F) and medulla (E) • Within parenchyma occur nephrones, collecting ducts, blood vessels, lymphatics and nerves • Parenchyma organized into lobes and lobules Lobes and lobules • Lobes are located btw adjacent renal columns with peripheral limits within medulla being the interlobar arteries • A renal lobule is defined as a portion of the kidney containing those nephrons that are drained by a common collecting duct. • At the cortex, the collecting duct lies at the axis of lobule, being surrounded by corticolabyrinth or network comprising of renal corpuscles, PCT and DCT • Lobules are centered on "medullary rays“, which are bundles of straight tubules (collecting ducts and loops of Henle) • Within the cortex, peripheral limits of a lobule are the interlobular blood vessels while in medulla, limits of lobules are not defined Nephron • Tubules in which urine is formed (functional unit of the kidney • Form the most abundant tissue of renal parenchyma • Consist of 5 parts; i. Renal corposule, ii. Proximal convoluted tubule iii. Medullary loop (loop of Henle) iv. Distal convoluted tubule v. Collecting duct i. Renal corpuscle • Produces glomerular ultrafiltrate • Is a spherical structure comprising of a) cluster of blood vessels= glomerulus b) double walled envelope= glomerular or Bowman’s capsule • Efferent arterioles enter while the afferent arterioles leave the glomerulus
    [Show full text]
  • Urinary System Objectives
    Urinary System Objectives * Describe the histologic features of the kidneys, ureters and bladder. * Describe the structures that comprise the renal filtration barrier and their role in formation of glomerular filtrate (provisional urine). * Describe the role of the loop of Henle in concentrating urine. * Describe how aldosterone and antidiuretic hormone (ADH) affect the renal tubules. * Trace the pathway of urine flow along the nephron and urinary tract. OVERVIEW OF THE URINARY SYSTEM * The urinary system consists of - The paired kidneys; - Paired ureters, which lead from the kidneys to - The urinary bladder; and - The urethra, which leads from the bladder to the exterior of the body. Functions of the Urinary System * Filtration & excretion of cellular wastes from blood * Regulation of fluid and electrolyte balance by selective reabsorption and excretion of water and solutes * Production of the hormones renin and erythropoietin Extend from the 12th thoracic to the 3rd lumbar vertebrae, Reddish, bean-shaped organs Renal hilum The Urinary System Kidney Organization Kidney Organization Parenchyma Renal sinus * Cortex - Renal pelvis - Renal corpuscles - Major and minor calyces - Medullary rays - Nerves and vessels * Medulla - Connective tissues - Renal pyramids * Renal columns Kidney Organization Kidney Organization Kidney Cortex Medullary Rays Kidney Cortex A labyrinth of tubules Kidney Medulla and Renal Papillae Photomicrograph of human kidney capsule. This photomicrograph of a Mallory- Azan–stained section shows the capsule (cap) and part of the underlying cortex. The outer layer of the capsule (OLC ) is composed of dense connective tissue. The fibroblasts in this part of the capsule are relatively few in number; their nuclei appear as narrow, elongate, red-staining profiles against a blue background representing the stained collagen fibers.
    [Show full text]
  • Sorenson Atlas of Human Histology Chapters-1-And-14
    Atlas of Human Histology A Guide to Microscopic Structure of SAMPLECells, Tissues and Organs Robert L. Sorenson SAMPLE TABLE OF CONTENTS CHAPTER 1 INTRODUCTION AND CELL 1 CHAPTER 2 EPITHELIUM 15 CHAPTER 3 CONNECTIVE TISSUE 29 CHAPTER 4 MUSCLE TISSUE 43 CHAPTER 5 CARTILAGE AND BONE 61 CHAPTER 6 NERVE TISSUE 85 CSAMPLEHAPTER 7 PERIPHERAL BLOOD 107 CHAPTER 8 HEMATOPOESIS 113 CHAPTER 9 CARDIOVASCULAR SYSTEM 127 CHAPTER 10 LYMPHOID SYSTEM 157 CHAPTER 11 SKIN 181 CHAPTER 12 EXOCRINE GLANDS 193 CHAPTER 13 ENDOCRINE GLANDS 205 CHAPTER 14 GASTROINTESTINAL TRACT 223 CHAPTER 15 LIVER AND GALL BLADDER 247 CHAPTER 16 URINARY SYSTEM 261 CHAPTER 17 RESPIRATORY SYSTEM 289 CHAPTER 18 FEMALE REPRODUCTIVE SYSTEM 305 CHAPTER 19 MALE REPRODUCTIVE SYSTEM 329 CHAPTER 20 ORGANS OF SPECIAL SENSE 343 INDEX 359 i This atlas is a series of photographs ranging from low to high magnifications of the indi- vidual tissue specimens. The low magnification images should be used for orientation, while the higher magnification images show details of cells, tissues, and organs. Al - though every effort has been made to faithfully reproduce the colors of the tissues, a full appreciation of histological structure is best achieved by examining the original speci- mens with a microscope. This atlas is a preview of what should be observed. The photomicrographs found in this atlas come from the collection of microscope slide used by medical, dental and undergraduate students of histology at the University of Minnesota. Most of these slides were prepared by Anna-Mary Carpenter M.D., Ph.D. during her tenure as Professor in the Department of Anatomy (University of Minnesota MedicalSAMPLE School).
    [Show full text]