Signals from the Beginnings of the World

Total Page:16

File Type:pdf, Size:1020Kb

Signals from the Beginnings of the World Fundamental forces in space: For a few seconds, a gamma-ray burst radiates as brightly as the whole universe together, the radiation emanating to the outside via two jets. Events such as these still hide their secret: is it the explosion of an extremely massive star, a neutron star falling into the gravitational maelstrom of a black hole, or the fusion of two neutron stars or black holes? xxx 46 MaxPlanckResearch 3 | 09 PHYSICS & ASTRONOMY_Gamma-Ray Bursts Signals from the Beginning of the World A star exploded just 625 million years after the Big Bang, but the radiation of this event didn’t reach Earth until last spring. This gamma-ray burst was named GRB 090423. It is the most distant astronomical object yet discovered. Jochen Greiner and his colleagues at the Max Planck Institute for Extraterrestrial Physics in Garching investigate such cosmic ‘ignition sparks’ at the edge of space and time. TEXT HELMUT HORNUNG t must have been a violent catastro- In the years that followed, scientists into radiation with incredibly high ef- phe. Somewhere in the early uni- investigated the gamma-ray burst phe- ficiency. Over the years, astrophysicists verse, a star blew up – a heavyweight nomenon with instruments designed have put forward at least 150 different with several times the mass of our specifically for this purpose. theories – most of which have since Sun. In the course of this detona- From 1991 until its controlled crash been dismissed. Ition, within less than ten seconds, nine years later, the Compton space The issue is further complicated by as much energy was released as the observatory registered about 2,000 two sub-classes that were discovered Sun has produced during its entire gamma-ray flashes (MAXPLANCKRESEARCH through Compton measurements: gam- 10-billion-year lifetime. The radiation 3/2007, p. 60 ff). The scientists learned ma-ray bursts with a short duration of signal propagated away from the site that the gamma-ray bursts are random- less than one to two seconds, and those of this inferno at the speed of light. ly distributed and arrive from all direc- that typically last between ten and one After travelling for 13 billion years, tions without recognizably predomi- hundred seconds. The short events are the flash finally arrived near Earth: on nant sites of origin in the sky. possibly created during the fusion of April 23, 2009, it flared up in the Leo two neutron stars that had been orbit- constellation – astronomers observed GAMMA-RAY BURSTS – SIGNS OF ing each other for some time; alterna- what is known as a gamma-ray burst, AN INTERGALACTIC BATTLE? tively, such a remnant star might have GRB 090423. an even more compact partner – a black The first such flash was registered What is happening in space? Could this hole whose attractive force it cannot re- more than 40 years ago. On July 2, be “star wars”? Is it the detonation of sist, finally plunging into its gravita- 1967, American Vela espionage satel- bombs from highly developed civiliza- tional sink. lites detected gamma rays that could tions? The distance to the sites of the Long gamma-ray bursts constitute not have originated from secret above- gamma-ray bursts was long the subject by far the larger population. In the ground nuclear weapons tests that the of great controversy. It has now become presently accepted scenario, they arise orbiting spies were watching for. The clear that the bursts come from very far when a very massive star collapses at measurements they recorded were not away, from distances of billions of the end of its evolution, after the fuel published until 1973 – with the con- light-years. A mechanism must thus be for nuclear fusion in its core has run clusion that these signals must have found to explain the immense energy out and the reactor fizzles. As radiation Computer graphic: Mark Garlick/SPL – Agentur Focus come from the depths of the universe. generation, such as conversion of mass pressure from the inside decreases, 3 | 09 MaxPlanckResearch 47 +90 +180 -180 Gamma-ray bursts appear randomly distributed across the sky. This is shown by sky -90 charts such as those from the Compton satellite observatory measurements. gravity wins and the star contracts. Fi- side, the remains of the collapsing star nally, electrons and protons are so disappear behind the event horizon tightly compressed that they merge to of a cosmic mass swallower: a black form neutrons. This reduces the pres- hole is born. sure in the core even further and final- Astrophysicists are working on the ly the entire star collapses. Central den- theoretical details of this scenario. sity then reaches that of an atomic What causes gas to stream into a cen- nucleus – about 100 million tons per tral compact object at high velocity and cubic centimeter (MAXPLANCKRESEARCH thus convert its surroundings into a 2/2008, p. 20 ff). source of high-energy light and plasma jets? If you want to understand this, SCRAPS OF A STAR DISAPPEAR there is only one thing to do: keep a BEHIND THE EVENT HORIZON close eye on nature during such a proc- ess. This is where gamma-ray bursts of- Scientists still do not know exactly how fer an ideal starting point, because they arrival at this density limit transforms represent the most direct messengers of the implosion into an explosion. The such spectacular cosmic events. On April 23, 2009, a gamma-ray burst shockwave forming at this “wall” ap- There are two practical paths of flared up in the Leo constellation pears to be insufficient: neutrinos – progress: Gamma rays of the burst can (orange circle) – a very special event. Never before had the scientists looked electrically neutral elementary particles be measured directly in order to infer so far back into the history of the that hardly interact with other particles the source and the emission mecha- universe: the light started its journey – play a role, as does the stellar rotation, nism from its time profile and energy 625 million years after the Big Bang. which accelerates during the collapse spectrum. Alternatively, one can ob- and channels the collapsing flow of serve the afterglow of the eruption in matter into a fast-rotating disk. the X-ray spectrum, and also in the vis- Moreover, a jet traveling at almost ible and infrared spectra. the speed of light is ejected from the The prompt gamma-ray burst phase two polar regions of the collapsed star. is measured through the gamma-ray Within this jet of plasma, shockwaves eyes of the Swift, INTEGRAL and Fermi are formed by collisions of faster parti- satellites; the afterglow is registered at cles with slower ones, and these, in lower wavelengths by instruments in- turn, generate gamma rays. Deeper in- cluding those aboard Swift, as well as Chart: NASA; photo: NASA – Swift Stefan Immler 48 MaxPlanckResearch 3 | 09 PHYSICS & ASTRONOMY_Gamma-Ray Bursts t = 1.83 ms t = 2.59 ms t = 3.78 ms t = 6.60 ms t = 7.56 ms t = 11.34 ms Catastrophe in the computer: Scientists now use sophisticated software to model candidate mechanisms for gamma-ray bursts. The sequence shows a so-called merger, two neutron stars that collide and merge within a few milliseconds to form a flattened disk of matter accreting onto a newly formed black hole. the GROND instrument at the Max that X-ray glow’s intensity: “Instead of Physics. While the cause of the plateau Planck Society’s 2.2-meter telescope at the expected exponential decay, we phase is not known, Greiner and his La Silla in the Chilean Andes. GROND find a much steeper decline within the colleagues take the sudden flaring as a was developed entirely at the Max first few minutes. During the first few sign of interactions within the explo- Planck Institute for Extraterrestrial hours, the emission often reaches a sion cloud. Physics, and the detectors for one phase of constant intensity. Sometimes Known as Fermi (originally GLAST of the Fermi onboard instruments it then flares up again for about half an for Gamma-ray Large Area Space Tele- were contributed by the members of hour, during which the X-ray bright- scope), the most powerful gamma-ray the high-energy astrophysics group at ness changes by a factor of up to 100,” observatory to date arrived at its obser- this institute. says Jochen Greiner from the Max vation post in its Earth orbit in July Swift was launched into space in Planck Institute for Extraterrestrial 2008. On board, the main telescope LAT November 2004 and has since used its several telescopes to monitor the sky for gamma bursts. Its measurements can also detect gamma-ray burst after- LIKE RAISINS IN RISING DOUGH glows. Scientists didn’t discover this until 1997, with the Italian BeppoSax Cosmological redshift is a measure of The redshift (abbreviated z) is defined satellite – 30 years after the incidental the distance of an object. Galaxies virtu- as the ratio of the observed wave- registration of the first burst of this ally swim in space-time, which expands length to the wavelength of the corre- type. This afterglow is believed to result with the expansion of the universe. sponding emission process at rest in from the interaction of the star’s out- Galaxies are carried along within, the laboratory. Astronomers use red- ward-moving explosion front with sur- just like raisins in rising dough. This shift to measure the distance of the rounding matter, and can be observed motion is imposed onto any electro- object and thus the point in time for hours to days in a wide range of magnetic radiation moving through the when the object emitted its radiation.
Recommended publications
  • Joint Astrophysics Nascent Universe Satellite:. Utilizing Grbs As High Redshift Probes
    University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 2012 Joint Astrophysics Nascent Universe Satellite:. utilizing GRBs as high redshift probes P. W. A. Roming Southwest Research Institute S. G. Bilen Pennsylvania State University - Main Campus D. N. Burrows Pennsylvania State University - Main Campus A Falcone University of New Hampshire - Main Campus D. B. Fox Pennsylvania State University - Main Campus See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/physics_facpub Part of the Astrophysics and Astronomy Commons Recommended Citation Roming, P. W. A., S. G. Bilen, D. N. Burrows, A. D. Falcone, D. B. Fox, T. L. Herter, J. A. Kennea, M. L. McConnell, J. A. Nousek. JOINT ASTROPHYSICS NASCENT UNIVERSE SATELLITE:. UTILIZING GRBS AS HIGH REDSHIFT PROBES. 2012, Memorie della Societa Astronomica Italiana Supplement, 21, pp.155-161. This Article is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors P. W. A. Roming, S. G. Bilen, D. N. Burrows, A Falcone, D. B. Fox, T. L. Herter, J. A. Kennea, Mark L. McConnell, and J. A. Nousek This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/ physics_facpub/348 Mem. S.A.It. Suppl. Vol. 21, 155 Memorie della c SAIt 2012 Supplementi Joint Astrophysics Nascent Universe Satellite: utilizing GRBs as high redshift probes P.
    [Show full text]
  • Exploring Dust Extinction at the Edge of Reionization
    Draft version October 15, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 EXPLORING DUST EXTINCTION AT THE EDGE OF REIONIZATION Tayyaba Zafar,1 Darach J. Watson,1 Nial R. Tanvir,2 Johan P. U. Fynbo,1 Rhaana L.C.Starling,2 and Andrew J. Levan3 Draft version October 15, 2018 ABSTRACT The brightness of gamma-ray burst (GRB) afterglows and their occurrence in young, blue galaxies make them excellent probes to study star forming regions in the distant Universe. We here elucidate dust extinction properties in the early Universe through the analysis of the afterglows of all known z > 6 GRBs: GRB090423, 080913 and 050904, at z = 8.2, 6.69, and 6.295, respectively. We gather all available optical and near-infrared photometry, spectroscopy and X-ray data to construct spectral energy distributions (SEDs) at multiple epochs. We then fit the SEDs at all epochs with a dust-attenuated power-law or broken power-law. We find no evidence for dust extinction in GRB050904 and GRB090423, with possible evidence for a low level of extinction in GRB080913. We compare the high redshift GRBs to a sample of lower redshift GRB extinctions and find a lack of even moderately extinguished events (AV ∼ 0.3) above z & 4. In spite of the biased selection and small number statistics, this result hints at a decrease in dust content in star-forming environments at high redshifts. Subject headings: dark ages, reionization, first stars – dust, extinction – galaxies: high-redshift – gamma-ray burst: individual (GRB090423, 080913, and 050904) 1. INTRODUCTION ing made in the rest frame UV, they are in principle relatively Dust formationin the early universeis a hotly debated topic.
    [Show full text]
  • ALMA Observations of the Host Galaxy of GRB 090423 at Z= 8.23
    DRAFT VERSION AUGUST 13, 2014 Preprint typeset using LATEX style emulateapj v. 03/07/07 ALMA OBSERVATIONS OF THE HOST GALAXY OF GRB 090423 AT z =8.23: DEEP LIMITS ON OBSCURED STAR FORMATION 630 MILLION YEARS AFTER THE BIG BANG E. BERGER1,B.A.ZAUDERER1, R.-R. CHARY1,2 , T. LASKAR1,R.CHORNOCK1,N.R.TANVIR3,E.R.STANWAY4,A.J.LEVAN4, E.M. LEVESQUE5,&J.E.DAVIES1 Draft version August 13, 2014 ABSTRACT We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of Fν(222GHz) . 33 µJy and Fν (3.6µm) . 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp220, and comparable to the local starburst M82. Comparing to model spectral energy distributions we place a limit on the IR luminosity of LIR(8 − 1000µm) . 10 −1 3×10 L⊙, correspondingto a limit on the obscuredstar formationrate of SFRIR . 5M⊙ yr ; for comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame UV observations is −1 7 SFRUV . 1M⊙ yr . We also place a limit on the host galaxy stellar mass of M∗ . 5 × 10 M⊙ (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z & 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies), and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB090423 by virtue of their selection techniques.
    [Show full text]
  • Observed Cosmological Redshifts Support Contracting Accelerating Universe
    Observed Cosmological Redshifts Support Contracting Accelerating Universe Branislav Vlahovic∗ Department of Physics, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707 USA. The main argument that Universe is currently expanding is observed redshift increase by distance. However, this conclusion may not be correct, because cosmological redshift depends only on the scaling factors, the change in the size of the universe during the time of light propagation and is not related to the speed of observer or speed of the object emitting the light. An observer in expanding universe will measure the same redshift as observer in contracting universe with the same scaling. This was not taken into account in analysing the SN Ia data related to the universe acceleration. Possibility that universe may contract, but that the observed light is cosmologically redshifted allows for completely different set of cosmological parameters ΩM ; ΩΛ, including the solution ΩM = 1; ΩΛ = 0. The contracting and in the same time accelerating universe explains observed deceleration and acceleration in SN Ia data, but also gives significantly larger value for the age of the universe, t0 = 24 Gyr. This allows to reconsider classical cosmological models with Λ = 0. The contracting stage also may explain the observed association of high redshifted quasars to low redshifted galaxies. COSMOLOGICAL REDSHIFT period t0 − te. Cosmological redshift is not related to the speed of the In co-moving Robertson-Walker coordinate system, re- object that emits the light nor the speed of observer. It is lation between the redshift z, in the frequencies of spec- also not related to the relative velocity between objects.
    [Show full text]
  • Scrambling to Read the Meaning of the Sky's Most Ancient Flare
    NEWSFOCUS ASTRONOMY Tanvir, starting the observation some 21 minutes after the burst. “We observed the target for 20 minutes, and then the wind got Scrambling to Read the Meaning too much for us,” he says. Thousands of kilometers away, sitting in an Of the Sky’s Most Ancient Flare auditorium listening to talks about the future of U.K. astronomy, Tanvir kept glancing at his This spring, a seemingly routine gamma ray burst triggered a worldwide race to catch laptop in anticipation of the first images. He a glimpse of the early universe was also in touch with scientists operating Gemini Observatory’s 8-meter North tele- On 23 April, astrophysicist Nial Tanvir had networks make possible worldwide, round- scope, also on Mauna Kea, which had begun just dropped his daughter off at school when the-clock collaborations, and pressures for taking observations in the optical band within an automated text message appeared on his cooperation and competition often come into minutes of the burst. cell phone. NASA’s Swift satellite had just simultaneous play. “This is extreme astron- The burst appeared as a fuzzy spot in near- detected a gamma ray burst (GRB)—a brief omy,” says Don Lamb, a theoretical astrophysi- infrared images taken by UKIRT but didn’t flash of high-energy radiation emitted by a cist at the University of Chicago in Illinois. show up in optical images taken by Gemini. To star collapsing to form a black hole. “Oh boy, Tanvir and others, this was a clue that it had here we go again,” Tanvir, a researcher at the All-night dash occurred at a high redshift: Visible light from University of Leicester in the United King- Shortly after Tanvir received the alert, he was the burst had shifted to the near-infrared, and dom, recalls thinking.
    [Show full text]
  • Through the Past, Brightly
    Through the Past, Credit: Edo Berger, Harvard University. Harvard University. Credit: Edo Berger, Brightly Gamma-Ray Bursts and the Early Universe By Sarah Harland-Logan Midnight Messages one GRB is equivalent to the energy ust like many undergraduates, Pro- output of 1,000 stars the size of the Jfessor Edo Berger (of the Harvard Sun, throughout their entire lives (3). astronomy department) is used to These incredibly intense bursts of receiving the occasional late-night gamma radiation (the highest-energy text message. Berger’s midnight texts, portion of the light spectrum) are now however, are sent to his iPhone directly believed to occur somewhere in the from NASA’s Swift telescope, our universe at least once to a few times per “The astronomy most powerful tool for detecting the day, and perhaps far more frequently phenomena known as Gamma-Ray (3, 6). Berger typically receives about equivalent of Bursts (GRBs) (1). Berger holds the two texts per week informing him of working at the ER” record for discovering the most dis- the appearance of a new one. At this tant, and therefore the oldest, object point, he will “Jump out of bed and in the known universe; this object is start calling observatories around the somewhat disappointingly named world to observe the burst,” and then GRB 090423 (to indicate that it was begin analyzing its properties as soon discovered on April 23, 2009) (2, 3). as possible (1). GRBs are the brightest objects in the Some of us might resent this frequent known universe, and the most power- incursion upon our sleep patterns, but ful explosions since the Big Bang (4, Berger explains that the unpredictable 5).
    [Show full text]
  • GRB 090423 at a Redshift of Z ≈
    Vol 461 | 29 October 2009 | doi:10.1038/nature08445 LETTERS GRB 090423 at a redshift of z < 8.1 R. Salvaterra1, M. Della Valle2,3,4, S. Campana1, G. Chincarini1,5, S. Covino1, P. D’Avanzo1,5, A. Ferna´ndez-Soto6, C. Guidorzi7, F. Mannucci8, R. Margutti1,5,C.C.Tho¨ne1, L. A. Antonelli9, S. D. Barthelmy10, M. De Pasquale11, V. D’Elia9, F. Fiore9, D. Fugazza1, L. K. Hunt8, E. Maiorano12, S. Marinoni13,14, F. E. Marshall10, E. Molinari1,13, J. Nousek15, E. Pian16,17, J. L. Racusin15, L. Stella9, L. Amati12, G. Andreuzzi13, G. Cusumano18, E. E. Fenimore19, P. Ferrero20, P. Giommi21, D. Guetta9, S. T. Holland10,22,23, K. Hurley24, G. L. Israel9, J. Mao1, C. B. Markwardt10,23,25, N. Masetti12, C. Pagani15, E. Palazzi12, D. M. Palmer18, S. Piranomonte9, G. Tagliaferri1 & V. Testa9 Gamma-ray bursts (GRBs) are produced by rare types of massive The spectrum (Fig. 2) reveals a clear break at a wavelength of stellar explosion. Their rapidly fading afterglows are often bright 1.1 mm (ref. 8). We derive a spectroscopic redshift for the GRB of z0:1 enough at optical wavelengths that they are detectable at cos- z 5 8:1{0:3 (ref. 9; see Supplementary Information, section 3), inter- mological distances. Hitherto, the highest known redshift for a preting the break as Lyman-a absorption in the intergalactic med- GRB was z 5 6.7 (ref. 1), for GRB 080913, and for a galaxy was ium. No other significant absorption features were detected. This z 5 6.96 (ref.
    [Show full text]
  • Evidence for Low Extinction in Actively Star Forming Galaxies at Z $> $6.5
    Accepted for publication in the Astrophyscial Journal A Preprint typeset using LTEX style emulateapj v. 5/2/11 EVIDENCE FOR LOW EXTINCTION IN ACTIVELY STAR FORMING GALAXIES AT Z>6.5. F. Walter 1, R. Decarli 1, C. Carilli 2, D. Riechers 3, F. Bertoldi 4, A. Weiß 5, P. Cox 6, R. Neri 6, R. Maiolino 7, M. Ouchi 8, E. Egami 9, K. Nakanishi 10,11,12 Draft version July 18, 2018 ABSTRACT We present a search for the [C II] 158µm fine structure line (a main cooling line of the interstel- lar medium) and the underlying far–infrared (FIR) continuum in three high–redshift (6.6<z<8.2) star–forming galaxies using the IRAM Plateau de Bure interferometer. We targeted two Lyman– α–selected galaxies (Lyman–Alpha–Emitters, LAEs) with moderate UV–based star formation rates −1 (SFR∼20 M⊙ yr ; Himiko at z=6.6 and IOK–1 at z=7.0) and a Gamma Ray Burst (GRB) host galaxy (GRB 090423 at z∼8.2). Based on our 3σ rest–frame FIR continuum limits, previous (rest– frame) UV continuum measurements and spectral energy distribution (SED) fitting, we rule out SED shapes similar to highly obscured galaxies (e.g. Arp 220, M 82) and less extreme dust–rich nearby spiral galaxies (e.g. M 51) for the LAEs. Conservatively assuming a SED shape typical of local spi- −1 ral galaxies we derive upper limits for the FIR–based star formation rates (SFRs) of ∼70 M⊙ yr , −1 −1 ∼50 M⊙ yr and ∼40 M⊙ yr for Himiko, IOK–1 and GRB 090423, respectively.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • ALMA Observations of the Host Galaxy of GRB 090423 at Z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years After the Big Bang
    ALMA Observations of the Host Galaxy of GRB 090423 at Z = 8.23: Deep Limits on Obscured Star formation 630 Million Years after the Big Bang. The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Berger, E., B. A. Zauderer, R.-R. Chary, T. Laskar, R. Chornock, N. R. Tanvir, E. R. Stanway, A. J. Levan, E. M. Levesque, and J. E. Davies. 2014. "ALMA Observations of the Host Galaxy of GRB 090423 at Z = 8.23: Deep Limits on Obscured Star formation 630 Million Years after the Big Bang. ” The Astrophysical Journal 796 (2) (November 12): 96. doi:10.1088/0004-637x/796/2/96. Published Version doi:10.1088/0004-637x/796/2/96 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30498353 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP DRAFT VERSION AUGUST 13, 2014 Preprint typeset using LATEX style emulateapj v. 03/07/07 ALMA OBSERVATIONS OF THE HOST GALAXY OF GRB 090423 AT z =8.23: DEEP LIMITS ON OBSCURED STAR FORMATION 630 MILLION YEARS AFTER THE BIG BANG E. BERGER1,B.A.ZAUDERER1, R.-R. CHARY1,2 , T. LASKAR1,R.CHORNOCK1,N.R.TANVIR3,E.R.STANWAY4,A.J.LEVAN4, E.M. LEVESQUE5,&J.E.DAVIES1 Draft version August 13, 2014 ABSTRACT We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively.
    [Show full text]
  • The Oldest Object
    RIGHT NOW DYING LIGHT The Oldest Object hen specialized sat- “within a few hundred million years.” ellites orbiting Earth Further research using gamma-ray bursts detect a star explod- may eventually pinpoint the moment ing anywhere in the when stars began to form. Wuniverse, Edo Berger gets an alert on his Cosmic explosions emit jets of gamma cell phone. At 3:55 a.m. on April 23, the rays, a more energetic form of light even assistant professor of astronomy learned than x-rays (see the artist’s conception, of a gamma-ray burst (GRB) from a star below). But gamma rays don’t tell any- almost as old as time itself. GRB 090423, thing about the distance to an object, so which exploded more than 13 billion years when Berger first learned of the gamma- ago, at a time when the universe was just ray burst, he asked the Gemini Observa- 625 million years old, is the oldest object tory in Hilo, Hawaii, to train its telescope Tomorrow’s healthcare yet discovered. The find was significant, on the dying star. leaders will need a broad he says, because it proved that stars began The fact that there was plenty of infra- forming very quickly after the big bang: red light, but no visible light, coming from perspective and solid the explosion was “a smoking gun”: he NSF management skills. knew at once that he had found an ancient star. That’s because the early BSERVATORY/ O universe was filled with hydrogen gas Yale MBA for Executives: EMINI opaque to visible light.
    [Show full text]
  • ASTROPHYSICS: Most Distant Cosmic Blast Seen
    ASTROPHYSICS: Most distant cosmic blast seen Bing Zhang The most distant γ-ray burst yet sighted is the earliest astronomical object ever observed in cosmic history. This ancient beacon offers a glimpse of the little-known cosmic dark ages. In this issue, two papers1,2 report the discovery a γ-ray burst (GRB) at a redshift of about 8.2. It is the highest redshift — or equivalently the most distant — astronomical object ever detected in the Universe. For comparison, the highest redshift recorded so far for galaxies is about 6.96 (ref. 3). For quasars — extremely bright galactic nuclei powered by supermassive black holes — the record holder is an object at 6.48 (ref. 4). Tanvir et al.1 (page 1254) and Salvaterra et al.2 (page 1258) measured a concordant redshift for GRB 090423 on the basis of observations of its fading afterglow emission at different times after the initial burst of γ-rays. In astronomy, a larger distance (or redshift) corresponds to an earlier time in cosmic history, because it takes longer for a farther- away photon, which travels at finite speed, to reach Earth. Moreover, because the Universe is expanding, the wavelength of electromagnetic radiation emitted by a distant object is stretched to be longer and redder (redshifted) on its course to Earth. The farther away the source, the more the Universe has expanded, and therefore the higher the source’s redshift. The redshift measured for GRB 090423 means that the burst occurred at a time when the Universe was about nine times smaller than it is today — putting the timing of the event at about 630 million years after the Big Bang.
    [Show full text]