Sulfa Antibiotics - Synthesis of Sulfanilamide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHM 114: Bioorganic Molecules Week 6 Laboratory
CHM 114: Bioorganic Molecules Week 6 Laboratory Azosulfonamides: Part 1. Synthesis of a Ligand for Protein Binding Studies1 Dyes and Serendipity: In the Persian fairy tale The Three Princes of Serendip, the title characters were forever discovering things they were not looking for at the time—thus, serendipity is the aptitude for for making happy discoveries by accident. The preparation of the first commercially important synthetic dye by William Henry Perkin (not of Perkin’s restaurant fame) in 1854 is a good example of a serendipitous discovery in science. During the nineteenth century quinine was the only drug known to be effective against malaria, and it could be obtained only from the bark of the cinchona tree, which grew in South America. French chemists had isolated pure quinine from cinchona bark in 1820, but the inaccessibility of the tree made natural quinine very expensive. Perkin, then an 18-year-old graduate student working for the eminent German chemist August Wilhelm von Hofmann, realized that anyone who could make synthetic quinine might well become rich and famous. Perkin knew nothing about the molecular structure of quinine—structural organic chemistry was in its infancy in the mid-1800’s—but he knew that quinine’s molecular formula was C20H24N2O2. Perkin prepared some allytoluidine (C10H13N), apparently thinking that two molecules of allyltoluidine plus three oxygen atoms minus a molecule of water would magically yield C20H24N2O2 –quinine! (Figure 1). H H N N +3[O] 2 OH H H C -H2O 3 H3CO Allyltoluidine N Quinine Figure 1. Perkin’s Idea for the Synthesis of Quinine Of course Perkin had attempted the impossible. -
The Local Use of the Sulfonamide Drugs
THE LOCAL USE OF THE SULFONAMIDE DRUGS GEORGE CRILE Jr., M.D. Since the introduction of sulfanilamide and its derivatives, the reliance upon chemotherapy for the control of acute surgical infections has temporarily overshadowed the importance of sound surgical princi- ples and often has resulted in the administration of inefficient or inade- quate treatment. Too often, the physician fails to recognize the limita- tions of chemotherapy and vainly attempts to control the infection well beyond the optimum time for surgical intervention. Chemotherapy is very effective in controlling infections from hemo- lytic streptococcus; is moderately effective in controlling staphylococcic infections; but is of slight value when administered systemically in patients infected with the nonhemolytic streptococcus or colon bacillus. However, even in infections caused by the hemolytic streptococcus or the staphylococcus, sulfanilamide and sulfathiazole cannot replace surgery after suppuration has taken place and mechanical drainage of an abscess is required. It is in the treatment of lymphangitis and cellulitis, not in the treatment of abscesses, that chemotherapy has been of the greatest value. The work of Lockwood1 and others has indicated that the products of proteolysis in vitro interfere with the bacteriostatic and bacteriocidal powers of sulfanilamide. The presence of similar substances in undrained abscess cavities probably interferes with the destruction of the organ- isms by chemotherapy. Accordingly, the sulfonamide drugs should supplement rather than replace early and adequate surgical drainage, especially in the presence of suppuration. The local application of the sulfonamide drugs is based upon the principle that the local concentration of the drug in the tissues is ten to twenty times as high as that which can be obtained by any method of systemic administration. -
Xifaxan® (Rifaximin)
Wednesday, October 14, 2015 4 p.m. Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review Board Members FROM: Bethany Holderread, Pharm.D. SUBJECT: Packet Contents for Board Meeting – October 14, 2015 DATE: October 1, 2015 NOTE: The DUR Board will meet at 4:00 p.m. The meeting will be held at 4345 N Lincoln Blvd. Enclosed are the following items related to the October meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Action Item – Vote on 2016 Meeting Dates – Appendix B Update on Medication Coverage Authorization Unit/Bowel Preparation Medication Post-Educational Mailing – Appendix C Action Item – Vote to Prior Authorize Tykerb® (Lapatinib), Halaven® (Eribulin), Ixempra® (Ixabepilone), Kadcyla® (Ado-Trastuzumab), Afinitor® (Everolimus), & Perjeta® (Pertuzumab) – Appendix D Action Item – Vote to Prior Authorize Orkambi™ (Lumacaftor/Ivacaftor) – Appendix E Action Item – Vote to Prior Authorize Savaysa® (Edoxaban) – Appendix F Action Item – Vote to Prior Authorize Epanova® (Omega-3-Carboxylic Acids), Praluent® (Alirocumab), & Repatha™ (Evolocumab) – Appendix G Annual Review of Constipation and Diarrhea Medications and 30-Day Notice to Prior Authorize Movantik™ (Naloxegol), Viberzi™ (Eluxadoline), & Xifaxan® (Rifaximin) – Appendix H 30-Day Notice to Prior Authorize Daraprim® (Pyrimethamine) – Appendix I Annual Review of Allergy Immunotherapies and 30-Day Notice to Prior Authorize Oralair® (Sweet Vernal, Orchard, Perennial Rye, Timothy, & Kentucky Blue Grass Mixed Pollens Allergen Extract) – Appendix J Annual Review of Non-Steroidal Anti-Inflammatory Drugs and 30-Day Notice to Prior Authorize Dyloject™ (Diclofenac Sodium) – Appendix K ORI-4403 • P.O. -
Chloroquinoxaline Sulfonamide (NSC 339004) Is a Topoisomerase II␣/ Poison1
[CANCER RESEARCH 60, 5937–5940, November 1, 2000] Advances in Brief Chloroquinoxaline Sulfonamide (NSC 339004) Is a Topoisomerase II␣/ Poison1 Hanlin Gao, Edith F. Yamasaki, Kenneth K. Chan, Linus L. Shen, and Robert M. Snapka2 Departments of Radiology [H. G., E. F. Y., R. M. S.]; Molecular Virology, Immunology and Medical Genetics [H. G., R. M. S.]; College of Medicine [H. G., E. F. Y., R. M. S., K. K. C.]; and College of Pharmacy [K. K. C.], Ohio State University, Columbus, Ohio 43210, and Abbott Laboratories, Abbott Park, Illinois 60064 [L. L. S.] Abstract Drugs and Enzymes. CQS (NSC 339004) was provided by Dr. R. Shoe- maker, National Cancer Institute. VM-26 (teniposide, NSC 122819) was Chloroquinoxaline sulfonamide (chlorosulfaquinoxaline, CQS, NSC obtained from the National Cancer Institute Division of Cancer Treatment, 339004) is active against murine and human solid tumors. On the basis of Natural Products Branch. DMSO was the solvent for all drug stocks. Purified  its structural similarity to the topoisomerase II -specific drug XK469, human topoisomerase II␣ was from TopoGen (Columbus, OH) and LLS ␣ CQS was tested and found to be both a topoisomerase-II and a topoi- (Abbott Laboratories, Abbott Park, IL). Purified topoisomerase II was a  somerase-II poison. Topoisomerase II poisoning by CQS is essentially gift of Dr. Caroline Austin (University of Newcastle, Newcastle upon Tyne, undetectable in assays using the common protein denaturant SDS, but United Kingdom). easily detectable with strong chaotropic protein denaturants. The finding Filter Assay for in Vitro Topoisomerase-DNA Cross-links. The GF/C that detection of topoisomerase poisoning can be so dependent on the filter assay for protein-SV40 DNA cross-links is used to measure topoisomer- protein denaturant used in the assay has implications for drug discovery ase poisoning in vitro with purified enzymes and DNA substrates (9). -
Belgian Veterinary Surveillance of Antibacterial Consumption
Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2013 1 Summary This fifth BelVetSAC report, covers the results of the data collection on veterinary antibacterial consumption in Belgium in the year 2013. Data consist of all veterinary antibacterials sold to a veterinarian or pharmacist in Belgium and of antibacterial premixes incorporated in medicated feed intended to be used in Belgium for the year 2013. It includes thus consumption data for farm animals as well as companion animals. The denominator for animal production was the biomass (in kg) calculated as the sum of the amount of beef, pork and poultry meat produced in 2013, plus the number of dairy cattle present in Belgium times 500 kg of metabolic weight per head. As the usage data are concerned, this report shows for the second year in a row a decrease in the total consumption of antibacterial compounds in veterinary medicine of -6,6% between 2012 and 2013. Due to the relative stable animal production (expressed in biomass -0,3%) the decrease expressed in mg/kg biomass is -6,3%. When using 2011 as a reference, a reduction of -12,7% (expressed in mg/kg biomass) was achieved between 2011 and 2013, distributed over a reduction of -13,3% in antibacterial pharmaceuticals and -10,2% in antibacterial premixes. When looking more in detail to the different types of antibacterials used, it is observed that the penicillines (31,1%), sulphonamides (28,7%), and tetracyclines (24,1%) remain the three most used antibacterial classes. This year a substantial decrease in sulphonamide plus trimethoprim use and a limited decrease in penicillin and tetracycline use was observed. -
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. -
Radical Approaches to Alangium and Mitragyna Alkaloids
Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes. -
Synthesis and Kinetics of Novel Ionic Liquid Soluble Hydrogen Atom Transfer Reagents
Synthesis and kinetics of novel ionic liquid soluble hydrogen atom transfer reagents Thomas William Garrard Submitted in total fulfilment of the requirements of the degree Doctor of Philosophy June 2018 School of Chemistry The University of Melbourne Produced on archival quality paper ORCID: 0000-0002-2987-0937 Abstract The use of radical methodologies has been greatly developed in the last 50 years, and in an effort to continue this progress, the reactivity of radical reactions in greener alternative solvents is desired. The work herein describes the synthesis of novel hydrogen atom transfer reagents for use in radical chemistry, along with a comparison of rate constants and Arrhenius parameters. Two tertiary thiol-based hydrogen atom transfer reagents, 3-(6-mercapto-6-methylheptyl)-1,2- dimethyl-3H-imidazolium tetrafluoroborate and 2-methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol, have been synthesised. These are modelled on traditional thiol reagents, with a six-carbon chain with an imidazole ring on one end and tertiary thiol on the other. 3-(6-mercapto-6-methylheptyl)- 1,2-dimethyl-3H-imidazolium tetrafluoroborate comprises of a charged imidazolium ring, while 2- methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol has an uncharged imidazole ring in order to probe the impact of salt formation on radical kinetics. The key step in the synthesis was addition of thioacetic acid across an alkene to generate a tertiary thioester, before deprotection with either LiAlH4 or aqueous NH3. Arrhenius plots were generated to give information on rate constants for H-atom transfer to a primary alkyl radical, the 5-hexenyl radical, in ethylmethylimidazolium bis(trifluoromethane)sulfonimide. -
O/C -O-O-( X, Generally Carried out at a Temperature in the Range of 20 and (B) Mineral Acid Salts of These Compounds
3,256,288 United States Patent Office Patented June 14, 1966 W 2 -Cl, -Br or -SONH2, with an appropriate imino ether 3,256,288 hydrochloride having the formula -SUBSTITUTED AMNOALKYL-2-ARYLOXY METHYLEBENZRADAZOLE COMPOUNDS E Clarence L. Moyle, Care, and Diomed M. Cher, Mid land, Mich., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware W (III) No Drawing. Fied May 24, 1962, Ser. No. 197,285 wherein in this and succeeding formulas, E is -H, -R, 9 Claims. (C. 260-294.7) -CI, -Br, -OH, -OR or -CONH2 and R' is a lower alkyl group, to produce the desired benzimidazole product This invention is directed to benzimidazole compounds, O and R'OH, NH3 and HCl by-products. The gaseous NH particularly (a) N-substituted benzimidazole compounds and HCl generally evolve from the reaction mixture al having the formula though some of the HC1 may react with NH and remain in the reaction mixture as ammonium chloride salt or may react with the basic benzimidazole product and remain 5 as the hydrochloride salt thereof. / N Y In carrying out the preparation, substantially equimolar proportions of the reactants are employed although either reactant may be employed in excess. The reaction is O/C -o-o-( x, generally carried out at a temperature in the range of 20 and (b) mineral acid salts of these compounds. In this from 60 to 82° C. for a period of from about 20 to 72 and succeeding formulas-NR'R'' is di(lower-alkyl)ami hours. It is preferred that an alcoholic solvent be em no, piperidino, morpholino or pyrrolidino; X is -H, ployed in this process. -
Kinetic and Mechanistic Study of the Reaction Between Methane Sulfonamide (CH3S(O)2NH2) and OH
Atmos. Chem. Phys., 20, 2695–2707, 2020 https://doi.org/10.5194/acp-20-2695-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Kinetic and mechanistic study of the reaction between methane sulfonamide (CH3S.O/2NH2) and OH Matias Berasategui, Damien Amedro, Achim Edtbauer, Jonathan Williams, Jos Lelieveld, and John N. Crowley Division of Atmospheric Chemistry, Max-Planck-Institut für Chemie, 55128 Mainz, Germany Correspondence: John N. Crowley ([email protected]) Received: 8 November 2019 – Discussion started: 28 November 2019 Revised: 30 January 2020 – Accepted: 3 February 2020 – Published: 4 March 2020 Abstract. Methane sulfonamide (MSAM), CH3S.O/2NH2, The main organosulfur trace gases in the marine boundary was recently detected for the first time in ambient air over the layer are dimethyl sulfide (CH3SCH3, DMS) and its oxi- Red Sea and the Gulf of Aden where peak mixing ratios of dation products dimethyl sulfoxide (DMSO), dimethyl sul- ≈ 60 pptv were recorded. Prior to this study the rate constant fone (DMSO2), methyl sulfonic acid (MSA), and methyl for its reaction with the OH radical and the products thereby sulfinic acid (MSI) for which atmospheric lifetimes with re- formed were unknown, precluding assessment of its role in spect to their degradation by the OH radical vary between the atmosphere. We have studied the OH-initiated photo- hours (DMS) and several weeks (DMSO2). oxidation of MSAM in air (298 K, 700 Torr total pressure) Recently, the first detection of methane sulfonamide in a photochemical reactor using in situ detection of MSAM (CH3S.O/2NH2, MSAM) in ambient air was made during and its products by Fourier transform infrared (FTIR) absorp- the Air Quality and Climate Change in the Arabian Basin tion spectroscopy. -
Radical Cyclization in Heterocycle Synthesis. 12.1) Sulfanyl Radical
February 2001 Chem. Pharm. Bull. 49(2) 213—224 (2001) 213 Radical Cyclization in Heterocycle Synthesis. 12.1) Sulfanyl Radical Addition–Addition–Cyclization (SRAAC) of Unbranched Diynes and Its Application to the Synthesis of A-Ring Fragment of 1a,25-Dihydroxyvitamin D3 Okiko MIYATA, Emi NAKAJIMA, and Takeaki NAITO* Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658–8558, Japan. Received September 25, 2000; accepted October 24, 2000 Sulfanyl radical addition–addition–cyclization (SRAAC) of unbranched diynes proceeded smoothly to give cyclized exo-olefins, while the sulfanyl radical addition–cyclization–addition (SRACA) of diynes having a quater- nary carbon gave cyclized endo-olefins. This method was successfully applied to the synthesis of A-ring fragment of 1a,25-dihydroxyvitamin D3. Key words sulfanyl radical; addition–addition–cyclization; diyne; alkylidenecyclopentane; alkylidenecyclohexane; vitamin D Radical cyclization is a useful method for the preparation ther a quaternary carbon or a heteroatom, sulfanyl radical ad- of various cyclic compounds.1) Recently, this method in dition–cyclization–addition (SRACA) occurred to give endo- 5 5 which carbon centered radical species are generated by the olefin 3. In the case of longer carbon chain, 1 (n 2, X CH2, addition reaction of a radical to a multiple bond has drawn C(COOMe)2) gave exo-olefin 2 as the major product, while 1 5 5 the attention of synthetic chemists because of its several ad- (n 2, X NSO2Ar) gave a complex mixture. Synthetic util- vantages, such as readily available starting substrate and for- ity of newly found SRAAC has been proved by a novel syn- mation of functionalized products. -
Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella Pneumoniae Isolates from Hospital Wastewater
antibiotics Article Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater Hercules Sakkas * , Petros Bozidis , Afrodite Ilia, George Mpekoulis and Chrissanthy Papadopoulou Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece * Correspondence: [email protected]; Tel.: +30-265-100-7769 Received: 21 May 2019; Accepted: 26 June 2019; Published: 27 June 2019 Abstract: During a six-month period (October 2017–March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined