Massive Stars and High-Energy Emission in OB Associations

Total Page:16

File Type:pdf, Size:1020Kb

Massive Stars and High-Energy Emission in OB Associations Massive Stars and High-Energy Emission in OB Associations Proceedings of JENAM 2005 Distant Worlds, July 4-7, 2005, Liège (Belgium) Images © ESA, ESO, NASA. Institut d‘Astrophysique et de Géophysique Edited by: Université de Liège G. Rauw, Y. Nazé, Allée du 6 Août 17, Bat. B5C R. Blomme & E. Gosset B4000-Liège (Belgium) Dépôt légal : D/2005/0480/95 Foreword About 35 astronomers including many experts in the field of massive stars attended the afternoon sessions of the JENAM 2005 workshop —Massive Stars and High-Energy Emission in OB Associations“. In addition to the two plenary talks by Dr Ian Stevens and Prof Thierry Montmerle, two invited reviews by Prof Artemio Herrero and Dr Martin Guerrero as well as 12 contributed talks and nine posters were presented during the workshop. A good number of new exciting results obtained with modern high-resolution optical spectrographs and/or high-energy instruments onboard XMM-Newton, Chandra and INTEGRAL were presented and new questions were raised. Several contributions were devoted to non-thermal phenomena associated with a subset of the massive stars. Many results presented at the workshop seem to demonstrate that non-thermal radio emission of early-type stars is a signature of colliding winds in binary systems. W hile this was already established for W olf-Rayet stars, it becomes now more and more obvious for O stars as well. In this context, the participants emphasized the interest to search for non-thermal X-ray and G- ray emissions from massive binaries. Such a hard X-ray œ soft G-ray emission could also arise from the collision of a supernova remnant with a stellar wind. The topic of non-thermal emission is related to one of the most controversial issues of massive star research; their magnetic fields. Magnetic fields certainly play a major role in the generation of the non-thermal radio emission and they might lead to magnetically confined stellar winds (such as observed in K Ori C). However, there are many questions that remain open as to the origin of these fields, their strengths as well as their origin (fossil vs. dynamo… ). These properties are essential ingredients of any theoretical attempt to model the non-thermal processes. The participants expressed their hope that upcoming observational facilities as well as new developments in theoretical models will allow to better constrain the properties of magnetic fields in early-type stars. New questions were also raised concerning the origin of X-ray emission from massive stars. Some observational as well as theoretical results cast doubt on the —standard model“ (the shock œ X- ray emission paradigm) for the production of X-rays from massive stars. Again, magnetic fields might play a key role here. Another major question concerns the duplicity of massive stars and the colliding wind phenomenon. As a result of detailed analyses and high-quality data, we now have better statistics of the multiplicity of massive stars as well as a better knowledge of the observed properties of colliding wind systems over a broad range of stellar parameters. Some features were unexpected, others agree quite well with theoretical expectations. A question that was actively debated is whether or not all W olf-Rayet stars that emit X-rays or that produce dust are binaries. Finally, wind- wind collisions or magnetic fields might also play a role in the enigmatic variability of some peculiar objects like the Of?p stars. Some topics related to star formation were also discussed. Recent X-ray observations of massive star clusters reveal a wealth of secondary sources associated with pre-main sequence stars. A new temperature calibration of O-type stars further suggests that massive stars are significantly cooler than previously thought and may actually not appear on the zero age main sequence. These results are crucial for a better understanding of massive star formation and of many interaction processes between massive stars and their surroundings. The participants of the workshop emphasized the need for more observations of massive stars in the high-energy domain (using XMM-Newton, INTEGRAL and Chandra) as well as in the radio domain and they decided to coordinate their efforts towards this endeavor. It is our pleasure to thank Jean-Pierre Swings and Jean-Marie Vreux for their participation in the local organizing committee of this workshop, as well Denise Caro, Alain Detal and Sandrine Sohy who contributed significantly to the practical organization of the workshop. The organization of the JENAM 2005 event was made possible through various grants received from the —Province de Liège“, OPTICON, the European Astronomical Society (EAS), the European Space Agency (ESA), AMOS, the —Fonds National de la Recherche Scientifique“ (FNRS), the Belgian Science Policy (Belspo), the —Université de Liège“ and the —Communauté Française de Belgique“. W e are grateful to all these organizations for their financial support. An electronic version of these proceedings is available at the link http://www.astro.ulg.ac.be/RPub/Colloques/JENAM/proceedings/proceedings.html Liège, November 2005 Gregor Rauw, Yaël Nazé, Ronny Blomme, Eric Gosset Table of Contents Sect. 1: Massive stars: general properties, X-ray emission and peculiar objects Plenary Talk X-ray and gamma-ray emission from single and binary early-type stars I.R. Stevens … … … … … … … … … … … L L L 0L L L L L 000L L L L L L L L L L 00L < Invited Talks X-ray survey of Wolf-Rayet stars in the Magellanic Clouds 00 (, & Y.-H. Chu .… … … … … … … … .… … L L L L L L L L L L L L 00L .< Parameters of massive stars in the Milky Way and nearby galaxies 0 @o, & F. Najarro… … … … … … … … … … … … L L 0000L L L L L L L L L 00L 00. Contributed Talks The peculiar Of?p stars HD108 and HD191612 60 /7) (0 4auw, N.R. W alborn, & I.D. Howarth … … ...… … … … ...… … … … … … … … 31 A new paradigm for the X-rays from O-stars A.M.T. Pollock, & A.J.J. Raassen… ...… … … … … … … … … … … … ...… … … … … … … … 35 Posters CN status of a sample of galactic OB supergiants M. Sarta Dekoviş, & D. Kotnik-Karuza… … … … … … … … … … … … … … … … … … … … .39 Sect. 2: Colliding winds and non-thermal emission Contributed Talks Observations of non-thermal radio emission in O-type stars R. Blomme..… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 45 Radio emission from colliding-wind binaries: observations and models S.M. Dougherty, J.M. Pittard, & E.P. O‘Connor..… … … … … … … … … … … … … … … … .49 The XMM-Newton view of Plaskett's star and its surroundings N. Linder, & G. Rauw… ..… … … … … … … … … … … … … … … … … … … … … … … … … ..53 Non-thermal X-ray and gamma-ray emission from the colliding-wind binary WR140 J.M. Pittard, & S.M. Dougherty...… … … … … … … … … … … … … … … … … … … … … … ..57 Can single O-stars produce non-thermal radio emission? Or are they binaries? S. Van Loo… .… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .61 Are WC9 Wolf-Rayet stars in colliding-wind binaries? P.M. W illiams, K.A. van der Hucht, & G. Rauw… … … … … … … … … … … … … … … … ...65 Posters X-ray analysis of the close binary system FO15 J.F. Albacete Colombo, & G. Micela… … … … … … … … … … … … … … … … … … … … … .69 Evidence for phase-locked X-ray variations from the colliding wind massive binary Cyg OB2 #8a M. De Becker, & G. Rauw… … … … … … … … … … … … … … … … … … … … … L L L L 0< Preliminary results of an observational campaign aiming at the study of the binary system LSS3074 E. Gosset, G. Rauw, J. Manfroid, E. Antokhina, I.R. Stevens, & H. Sana… … … … … … … 77 The colliding winds of WR146: seeing the works E.P. O'Connor, S.M. Dougherty, J.M. Pittard, & P.M. W illiams… .… … … … … … … … … ..81 On the multiplicity of the non-thermal radio emitters 9 Sgr and HD168112 G. Rauw, H. Sana, E. Gosset, M. De Becker, J. Arias, N. Morrell, P. Eenens, & D. Stickland … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 85 CPD-41°7742: an unusual wind interaction H. Sana, E. Gosset, G. Rauw, E. Antokhina, P. Royer, J. Manfroid, & J.-M. Vreux.… … ...89 Sect. 3: High-energy emission from young open clusters Contributed Talks Energetic processes and non-thermal emission of star forming complexes A.M. Bykov… … … … … … … … … … … … … … … … … … … … … … … … … … … … .… … ...95 X-raying the super star clusters in the Galactic center L.M. Oskinova ...… … … … … … … … … … … … … … … … … … … … … … … … … … … … … 99 XMM-Newton observations of the Cyg OB2 association G. Rauw, M. De Becker, & N. Linder… ..… … … … … … … … … … … … … … … … … … … 103 The young open cluster NGC6231: five years of investigations H. Sana, G. Rauw, & E. Gosset… ..… … … … … … … … … … … … … … … … … … … … … ..107 Posters A spectroscopic investigation of the young open cluster IC1805 M. De Becker, & G. Rauw… … … … … … … … … … … … … … … … … … … … … … … .… ..111 A survey for gamma-ray emission from OB associations with INTEGRAL: some preliminary results J.-C. Leyder, & G. Rauw..… … … … … … … … … … … … … … … … … … … … … … … … … 115 Section 1 Massive stars: general properties, X-ray emission and peculiar objects X-ray and gamma-ray emission from single and binary early-type stars I.R. Stevens School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK Abstract: Since their launch, both the Chandra and XMM-Newton satellites have provided us with a new and more detailed view of the high energy processes in massive stars. This paper reviews recent X-ray observations of a range of massive stars, both O-stars and Wolf-Rayet (W-R) stars, as well as both single early-type stars and
Recommended publications
  • A Dozen Colliding Wind X-Ray Binaries in the Star Cluster R 136 in the 30 Doradus Region
    A dozen colliding wind X-ray binaries in the star cluster R 136 in the 30 Doradus region Simon F. Portegies Zwart?,DavidPooley,Walter,H.G.Lewin Massachusetts Institute of Technology, Cambridge, MA 02139, USA ? Hubble Fellow Subject headings: stars: early-type — tars: Wolf-Rayet — galaxies:) Magellanic Clouds — X-rays: stars — X-rays: binaries — globular clusters: individual (R136) –2– ABSTRACT We analyzed archival Chandra X-ray observations of the central portion of the 30 Doradus region in the Large Magellanic Cloud. The image contains 20 32 35 1 X-ray point sources with luminosities between 5 10 and 2 10 erg s− (0.2 × × — 3.5 keV). A dozen sources have bright WN Wolf-Rayet or spectral type O stars as optical counterparts. Nine of these are within 3:4 pc of R 136, the ∼ central star cluster of NGC 2070. We derive an empirical relation between the X-ray luminosity and the parameters for the stellar wind of the optical counterpart. The relation gives good agreement for known colliding wind binaries in the Milky Way Galaxy and for the identified X-ray sources in NGC 2070. We conclude that probably all identified X-ray sources in NGC 2070 are colliding wind binaries and that they are not associated with compact objects. This conclusion contradicts Wang (1995) who argued, using ROSAT data, that two earlier discovered X-ray sources are accreting black-hole binaries. Five early type stars in R 136 are not bright in X-rays, possibly indicating that they are either: single stars or have a low mass companion or a wide orbit.
    [Show full text]
  • On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: the Urc Ious Case of WR124 Jesus A
    East Tennessee State University Digital Commons @ East Tennessee State University ETSU Faculty Works Faculty Works 12-10-2018 On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The urC ious Case of WR124 Jesus A. Toala UNAM Campus Morelia Lidi Oskinova University of Potsdam W.R. Hamann University of Potsdam Richard Ignace East Tennessee State University, [email protected] A.A. C. Sander University of Potsdam See next page for additional authors Follow this and additional works at: https://dc.etsu.edu/etsu-works Citation Information Toala, Jesus A.; Oskinova, Lidi; Hamann, W.R.; Ignace, Richard; Sander, A.A. C.; Todt, H.; Chu, Y.H.; Guerrero, M. A.; Hainich, R.; Hainich, R.; and Terrejon, J. M.. 2018. On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The urC ious Case of WR124. Astrophysical Journal Letters. Vol.869 https://doi.org/10.3847/2041-8213/aaf39d ISSN: 2041-8205 This Article is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The Curious Case of WR124 Copyright Statement © 2018. The American Astronomical Society. Reproduced by permission of the AAS. Creator(s) Jesus A. Toala, Lidi Oskinova, W.R. Hamann, Richard Ignace, A.A. C. Sander, H. Todt, Y.H. Chu, M. A. Guerrero, R. Hainich, R. Hainich, and J. M.
    [Show full text]
  • Giant H II Regions in the Merging System NGC 3256: Are They the Birthplaces of Globular Clusters?
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Paper I: To be submitted to A.J. Giant H II regions in the merging system NGC 3256: Are they the birthplaces of globular clusters? J. English University of Manitoba K.C. Freeman Research School of Astronomy and Astrophysics, The Australian National University ABSTRACT CCD images and spectra of ionized hydrogen in the merging system NGC3256 were acquired as part of a kinematic study to investigate the formation of globular clusters (GC) during the interactions and mergers of disk galaxies. This paper focuses on the proposition by Kennicutt & Chu (1988) that giant H II regions, with an Hα luminosity > 1:5 1040 erg s 1, are birthplaces of young populous clusters (YPC’s ). × − Although NGC 3256 has relatively few (7) giant H II complexes, compared to some other interacting systems, these regions are comparable in total flux to about 85 30- Doradus-like H II regions (30-Dor GHR’s). The bluest, massive YPC’s (Zepf et al. 1999) are located in the vicinity of observed 30-Dor GHR’s, contributing to the notion that some fraction of 30-Dor GHR’s do cradle massive YPC’s, as 30 Dor harbors R136. If interactions induce the formation of 30-Dor GHR’s, the observed luminosities indi- cate that almost 900 30-Dor GHR’s would form in NGC 3256 throughout its merger epoch. In order for 30-Dor GHR’s to be considered GC progenitors, this number must be consistent with the specific frequencies of globular clusters estimated for elliptical galaxies formed via mergers of spirals (Ashman & Zepf 1993).
    [Show full text]
  • Portrait of a Dramatic Stellar Crib 21 December 2006
    Portrait of a dramatic stellar crib 21 December 2006 most massive stars known. The nebula owes its name to the arrangement of its brightest patches of nebulosity, that somewhat resemble the legs of a spider. They extend from a central 'body' where a cluster of hot stars (designated 'R136') illuminates and shapes the nebula. This name, of the biggest spiders on the Earth, is also very fitting in view of the gigantic proportions of the celestial nebula - it measures nearly 1,000 light-years across and extends over more than one third of a degree: almost, but not quite, the size of the full Moon. If it were in our own Galaxy, at the distance of another stellar nursery, the Orion Nebula (1,500 light-years away), it would cover one quarter of the sky and even be visible in daylight. One square degree image of the Tarantula Nebula and its surroundings. The spidery nebula is seen in the upper- center of the image. Slightly to the lower-right, a web of filaments harbors the famous supernova SN 1987A (see below). Many other reddish nebulae are visible in the image, as well as a cluster of young stars on the left, known as NGC 2100. Credit: ESO Known as the Tarantula Nebula for its spidery appearance, the 30 Doradus complex is a monstrous stellar factory. It is the largest emission nebula in the sky, and can be seen far down in the southern sky at a distance of about 170,000 light- years, in the southern constellation Dorado (The Swordfish or the Goldfish).
    [Show full text]
  • Download This Article in PDF Format
    A&A 551, A71 (2013) Astronomy DOI: 10.1051/0004-6361/201219816 & c ESO 2013 Astrophysics Carbon monoxide in the environs of the star WR 16 N. U. Duronea1,3,E.M.Arnal1,2, and L. Bronfman3 1 Instituto Argentino de Radioastronomía, CONICET, CCT-La Plata, C.C.5., 1894 Villa Elisa, Argentina e-mail: [email protected] 2 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina 3 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile Received 14 June 2012 / Accepted 6 December 2012 ABSTRACT Aims. We analyze the carbon monoxide emission around the star WR 16 aiming to study the physical characteristics of the molecular gas linked to the star and to achieve a better understanding of the interaction between massive stars with their surroundings. Methods. We study the molecular gas in a region ∼86.4 × 86.4insizeusingCOJ = 1 → 0and13CO J = 1 → 0 line data obtained with the 4-m NANTEN telescope. Radio continuum archival data at 4.85 GHz, obtained from the Parkes-MIT-NRAO Southern Radio Survey, are also analyzed to account for the ionized gas. Available IRAS (HIRES) 60 μm and 100 μm images are used to study the characteristics of the dust around the star. Results. Our new CO and 13CO data allow the low/intermediate density molecular gas surrounding the WR nebula to be completely mapped. We report two molecular features at −5kms−1 and −8.5 km s−1 (components 1 and 2, respectively) having a good mor- phological resemblance with the Hα emission of the ring nebula.
    [Show full text]
  • The State of Anthro–Earth
    The Rosette Gazette Volume 22,, IssueIssue 7 Newsletter of the Rose City Astronomers July, 2010 RCA JULY 19 GENERAL MEETING The State Of Anthro–Earth THE STATE OF ANTHRO-EARTH: A Visitor From Far, Far Away Reviews the Status of Our Planet In This Issue: A Talk (in Earth-English) By Richard Brenne 1….General Meeting Enrico Fermi famously wondered why we hadn't heard from any other planetary 2….Club Officers civilizations, and Richard Brenne, who we'd always suspected was probably from another planet, thinks he might know the answer. Carl Sagan thought it was likely …...Magazines because those on other planets blew themselves up with nuclear weapons, but Richard …...RCA Library thinks its more likely that burning fossil fuels changed the climates and collapsed the 3….Local Happenings civilizations of those we might otherwise have heard from. Only someone from another planet could discuss this most serious topic with Richard's trademark humor 4…. Telescope (in a previous life he was an award-winning screenwriter - on which planet we're not Transformation sure) and bemused detachment. 5….Special Interest Groups Richard Brenne teaches a NASA-sponsored Global Climate Change class, serves on 6….Star Party Scene the American Meteorological Society's Committee to Communicate Climate Change, has written and produced documentaries about climate change since 1992, and has 7.…Observers Corner produced and moderated 50 hours of panel discussions about climate change with 18...RCA Board Minutes many of the world's top climate change scientists. Richard writes for the blog "Climate Progress" and his forthcoming book is titled "Anthro-Earth", his new name 20...Calendars for his adopted planet.
    [Show full text]
  • X-Ray Emission from Wolf-Rayet Stars
    X-ray Emission from Wolf-Rayet Stars Steve Skinner1, Svet Zhekov2, Manuel Güdel3 Werner Schmutz4, Kimberly Sokal1 1CASA, Univ. of Colorado (USA) [email protected] 2Space Research Inst. (Bulgaria) and JILA/Univ. of Colorado (USA) 3ETH Zurich (Switzerland) 3PMOD (Switzerland) Abstract We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. Observations of several WC-type (carbon-rich) WR stars without known companions have yielded only non-detections, implying they are either very feeble X-ray emitters or perhaps even X-ray quiet. In contrast, several apparently single WN2-6 stars have been detected, but data are sparse for later WN7-9 stars. Putatively single WN stars such as WR 134 have X-ray luminosities and spectra that are strikingly similar to some known WN + OB binaries such as WR 147, suggesting a similar emission mechanism. 1 X-rays from WR Stars: Overview 3 Single Nitrogen-rich WN Stars 4 Wolf-Rayet Binaries WR stars are the evolutionary descendants of massive O • Sensitive X-ray observations have now been obtained • High-resolution X-ray grating spectra have been ob- stars and are losing mass at very high rates. They are in ad- of several putatively single WN2-6 stars with XMM tained for a few binaries such as γ2 Vel (WC8 + vanced nuclear burning stages, approaching the end of their and Chandra. All but one were detected (Fig. 1). O7.5; Fig. 3) and WR 140 (WC7 + O4-5). CCD lives as supernovae. Strong X-rays have been detected from CCD spectra exist (Fig.
    [Show full text]
  • 198 6Apj. . .300. .37 9T the Astrophysical Journal, 300
    9T .37 The Astrophysical Journal, 300:379-395,1986 January 1 © 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A. .300. 6ApJ. 198 SPECTROSCOPIC STUDIES OF WOLF-RAYET STARS. III. THE WC SUBCLASS Ana V. Torres and Peter S. Conti1,2 Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards AND Philip Massey2 Kitt Peak National Observatory, National Optical Astronomy Observatories Received 1985 AprilS; accepted 1985 June 28 ABSTRACT We present spectrophotometric data for the major optical emission lines of 64 Galactic and 18 Large Magellanic Cloud (LMC) WC stars. Using line ratios of O v A5590, C m 25696, and C iv 25806 we quantify the subtype classification. A few Galactic stars are reclassified, and nearly all the LMC WC stars are found to be of type WC4. Thus there is even a greater discrepancy in the distribution of WC subtypes between the LMC and the Galaxy than previously assumed, since WC4 types in the Galaxy are rare. New measures of the line widths of C in 24650 are found to correlate nicely with the (revised) WC subtypes, although a few stars have lines too wide for their line ratios. Two of the most discrepant stars, WR 125 and WR 140, also show nonthermal radio emission and are strong X-ray sources. Terminal wind velocities are estimated from an excitation—line width relation. The terminal velocities range from 1000 km s_1 for the latest subtypes to 5000 km s "1 for the earliest types. Subject headings: galaxies: Magellanic Clouds — stars: stellar statistics— stars: winds — stars: Wolf-Rayet I.
    [Show full text]
  • Hard X-Ray Emission Clumps in the Γ-Cygni Supernova Remnant: the an INTEGRAL-ISGRI View To
    A&A 427, L21–L24 (2004) Astronomy DOI: 10.1051/0004-6361:200400089 & c ESO 2004 Astrophysics Editor Hard X-ray emission clumps in the γ-Cygni supernova remnant: the An INTEGRAL-ISGRI view to A. M. Bykov1, A. M. Krassilchtchikov1 , Yu. A. Uvarov1,H.Bloemen2,R.A.Chevalier3, M. Yu. Gustov1, W. Hermsen2,F.Lebrun4,T.A.Lozinskaya5,G.Rauw6,T.V.Smirnova7, S. J. Sturner8, J.-P. Swings6, R. Terrier4, and I. N. Toptygin1 Letter 1 A. F. Ioffe Institute for Physics and Technology, 26 Polytechnicheskaia, 194021 St. Petersburg, Russia e-mail: [email protected] 2 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 3 Department of Astronomy, University of Virginia, PO Box 3818, Charlottesville, VA 22903, USA 4 CEA – Saclay, DSM/DAPNIA/Service d’Astrophysique, 91191 Gif-sur-Yvette Cedex, France 5 Sternberg Astronomical Institute, Moscow State University, 13 Universitetskij, 119899 Moscow, Russia 6 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bât. B5c, 4000 Liège, Belgium 7 Astro Space Center of the Lebedev Physics Institute, 84/32 Profsoyuznaia, 117810 Moscow, Russia 8 NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771, USA Received 22 September 2004 / Accepted 9 October 2004 Abstract. Spatially resolved images of the galactic supernova remnant G78.2+2.1 (γ-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The images are dominated by localized clumps of about ten arcmin in size.
    [Show full text]
  • Remerciements – Unité 1
    TVO ILC SNC1D Remerciements Remerciements – Unité 1 Graphs, diagrams, illustrations, images in this course, unless otherwise specified, are ILC created, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. Intro Video, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. All title artwork and graphics, unless otherwise specified, Copyright © 2018The Ontario Educational Communications Authority. All rights reserved. Logo: Science Presse , Agence Science-Presse, URL: https://www.sciencepresse.qc.ca/, Accessed 14/01/2019. Logo: Curium, Curium, URL: https://curiummag.com/wp-content/uploads/2017/10/logo_ curium-web.png, Accessed 14/01/2019. Logo: Science Étonnante, David Louapre, URL: https://sciencetonnante.wordpress.com/, Accessed 20/03/2018, © 2018 HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. Blog, blogging and blogglers theme, djvstock/iStock/Getty Images Logo: Wordpress, WordPress.com, Automattic Inc., URL: https://wordpress.com/, Accessed 20/03/2018, © The WordPress Foundation. Logo: Wix, Wix.com, Inc., URL: https://static.wixstatic.com/ media/9ab0d1_39d56f21398048df8af89aab0cec67b8~mv1.png, Accessed 14/01/2019. Logo: Blogger, Blogger, Inc., ZyMOS, URL: https://commons.wikimedia.org/wiki/File:Blogger. svg, Accessed 20/03/2018, © Google LLC. HOME A film by Yann Arthus-Bertrand, GoodPlanet Foundation, Europacorp and Elzévir Films, URL: https://www.youtube.com/watch?v=GItD10Joaa0, Published 04/02/2009, Accessed 20/04/2018, Courtesy of the GoodPlanet
    [Show full text]
  • The Results of the 2013 Pro-Am Wolf-Rayet Campaign E
    Wolf-Rayet Stars W.-R. Hamann, A. Sander, H. Todt, eds. Potsdam: Univ.-Verlag, 2015 URL: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84268 The Results of the 2013 Pro-Am Wolf-Rayet Campaign E. J. Aldoretta1, N. St-Louis1, N. D. Richardson1, A. F. J. Moffat1, T. Eversberg2, G. M. Hill3 and the World-Wide WR Pro-Am Campaign Team4;5 1Universite´ de Montr´eal, Canada 2Schn¨orringenTelescope Science Institute, Germany 3W. M. Keck Observatory, United States 4VdS Section Spectroscopy, Germany 5Astronomical Ring for Access to Spectroscopy (ARAS), France Professional and amateur astronomers around the world contributed to a 4-month long cam- paign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of 40 days (half-life of 20 days). ∼ ∼ 1 Motivation and Campaign the spectral lines (Morel et al. 1999), WR 135 is known to show large clumpy structures in its wind Overview (Lepine et al. 1996) and WR 137 is a long-period WR+O binary system with possible CIRs (Lef`evre Co-rotating interaction regions (CIRs) form in the et al.
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY of CLOSE BINARIES No. 93
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 93 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner E. Kilpio E. Lapasset Y. Nakamura P.G. Niarchos R.G. Samec E. Tamajo W. Van Hamme M. Wolf Material published by September 15, 2011 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb or http://www.astro.uvic.ca/∼robb/bcb/comm42bcb.html The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a.
    [Show full text]