The Search for Life on Mars Ray P Carvell, Mark R Sims, Mark a Sephton and Lindsay Dannatt*

Total Page:16

File Type:pdf, Size:1020Kb

The Search for Life on Mars Ray P Carvell, Mark R Sims, Mark a Sephton and Lindsay Dannatt* 6446 scientific&parliamentary summer 08 8/7/08 10:31 Page 15 The Search for Life on Mars Ray P Carvell, Mark R Sims, Mark A Sephton and Lindsay Dannatt* For centuries, humans have been follow. This note provides an overview Why look for life underground? fascinated by the possibility of life on of ExoMars and discusses the benefits other planets. Recent robotic of the UK’s involvement. During the Martian day, the surface spacecraft have given us tantalizing of Mars is exposed to intense hints that primitive life may have Background ultraviolet light from the Sun which passes easily through the thin existed – or, perhaps, still exists – on The origins of ExoMars go back to Martian atmosphere. During the our neighbouring planet, Mars. The 2000 when ESA began studies for a European Space Agency set up the Martian night, the surface drops to mission which would land a rover on -100°C or even colder. These long-term Aurora Programme in 2001 the surface of Mars. This rover was to conditions are not conducive to life. (see Box 1) and its first mission, carry a sophisticated automatic ExoMars, will be presented for laboratory capable of detecting and However, there is a more benign approval to the ESA Ministerial analysing traces of life, both present environment a few centimetres Council in November 2008. The main and past. In 2006, ESA awarded a below the surface where ultraviolet light cannot penetrate and the scientific objective of ExoMars is to design contract for the ExoMars temperatures are less extreme. More establish whether life on Mars has ever mission to Thales Alenia Space, Italy, importantly, data from instruments existed or is still active today. The with a major subcontract for the rover technological and scientific on board spacecraft in orbit around going to Astrium UK. In the same Mars strongly suggest that large developments required to make year, a provisional selection of quantities of water ice exists in the ExoMars possible have already started scientific instruments was made porous layer of soil some 30 to 60 to deliver commercial benefits for the which, in addition to life detection centimetres beneath the surface in UK with the promise of many more to instruments, included instruments to some areas. It is known that some measure the Martian environment. UK types of organisms live successfully scientists are leading four of the 23 in very similar conditions on Earth. What is the Aurora Programme? scientific instruments and are heavily The ExoMars drill is mounted on The Aurora Programme is part of involved in the design of seven others. the rover and will deliver samples Europe’s strategy for space which The design phase is well advanced and from below the surface to the was endorsed by the European it is expected that manufacturing will rover’s life detection and Union Council of Research and the start early in 2010. characterization instruments. ESA Council in 2001. This strategy calls for Europe to: The Mission • explore the Solar System and the ExoMars will be ESA’s second mission from ESA’s spaceport in French Guiana Universe to Mars and will build on the expertise in November 2013, followed by a • stimulate new technology gained from its 2003 predecessor, landing, using parachutes and airbags, Mars Express Orbiter which itself has on Mars in late 2015. The exact • inspire the young people of Europe to take a greater interest been spectacularly successful but landing date will be chosen after in science and technology carried the ill-fated Beagle 2 lander. It ExoMars goes into orbit around Mars will be launched on an Ariane 5 rocket in order to avoid Martian dust storms. The primary objective of the Aurora Programme is a European long- term plan for the robotic and human exploration of the Solar Getting to Mars System. ExoMars is the first in a series of Aurora missions that will Mars is a ‘near neighbour’ of the Earth but, even at its closest, it is 35 million lead to the return to Earth of a miles away and landing a spacecraft on its surface is not at all routine. To date, sample from Mars. The UK is there have been 10 attempts to land spacecraft on Mars and only 5 have been playing a leading role in ExoMars successful – including 3 since 2003. Just 2 carried rovers. So far Europe has and the Aurora programme. made only one attempt at landing on Mars. *Ray P Carvell, Brightwell Instruments Ltd, Sotwell Street, Wallingford, Oxfordshire OX10 0RH. Mark R Sims, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH. Mark A Sephton, Earth Science and Engineering, South Kensington Campus, Imperial College London, SW7 2AZ. Lindsay Dannatt, Science and Technology Facilities Council, North Star Avenue, Swindon, SN2 1SZ. 12 Science in Parliament Vol 65 No 3 Summer 2008 6446 scientific&parliamentary summer 08 8/7/08 10:31 Page 16 In addition to the rover with its • 3D multimedia technologies that will These are applicable to many other cameras, exobiology laboratory and create new virtual reality experiences industries. drill for collecting samples from up to of planetary exploration for research, 2 metres below the surface where life outreach and commercial At least 100 scientists will study the is thought most likely to be found, the exploitation. data collected by ExoMars which, in ExoMars lander will carry an addition to answering the key environmental and geophysics science • Highly innovative miniaturised scientific questions, will be used to station. instrumentation using low- plan future Aurora missions. temperature catalysts that are needed The rover and lander instruments are for the future biotechnology The Future designed to collect scientific data for at industry. ExoMars is the first in a series of least 6 months after landing and may missions that will lead to the return to last much longer depending on the • New solvent systems that provide flexible, safe and economic Earth of a sample from Mars and, in severity of the conditions encountered the more distant future, perhaps a on the Martian surface. extraction procedures so that industries of the future can operate manned mission. The instruments and The Science in a clean environment. technologies which are being developed for ExoMars are stepping- ExoMars is expected to answer • Advanced fluid dynamics stones for these later missions. important questions including: simulations of ExoMars’ entry into The People • Has there ever been life on Mars? the Martian atmosphere that will improve operational tools for ExoMars’ ground-breaking science and • What is the present day environment modelling high-speed flight on engineering will inspire and encourage on Mars? Earth. the next generation to become the • Has Mars ever had an environment Key parts of the mission including the highly skilled scientists and engineers that could support life? rover are being built by UK industry. which Britain will need in the future. • How has the Martian environment The rover will be the most In support of this, an outreach changed over time? sophisticated exploration vehicle on programme involving schools, colleges Mars and the first to use a drill and • How do planets form and evolve? and the general public is being radar to explore beneath the planet’s planned with some pilot work already Answers to these questions will surface. under way. increase our understanding of the The Skills uniqueness – or otherwise – of life on The Funding Earth, within our Solar System and in In the UK, over 16 companies and 18 The UK’s involvement in ExoMars is the Universe. research institutions are presently funded by the Science and Technology involved in ExoMars. It is anticipated The Technology Facilities Council, one of the UK's that over 250 UK engineers, seven research councils, and a partner UK industry and scientists are working technicians and scientists will be in the British National Space Centre, in partnership to deliver commercial employed on this mission. A wide which co-ordinates the UK’s civil space benefits for the UK from ExoMars and range of high-level skills are needed activities. As Aurora is an optional the Aurora programme. Examples including electronic engineering, programme of ESA, the level of return include: mechanical engineering, thermal (industrial and science) to the UK is engineering, robotics, software design, dependant on the level of funding. • Unmanned vehicle technologies that materials science, microbiology, Currently the UK is the second largest can be applied to situations here on contamination control, systems contributor after Italy. Earth in remote, unstructured or engineering, product assurance and hazardous environments. international project management. Further information about the Aurora Programme and ExoMars can be found at : http://www.scitech.ac.uk/SciProg/Aurora/auroraHome.aspx http://www.esa.int/esaMI/Aurora/ Further information about water ice on Mars can be found at: http://news.bbc.co.uk/1/hi/sci/tech/7294767.stm http://news.bbc.co.uk/1/hi/sci/tech/2009318.stm http://news.bbc.co.uk/1/hi/sci/tech/120270.stm http://www.sciam.com/article.cfm?id=mars-odysseys-measurement Science in Parliament Vol 65 No 3 Summer 2008 13.
Recommended publications
  • Report of the Commission on the Scientific Case for Human Space Exploration
    1 ROYAL ASTRONOMICAL SOCIETY Burlington House, Piccadilly London W1J 0BQ, UK T: 020 7734 4582/ 3307 F: 020 7494 0166 [email protected] www.ras.org.uk Registered Charity 226545 Report of the Commission on the Scientific Case for Human Space Exploration Professor Frank Close, OBE Dr John Dudeney, OBE Professor Ken Pounds, CBE FRS 2 Contents (A) Executive Summary 3 (B) The Formation and Membership of the Commission 6 (C) The Terms of Reference 7 (D) Summary of the activities/meetings of the Commission 8 (E) The need for a wider context 8 (E1) The Wider Science Context (E2) Public inspiration, outreach and educational Context (E3) The Commercial/Industrial context (E4) The Political and International context. (F) Planetary Science on the Moon & Mars 13 (G) Astronomy from the Moon 15 (H) Human or Robotic Explorers 15 (I) Costs and Funding issues 19 (J) The Technological Challenge 20 (J1) Launcher Capabilities (J2) Radiation (K) Summary 23 (L) Acknowledgements 23 (M) Appendices: Appendix 1 Expert witnesses consulted & contributions received 24 Appendix 2 Poll of UK Astronomers 25 Appendix 3 Poll of Public Attitudes 26 Appendix 4 Selected Web Sites 27 3 (A) Executive Summary 1. Scientific missions to the Moon and Mars will address questions of profound interest to the human race. These include: the origins and history of the solar system; whether life is unique to Earth; and how life on Earth began. If our close neighbour, Mars, is found to be devoid of life, important lessons may be learned regarding the future of our own planet. 2. While the exploration of the Moon and Mars can and is being addressed by unmanned missions we have concluded that the capabilities of robotic spacecraft will fall well short of those of human explorers for the foreseeable future.
    [Show full text]
  • Lara (Lander Radioscience) on the Exomars 2020 Surface Platform
    EPSC Abstracts Vol. 13, EPSC-DPS2019-891-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. LaRa (Lander Radioscience) on the ExoMars 2020 Surface Platform. Véronique Dehant1,2, Sébastien Le Maistre1, Rose-Marie Baland1, Özgür Karatekin1, Marie-Julie Péters1, Attilio Rivoldini1, Tim Van Hoolst1, Bart Van Hove1, Marie Yseboodt1, and Alexander Kosov3 (1) Royal Observatory of Belgium (ROB), Brussels, Belgium, (2) Université catholique de Louvain, Louvain-la-Neuve, Belgium, (3) Space Research Institute Russian Academy of Sciences (IKI), Moscow, Russia Abstract The surface platform Kazachok will house the radio science experiment LaRa (Lander Radioscience) to support specific scientific objectives of the ExoMars 2020 mission. The LaRa experiment is described and the scientific objectives and strategies are detailed in this presentation. Figure 1. LaRa principle. 1. Introduction 2. The LaRa instrument In the last decade, several missions and observations As LaRa performs a coherent retransmission of the have brought new data on the planet Mars, obtained uplink carrier to the downlink carrier, the downlink by either spacecraft orbiting around Mars or landers frequency is scaled by a constant multiplier, the and rovers on the surface. Among other things, the transponder ratio (880/749). By emitting the uplink information acquired will improve our understanding signal from Earth, the masers in the ground stations of Mars’ interior, evolution and habitability. Data ensure frequency stability of LaRa’s radiosignal. obtained by new space missions are driving further The LaRa instrument is built in collaboration with progress in this field. In 2020, the European Space other Belgian actors under the lead of ESA PRODEX, Agency ESA and the Russian space agency and ROB providing the instrument specifications.
    [Show full text]
  • Outline of Aurora Funding
    Outline of Aurora funding The £3 million from the Aurora Science Programme has gone to the following 17 academics and individual scientists working at UK research organisations: 1. An improved understanding of Mars photochemistry using NOMAD and ACS measurements – Professor Paul Palmer, Edinburgh University - £73,442 The proposal aims to develop the existing photochemistry (the chemistry effects of light) to prepare for measurements collected by the NOMAD and ACS instruments aboard the Trace Gas Orbiter. They will develop the chemical mechanism so it can be used to interpret observed variations of atmospheric gases on Mars. 2. Dust storms and the dust transport cycle: their impact on the Martian climate in a multi annual reanalysis of MCS, THEMIS and TGO/ACS data – Professor Peter Read, Oxford University - £346,592 The proposal aims to improve our understanding of the Martian dust cycle, its impact on climate and the physical features of the Martian surface. Using a new approach towards analysing daily variations in the Martian atmosphere it is proposed to extend this dataset using measurements of the Martian atmosphere from the Mars Reconnaissance Orbiter and Mars Odyssey missions in orbit around Mars, and from the Atmospheric Chemistry Suite (ACS) on ESA's Trace Gas Orbiter mission when they become available. This may be useful for future spacecraft operations at the Martian surface, as well as to improve our understanding of both the present and past states of the Martian climate. 3. ExoMars TGO Guest Investigator Support – Dr Matt Balme, Open University - £56,367 This proposal seeks funding for a Guest Investigator position on ESA's ExoMars Trace Gas Orbiter mission.
    [Show full text]
  • Change in the Wind and Climate at the Exomars 2022 Landing Site in Oxia Planum (Mars)
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1442.pdf CHANGE IN THE WIND AND CLIMATE AT THE EXOMARS 2022 LANDING SITE IN OXIA PLANUM (MARS). S. Silvestro1,2, D. Tirsch3, A. Pacifici4, F. Salese5,4, D.A. Vaz6, A. Neesemann7, C.I. Popa1, M. Pajola8, G. Franzese1, G. Mongelluzzo1,9, A.C. Ruggeri1, F. Cozzolino1, C. Porto1, F. Esposito1. 1INAF, Osservatorio Astronomico di Capodimonte, Napoli, Italy ([email protected]). 2SETI Institute, Carl Sagan Center, Mountain View, CA, USA. 3Institute of Planetary Research, DLR, Berlin, Germany. 4IRSPS, Università G. D’Annunzio, Pescara, Italy. 5Centro de Astrobiología, CSIC- INTA, Madrid. 6CESR University of Coimbra, Portugal. 7Freie Universitat, Berlin, Germany. 8INAF, Osservatorio Astronomico di Padova, Padova, Italy. 9Department of Industrial Engineering, Università Federico II, Napoli, Italy. Introduction: The ESA/ROSCOSMOS ExoMars Ridges are even visible in association with impact crater 2022 (a rover named “Rosalind Franklin” and a surface ejecta and are superimposed by 10-25 m craters and platform named “Kazachok”) [1] will land in Oxia boulders, so they pre-date these impact events (Fig. 1c). Planum (18.2° N; 24.3° W) to search for signs of past or When associated with crater ejecta, ridges locally show present life on Mars and to perform long-term two different crests (Fig. 2b). Both crests are truncated atmospheric investigations [2,3]. Oxia Planum shows by craters, which suggest that the double crest large outcrops of clay-rich Noachian-aged arrangement was emplaced before the impacts (Fig. 2c). phyllosilicates [4,5]. The clay bearing unit is To better understand the relative age of the ridges, we unconformably overlain by an Amazonian dark resistant mapped their occurrence on 316 craters in the study area unit (Adru), which was interpreted to be remnants of an that we qualitatively classified as relatively Early Amazonian (2.6 Ga) volcanic material [4].
    [Show full text]
  • Exploration of Mars by the European Space Agency 1
    Exploration of Mars by the European Space Agency Alejandro Cardesín ESA Science Operations Mars Express, ExoMars 2016 IAC Winter School, November 20161 Credit: MEX/HRSC History of Missions to Mars Mars Exploration nowadays… 2000‐2010 2011 2013/14 2016 2018 2020 future … Mars Express MAVEN (ESA) TGO Future ESA (ESA- Studies… RUSSIA) Odyssey MRO Mars Phobos- Sample Grunt Return? (RUSSIA) MOM Schiaparelli ExoMars 2020 Phoenix (ESA-RUSSIA) Opportunity MSL Curiosity Mars Insight 2020 Spirit The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export‐controlled information. Mars Express 2003-2016 … First European Mission to orbit another Planet! First mission of the “Rosetta family” Up and running since 2003 Credit: MEX/HRSC First European Mission to orbit another Planet First European attempt to land on another Planet Original mission concept Credit: MEX/HRSC December 2003: Mars Express Lander Release and Orbit Insertion Collission trajectory Bye bye Beagle 2! Last picture Lander after release, release taken by VMC camera Insertion 19/12/2003 8:33 trajectory Credit: MEX/HRSC Beagle 2 was found in January 2015 ! Only 6km away from landing site OK Open petals indicate soft landing OK Antenna remained covered Lessons learned: comms at all time! Credit: MEX/HRSC Mars Express: so many missions at once Mars Mission Phobos Mission Relay Mission Credit: MEX/HRSC Mars Express science investigations Martian Moons: Phobos & Deimos: Ionosphere, surface,
    [Show full text]
  • Investigating Mars' Atmosphere Using the NOMAD Instrument on The
    Investigating Mars’ atmosphere using the NOMAD instrument on the ExoMars Trace Gas Orbiter Supervision team: Dr Manish Patel, Dr Stephen Lewis, Dr Jonathon Mason External supervisor: N/A Lead contact: [email protected] Description: This project provides the opportunity to be directly involved in an active space mission and play a key role in the preparation and exploitation of results from a spaceflight instrument on the ESA ExoMars Trace Gas Orbiter mission, which is currently in orbit around Mars. The project will involve supporting work on: - Continued development of a radiative transfer model of the martian atmosphere in preparation for ExoMars - Characterisation of Flight Spare instrumentation and data interpretation from mid-cruise checkouts - Preparation of new techniques for retrieval of atmospheric species - Exploitation of data returned from the NOMAD-UVIS instrument This mission is aimed at furthering our understanding of the composition and dynamics of the martian environment, through the measurement of trace gases such as ozone and methane in the martian atmosphere from orbit. The project relates to the UVIS channel of the NOMAD instrument; UVIS is an optical spectrometer led by the Open University to measure solar radiation travelling through the martian atmosphere at UV and visible wavelengths, in order to detect and map the presence of ozone, dust and ice clouds in the atmosphere of Mars in unprecedented detail. This project will involve scope for a wide range of potential research from instrument testing through to exploitation of real spaceflight instrument data. The focus of the project is on the retrieval of ozone and aerosol abundance and properties from spectra that will be returned from the UVIS instrument.
    [Show full text]
  • Exomars Rover Battery Modeling & Life Tests
    ExoMars Rover Battery Modeling & Life Tests Geoff Dudley NASA Aerospace Battery Workshop Huntsville USA November 16-18 2010 ExoMars Rover Battery • Mass is critical ! Nominal mission duration: 180 sols • Battery ExoMars Rover Battery | G. Dudley | Nov 16-18 2010 | NASA Aerospace Battery Workshop | Page 2 Background to tests - 1 • Low ambient temperature means either battery has to operate cold or extra is energy needed from somewhere to maintain higher battery temperature • Li-Ion cell manufacturers data sheets show discharge capability down to below -20 deg. C but rarely indicate low temperature charge capability • Required charge rates are quite low for rover application so low-temperature charging was investigated • ABSL recommended 4 cell candidates for low temperature tests at ESTEC (based on specific energy at low temperatures) • 2 of these down-selected for life tests as 6s1p strings: • ABSL 18650 LV (2.2 Ah nameplate capacity) • ABSL 18650 NL (2.4 Ah nameplate capacity) ExoMars Rover Battery | G. Dudley | Nov 16-18 2010 | NASA Aerospace Battery Workshop | Page 3 Background to tests - 2 • ESTEC tests carried out under contract to ABSL in the frame of ExoMars phase B1 “Rover Vehicle Battery Breadboard” activity. – By 180 cycles of life testing both cell types showed large dispersion in voltage, capacity and resistance – Evidence for lithium plating • Characterisation tests performed in parallel with life tests – NL cell model (derived from these) subsequently confirmed that Li plating was inevitable at the charge rates previously used. – Model used to help select a more suitable charge management • New life tests on new 6s1p modules of NL and LV cell types with new charge management – After 120 sols discontinued worst-performing cell module (LV) and replaced by second NL module using more aggressive charge management ExoMars Rover Battery | G.
    [Show full text]
  • The Pipeline for the Exomars DREAMS Scientific Data Archiving
    The pipeline for the ExoMars DREAMS scientific data archiving P. Schipani,1 L. Marty,1 M. Mannetta,1 F. Esposito,1 C. Molfese,1 A. Aboudan, 2 V. Apestigue-Palacio,3 I. Arruego-Rodriguez,3 C. Bettanini,2 G. Colombatti,2 S. Debei,2 M. Genzer,4 A-M. Harri,4 E. Marchetti,5 F. Montmessin,6 R. 5 5 7 Mugnuolo, S. Pirrotta, C. Wilson, 1INAF - Capodimonte Astronomical Observatory, I-80131 Naples, Italy; pietro.schipani@ oacn.inaf.it 2CISAS, Via Venezia 15, I-35131 Padua, Italy 3Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid, Spain 4Finnish Meteorological Institute (FMI), Erik Palmenin aukio 1, FI-00560 Helsinki, Finland 5Agenzia Spaziale Italiana (ASI), Via del Politecnico, I-00133 Roma, Italy 6LATMOS - CNRS, Quartier des Garennes, 11 bd d’Alembert, F-78280 Guyancourt, France 7Oxford University, Parks Road, Oxford, United Kingdom Abstract. DREAMS (Dust Characterisation, Risk Assessment, and Environment Analyser on the Martian Surface) is a payload accommodated on the Schiaparelli Entry and Descent Module (EDM) of ExoMars 2016, the ESA and Roscosmos mission to Mars (Esposito (2015), Bettanini et al. (2014)). It is a meteorological station with the additional capability to perform measure- ments of the atmospheric electric fields close to the surface of Mars. The instrument package will make the first measurements of electric fields on Mars, providing data that will be of value in planning the second ExoMars mission in 2020, as well as possible future human missions to the red planet. This paper describes the pipeline to convert the raw telemetries to the final data products for the archive, with associated metadata.
    [Show full text]
  • National Space Programmes 2012 - 2013
    National Space Programmes 2012 - 2013 Introduction projects – a massive injection of innovation into the blood stream of the UK’s space sector. Meanwhile, the Welcome to the second edition of the UK Space programme of scientific instruments has reached a Agency’s National Space Programmes brochure. milestone with the delivery of MIRI for the James Webb This document contains financial and management Space Telescope, the result of over a decade’s hard information about our suite of National Space work by the UK-led European consortium. The national Programmes, provided in order to give you an insight exploration and the Earth observation technology into the wide range of investment we are making in programmes have also made good progress, while the UK’s space sector. both UKube-1 and TechDemoSat-1 are preparing for launch in 2013. It is going to be another exciting year. It is now approaching two years since the Agency’s full establishment. During this time the UK space sector We hope you find the brochure valuable. It’s hard has continued to grow, as has its contribution to the to capture the huge range of projects that the UK economy as a whole, currently thought to be £9.1 Space Agency has underway in a few pages. For billion a year and directly employing 28,900 people. further information and also to download our other The average growth rate of the UK space sector is publications, please see our website: almost 7.5%; the National Space Programmes are in http://www.bis.gov.uk/ukspaceagency place to complement our investments in a range of European Space Agency, European Commission and And don’t forget to sign up for our monthly newsletter bilateral projects in order to further this growth in line and follow us on Twitter - @spacegovuk ! with the six themes of our civil space strategy: Dr.
    [Show full text]
  • Human Exploration of Mars Design Reference Architecture 5.0
    July 2009 “We are all . children of this universe. Not just Earth, or Mars, or this System, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” — Ray Bradbury, 'Mars and the Mind of Man,' 1973 Cover Art: An artist’s concept depicting one of many potential Mars exploration strategies. In this approach, the strengths of combining a central habitat with small pressurized rovers that could extend the exploration range of the crew from the outpost are assessed. Rawlings 2007. NASA/SP–2009–566 Human Exploration of Mars Design Reference Architecture 5.0 Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 ACKNOWLEDGEMENTS The individuals listed in the appendix assisted in the generation of the concepts as well as the descriptions, images, and data described in this report. Specific contributions to this document were provided by Dave Beaty, Stan Borowski, Bob Cataldo, John Charles, Cassie Conley, Doug Craig, Bret Drake, John Elliot, Chad Edwards, Walt Engelund, Dean Eppler, Stewart Feldman, Jim Garvin, Steve Hoffman, Jeff Jones, Frank Jordan, Sheri Klug, Joel Levine, Jack Mulqueen, Gary Noreen, Hoppy Price, Shawn Quinn, Jerry Sanders, Jim Schier, Lisa Simonsen, George Tahu, and Abhi Tripathi. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ CONTENTS 1 Introduction ......................................................................................................................
    [Show full text]
  • Tuesday, March 2, 2010 POSTER SESSION I: MISSION PLANS and CONCEPTS 7:00 P.M
    41st Lunar and Planetary Science Conference (2010) sess336.pdf Tuesday, March 2, 2010 POSTER SESSION I: MISSION PLANS AND CONCEPTS 7:00 p.m. Town Center Exhibit Area Benkhoff J. The BepiColombo Mission to Explore Mercury [#1743] BepiColombo is an ESA, JAXA interdisciplinary mission to explore the planet Mercury. Two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment and launched together in July 2014. Balint T. S. Kerzhanovich V. V. Hall J. L. Baines K. H. Stephens S. K. Four Aspects of a Venus Balloon Mission Concept [#1301] Our poster explores four aspects of a typical Venus balloon mission concept using information design techniques, including a typical timeline; the atmospheric entry sequence; maps of the balloon’s traverse path; and the material selection challenges. Klaus K. Cook T. S. Smith D. B. Small Body Landers for Near Earth Object Missions [#1077] We are developing a small body lander product line that leverages the significant investments that have been made in the highly successful DARPA Orbital Express program. Smith D. B. Klaus K. Caplin G. Elsperman M. S. Horsewood J. Low Cost Multiple Near Earth Object Missions [#1464] Our Commercial spacecraft are available with efficient high power solar arrays and hybrid propulsion systems (Chemical and Solar Electric) that make possible multiple Near Earth Object Missions within Discovery budget limits. Ping J. S. Qian Z. H. Hong X. Y. Zheng W. M. Fung L. W. Liu Q. H. Zhang S. J. Shang K. Jian N. C. Shi X. Wang M.
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]